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What is continous? What does continuous mean?

� think of physical motion
� by means of classical mechanics
� by means of classical electrodynamics
� all are models. . .
� compare with quantum mechanics – the scale of 10−8m makes

the barrier between views. . .

� think of a crowd of thousand people
� what you observe when someone disappears?
� what you observe when someone new appears?

� think of molecules in a solution or in a cell . . .
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Continuous model of reaction kinetics

� assume well-stirred solution

� high amounts of all substances

� fixed thermodynamics conditions (temperature, pressure, . . . )

� fixed volume of the solution
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Continuous model of reaction kinetics

A
k−→

� consider a barrel with a substance A of molar volume [A] [M]

� how much of substance A “flows out” per a single time unit?

� value proportional to [A](t) in a given time t

−d [A](t)

dt
= k · [A](t)

� coefficient of proporcionality is denoted k [s−1]
so-called kinetic constant (coefficient)
- determines the speed of mass decay (“outflow”)
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Continuous model of reaction kinetics

[A](t)

dt
= k · [A](t)

� which functions has the same form as its derivation?

� f (t) = 1 + t + t2/2! + t3/3! + t4/4! + ...

f (t) = et

� plat́ı
det

dt
= et
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Continuous model of reaction kinetics

A
k−→

−d [A](t)
dt = k · [A](t)

⇔ [A](t) = [A](0) · e−kt

� so-called first-order kinetics (a special case of mass action)

� linear autonomous differential equation

� unique solution

� can be either analytically solved or numerically approximated
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Continuous model of reaction kinetics

A
k−→

−d [A](t)
dt = k · [A](t)⇔ [A](t) = [A](0) · e−kt

� so-called first-order kinetics (a special case of mass action)

� linear autonomous differential equation

� unique solution

� can be either analytically solved or numerically approximated
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Continuous model of reaction kinetics

� state is a vector of actual amounts of all susbtances in the
system

� continuous-time dynamics: the state change X (t)→ X (t + dt)

updates all components of X (continuous concurrent flow of
all reactions)

� we consider reaction rate as a function of time: for a
reaction R in time t we denote the actual rate vR(t)

reaction type rate function vR state update

→ A vR(t) = k dA
dt = −vR

A→ B vR(t) = k · [A](t) dA
dt = −vR ,

dB
dt = vR

A + B → AB vR(t) = k · [A](t) · [B](t) dA
dt = dB

dt = −vR ,
dAB

dt = vR

2A→ AA vR(t) = k · [A]2 dA
dt = −2vR ,

dAA
dt = vR
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General Mass Action Kinetics

k∑
i=1

si · Ai →
l∑

j=1

pj · Bj

v =
k∏

i=1

Ai
si

∀1 ≤ i ≤ k . dAi
dt = −si · v

∀1 ≤ j ≤ l .
dBj

dt = pj · v
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Example: Michaelis-Menten

S + E
k1


k2

ES
k3−→ P + E

d [S ]

dt
= −k1[E ][S ] + k2[ES ]

d [E ]

dt
= −k1[E ][S ] + k2[ES ] + k3[ES ]

d [ES ]

dt
= k1[E ][S ]− k2[ES ]− k3[ES ]

d [P]

dt
= k3[ES ]
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Euler method
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Euler method

� approximate solution y(t) (Euler):

y ′(t) = f (t, y(t))
y(0) = y0

� exact solution ϕ(t):

ϕ′(t) = f (t, ϕ(t))
ϕ(0) = y0

� for each n ≥ 0, tn = n∆t:

yn ≈ ϕ(tn)
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Euler method

Exact solution ϕ(t) satisfies:

ϕ(tn+1) = ϕ(tn) +
∫ tn+1

tn
ϕ′(t)dt

= ϕ(tn) +
∫ tn+1

tn
f (t, ϕ(t))dt

Numerical approximation:

yn+1 = yn + σ

where

σ ≈
∫ tn+1

tn

f (t, ϕ(t))dt
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Euler method I

dy

dt
= f (t, y)

yn+1 = yn + ∆t · f (tn, yn)

1. init t0, y0, ∆t, n;

2. for j from 1 to n do

2.1 m := f (t0, y0);
2.2 y1 := y0 + ∆tm;
2.3 t1 := t0 + ∆t;
2.4 t0 := t1;
2.5 y0 := y1;

3. end
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Petri Net Analysis Framework

quantitative parameters ignored

quantitative parameters required

continuous model

qualitative model

stochastic model

variables
continuous

abstracted

modeled
time

discrete

approximation

abstra
ctio

n abstraction
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Petri Net Analysis Framework

continuous model

qualitative model

stochastic model

variables
continuous

abstracted

modeled
time

discrete

Monte Carlo simulation

Static analysis

Behavioral analysis

Simulation analysis

Steady state analysis

Numerical simulation

Simulation analysis

approximation

abstra
ctio

n abstraction
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Petri Net Representation of Models

Continuous Petri Net

ODE

Reaction Network

� for mass action kinetics both transformations are direct

� unique Petri net representation of ODEs always achievable
S. Soliman, M. Heiner (2010) “A Unique Transformation from Ordinary Differential Equations to Reaction

Networks.” PLoS ONE 5(12): e14284. doi:10.1371/journal.pone.0014284
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Continuous Petri Nets
Structure

Continuous Petri net is a quadruple N = 〈S ,R, f , v ,m(0)〉 where

� S finite set of places (substances),

� T finite set of transitions (reactions),

� f : ((P × T ) ∪ (T × P))→ N0 set of weighted edges,

� x• = {y ∈ S ∪ R | f (x , y) 6= 0} denotes target of x
� •x = {y ∈ S ∪ R | f (y , x) 6= 0} denotes source of x
� weight represents stoichiometric coefficients

� v is mapping which assigns each transition r ∈ R a function
hr : R|•r | → R

� v represents transition (reaction) rate

� m(0) : S → R+
0 is initial marking (initial condition).
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Continuous Petri Nets
Dynamics

Number of places denotes the dimension of the system, n = |S |.

Each place s ∈ S is marked by a value in R+
0 (representing

concentration of the respective species):

� in Petri net terminology evaluation of places is called marking
and represented as an n-dimensional vector m ∈ Rn

� marking evolves in time: m(t)

Dynamics of each place s ∈ S is defined by an ODE:

dms(t)

dt
=
∑
r∈•s

f (r , s)v(r)−
∑
r∈s•

f (s, r)v(r)
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Continuous Petri Nets
Michaelis-Menten Mass Action Kinetics Example

r1 : E + S → ES , r2 : ES → E + S , r3 : ES → P + E

dmS
dt = v(r2)− v(r1)

dmE
dt = v(r2) + v(r3)− v(r1)

dmES
dt = v(r1)− v(r2)− v(r3)

dmP
dt = v(r3)



Continuous mass action Stochastic mass action Beyond elementary reaction kinetics

Continuous Petri Nets
Michaelis-Menten Mass Action Kinetics Example

E

ES

P

1*ES

1*ES

0.1*E*S
10

50

S

dmS

dt = k2mES − k1mE mS

dmE

dt = k2mES + k3mES − k1mE mS

dmES

dt = k1mE mS − k2mES − k3mES

dmP

dt = k3mES

k1 = 0.1 [M−1s−1]
k2 = 1 [s−1]
k3 = 1 [s−1]
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Parameter Estimation Problem

� inverse problems – determine the model from measured data

� quite easy for linear systems, but what for non-linear?

� general steps in inverse problem solution:

1. identify relations among variables
2. identify functions describing relations (e.g., mass action)
3. estimate constants appearing in the functions – parameter

estimation
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Parameter Estimation Problem

� parameter estimation is solved as optimization problem w.r.t.
measured data

� the goal is to minimize average deviation of model from data

� so-called least squares method

� we seek for global minima

� many heuristics for optimization procedure, many algorithms
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Parameter Landscape
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Parameter Landscape
Walking the landscape to find the global minimum
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Tool Support for Continuous Models

� format transformation and models editing
� Snoopy – Petri nets representation visual editing, SBML

export/import, Petri net variants transformation
� CellDesigner – SBGN visual editing, SBML export/import
� CellIllustartor – visual editing, hybrid Petri nets simulation

� analysis
� Octave, Matlab (simulation and SBML: SBMLToolBox,

SimBiology ToolBox)
� COPASI (simulation, SBML export/import, other analysis

tasks)
� BioCHAM (robustness analysis, model checking)
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Stochastic model of reaction kinetics

� assume well-stirred solution
� uniform distribution of molecules in solution

� low amounts of substances

� fixed thermodynamics conditions (temperature, pressure, . . . )

� fixed volume of the solution

� reactions (molecule collisions) viewed as discrete events
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Stochastic model of reaction kinetics

� discrete events happen in continuous time

� time between two events is a stochastic quantity
� average probability (over the whole solution) of reaction

realization in given time
� some reactions faster (more probable), some slower (less

probable)
� probability depends on amounts of reactant molecules

� stochasticity is a measure of uncertainty caused by other
(non-reactive) events happening in solution
⇒ approximation of the following aspects:

� molecule position and rotation
� molecule motion (speed)
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Stochastic model of reaction kinetics
Gillespie’s Hypothesis

D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. In Journal of Physical Chem-
istry, volume 81, No. 25, pages 2340-2381. 1977.
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Stochastic model of reaction kinetics
Gillespie’s Hypothesis

� basic Newtonian physics and thermodynamics is assumed

� realization probability for reaction Rj globally characterized by
the rate constant cj

� depends on radii of colliding molecules and their average
relative velocities (considerred relatively to the solution
volume)

� direct function of temperature and molecular structure

� if a pair of two molecules has kinetic energy higher than
reaction energy then the reaction is realized
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Stochastic model of reaction kinetics
Comparison of models

� continuous kinetics provides a macro-scale view
� systems view abstracting from location (space)
� continuous dynamics of large quantities – quantitity as a

population
� single average evolution of averaged (well-stirred) events

� stochastic kinetics provides a meso-scale view
� systems view still abstracting from location (space)
� discrete dynamics of low quantities
� all possible evolutions of averaged (well-stirred) events
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Stochastic model of reaction kinetics
Grand probability function

� Gillespie’s hypothesis enables stochastic formulation of
molecular (low population) dynamics

� for time t the grand probability function Pr(X ; t)
characterizes the probability that there will be present Xi

molecules of species Si , X = 〈X1, ...,Xn〉 is a vector quantity
denoting configuration of the population

� how to compute?
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Stochastic model of reaction kinetics
Grand probability function

� Gillespie’s hypothesis enables stochastic formulation of
molecular (low population) dynamics

� for time t the grand probability function Pr(X ; t)
characterizes the probability that there will be present Xi

molecules of species Si , X = 〈X1, ...,Xn〉 is a vector quantity
denoting configuration of the population

� how to compute?
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Stochastic model of reaction kinetics
Grand probability function

� considering reactions as discrete events leads to:

Pr(X ; t + dt) = Pr(X ; t) · Pr(no state change)
+
∑m

i=1 Pr(X − ui ; t) · Pr(state changed to X)

where
� dt is a small time step in which at most 1 reaction occurs
� ui is update caused by the effect of reaction Ri (X → X + ui )
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Stochastic model of reaction kinetics
Grand probability function

� considering reactions as discrete events leads to:

Pr(X ; t + dt) = Pr(X ; t) · (1−
∑m

i=1 χi (X )dt)
+
∑m

i=1 Pr(X − ui ; t)χi (X − ui )dt

where
� dt is a small time step in which at most 1 reaction occurs
� ui is update caused by the effect of reaction Ri (X → X + ui )
� χi is hazard function characterizing the probability of exactly

one occurrence of Ri in time interval dt
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Stochastic model of reaction kinetics
Hazard function

In a particular configuration, probability of reaction realization in
given time is characterized by hazard function.

Hazard function for reaction R is denoted χR(X ) where X is a
current state (configuration, marking). Assume R is assigned a
stochastic rate constant cR . The table below shows the hazard
function for all forms of elementary reactions:

→ ∗ χR(X ) = cR

A→ ∗ χR(X ) = cR · XA

A + B → ∗ χR(X ) = cR · XA · XB

2A→ ∗ χR(X ) = cR · XA·(XA−1)
2

stochastic mass action
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Stochastic model of reaction kinetics
Stochastic Simulation Algorithm – SSA

� single transition X (t)→ X (t + dt) updates just one
component of X

� realization of just one reaction R

� reaction realization does not take time

� in a state X (t), the time to next realization of reaction Ri is
characterized by distribution Exp(χRi

(X ))
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Exponential distribution

E (X ) =
1

λ
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Stochastic model of reaction kinetics

� for transition X (t)→ X (t + dt), dt is the time to earliest
reaction event

� dt is sampled as minimal time over all n reactions:

dt ∼ Exp(χ(X )) χ(m) =
n∑

i=1

χRi
(X )

� reaction Ri is chosen with probability: P(Ri ) =
χRi

(X )

χ(X )

� formally this comes from the property of exponential
distribution

� the model behind is continuous-time Markov process
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Gillespie direct method (SSA)

Output: a single trajectory realizing the grand probability distribution

1. initialize t = 0, X (0)

2. compute χRi (X ) ∀i ∈ {1, ..., n}

3. compute χ(X ) ≡
∑n

i=1 χRi (X )

4. sample τ ∈ Exp(χ(X ))

5. t := t + τ

6. choose reaction Ri with probability
χRi

(X )

χ(X )

7. update: X (t) = X (t − τ) + uRi

8. while t < Tmax go to (2)
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Example

Consider reaction: A→ B

A B

(
5
0

)

→ (2s)→
(

4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B
2s

T~Exp(5)

(
5
0

)
→

(2s)→
(

4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B

(
5
0

)
→ (2s)→

(
4
1

)

→ (0.5s)→
(

3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B
0.5s

T~Exp(4)

(
5
0

)
→ (2s)→

(
4
1

)
→

(0.5s)→
(

3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)

→ (1s)→
(

2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B
1s

T~Exp(3)

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)
→

(1s)→
(

2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)

→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B
T~Exp(2)

0.8s

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)

→ (2s)→
(

0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

2s

T~Exp(1)
A B

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→

(2s)→
(

0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

A B

(
5
0
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→ (2s)→
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4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example

Consider reaction: A→ B

(
5
0

)
→ (2s)→

(
4
1

)
→ (0.5s)→

(
3
2

)
→ (1s)→

(
2
3

)
→

(0.8s)→
(

1
4

)
→ (2s)→

(
0
5

)

� hazard function considered: χ(X ) = 1 · XA
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Example – positive autoregulation of gene expression

R1 : P + g → gP
R2 : gP → g + P
R3 : gP → gP + P
R4 : P →
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Example – positive autoregulation of gene expression

� initial settings: g(0) = 5,P(0) = 2, gP(0) = 0;
c1 = c2 = 1, c3 = 0.1, c4 = 0.01

� distribution in t = 1000 for 2000 simulations



Continuous mass action Stochastic mass action Beyond elementary reaction kinetics

Petri Net Analysis Framework
Stochastic Model

continuous model

qualitative model

stochastic model

variables
continuous

abstracted

modeled
time

discrete

Monte Carlo simulation

Static analysis

Behavioral analysis

Simulation analysis

Steady state analysis

Numerical simulation

Simulation analysis

approximation

abstra
ctio

n abstraction
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Discrete Approximation

� notion of Petri Net token

� token represent molecule or a certain concentration level
� suppose bounded concentration for all substrates:
〈0,max) ⊂ R

� uniform partitioning into N intervals:

0, (0, 1 · max

N
〉, (1 · max

N
, 2 · max

N
〉, . . . , (N − 1 · max

N
,N · max

N
〉
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Discrete Approximation
Stochastic vs. continuous model

� substance concentration [M]:

c =
n

V

where n substance quantity [mol ], V solution volume [l ]

� expressed in terms of Avogadro constant (number of particles
in 1 mol):

c =
N

NA · V
where NA Avogadro constant [mol−1], V solution volume [l ]
and N number of molecules.

� transformation factor:

γ = NA · V [mol−1l ] ⇒ N = c · γ, c =
N

γ
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Discrete Approximation
Stochastic vs. continuous model

A continuous Petri net N = 〈S ,R, f , v ,m(0)〉 can be transformed
to a stochastic Petri net N = 〈S ,R, f , v ′,m(0)〉:

� m(0) : S → N0 is initial marking

� v ′ assigns each transition a hazard:

reaction type r ∈ R v(r)→ v ′(r) transformation

→ A v ′(r) = v(r)

A→ B v ′(r) = v(r)

A + B → AB v ′(r) = v(r)
γ

A + A→ AA v ′(r) = 2v(r)
γ

L. Cardelli (2008), “From Processes to ODEs by Chemistry”. In 5th International Conference on

Theoretical Computer Science, pages 261-281. DOI:10.1007/978-0-387-09680-3 18
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Stochastic Petri Nets
Michaelis-Menten Stochastic Mass Action Kinetics Example

E

ES

P

1*ES

1*ES

0.1*E*S
10

50

S
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Tool Support

� Monte Carlo simulation
� Dizzy, COPASI, SPiM

� simulation analysis
� BioNessie (statistical model checking)
� BioCHAM

� symbolic analysis
� PRISM (strong transient and steady state analysis)
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Petri Net Analysis Framework
Tool Support Overview

continuous model

qualitative model

stochastic model

variables
continuous

abstracted

modeled
time

discrete

Monte Carlo simulators
COPASI, STOC2, SPIM

Monte Carlo analyzers
BioNessie, BioCHAM

Symbolic analyzers
PRISM

ODE solvers

BioNessie, BioCHAM
ODE dynamics analyzers

Static analyzers
Charlie, PIPE, COPASI

Dynamic analyzers
Charlie, BioCHAM

approximation

abstra
ctio

n abstraction
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Regulatory Networks of Cellular Processes

� identify substances (proteins, genes)

� identify interactions (transcriptory activation, repression – do we

know reactions behind?)
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Example of a gene regulatory network

rrnP1 P2

CRP

crp

cya

CYA

cAMP•CRP

FIS

TopA

topA

GyrAB

P1­P4 P1 P2

P2P1­P’1

P

gyrABP

Signal (lack of carbon source)
DNA 

supercoiling

fis

tRNA
rRNA

protein

gene

promoter
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Gene regulatory network of E. Coli
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Rational Kinetics

� in continuous framework the regulatory interactions are
modeled by specific rate functions

� approximation makes several limiting assumptions

� enzyme kinetics

� Michaelis-Menten rate function
� substrate concentration must be higher then enzyme

concentration

� Hill kinetics
� gene regulatory interactions
� S-functions for activation/repression
� cooperativity of transcription factors increases steepness
� can be rigorously abstracted in discrete domain
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Example – positive autoregulation of gene expression

→ P; P
P →

P + g → gP
gP → g + P
gP → gP + P
P →
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Example – positive autoregulation of gene expression

→ P; P
P →

v1 = β · Pn

K n+Pn

v2 = γ · P

dP
dt = v1 − v2

β

K

v1

[P]
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Identification of regulatory dynamics

� systems measurement of transcriptome (mRNA
concentration) is imprecise and discrete!

� interactions can be partially identified by analysis of
transcriptor factor binding sites (e.g., TRANSFAC)

� microarray experiments can be reversed engineered
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Identification of regulatory dynamics
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Identification of regulatory dynamics
Boolean and Bayesian networks

crp(t + 1) = ¬crp(t) ∧ ¬cya(t)
cya(t + 1) = ¬cya(t) ∧ ¬crp(t)
fis(t + 1) = ¬crp(t) ∧ ¬cya(t)

tRNA(t + 1) = fis(t)

P(Xcrp)
P(Xcya)

P(Xfis |Xcrp,Xcya)
P(XtRNA|Xfis)
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Model example – autoregulation

gene a

protein A

2
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Model example – autoregulation

gene a

protein A

0 1 2 3 4

� identification of discrete expression levels
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Model example – autoregulation

gene a

protein A

0 1 2 3 4

� spontanneous (basal) transcription: A→ 4
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Model example – autoregulation

gene a

protein A

0 1 2 3 4

� range of regulatory activity (A ∈ {3, 4} ⇒ regulation active)
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Model example – autoregulation

gene a

protein A

0 1 2 3 4

� target level (A ∈ {3, 4} ⇒ A→ 0)
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State space – autoregulation

� state transition system 〈S ,T , S0〉
� S state set, S ≡ {0, 1, 2, 3, 4}
� S0 ⊆ S initial state set
� T ⊆ S × S transition function:

source state active regulation target state

0 ∅; [A→ 4] 1
1 ∅; [A→ 4] 2
2 ∅; [A→ 4] 3
3 A→− A; [A→ 0] 2
4 A→− A; [A→ 0] 3
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State space – autoregulation

state transition system for negative autoregulation 〈S ,T , S0 = S〉 :

4

3

2

1

0
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Combined regulation

gene a gene b

protein A protein B
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Discrete characteristics of dynamics

protein A protein B

gene a gene b

0 1 20 1

� identification of dicrete levels of expression
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Discrete characteristics of dynamics

protein A protein B

gene a gene b

0 1 20 1

� spontanneous (basal) transcription: A→ 1, B → 2
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Characteristics of regulation

protein A protein B

gene a gene b

0 1 20 1

� range of regulatory activity B →− B (B = 2⇒ regulation
active)
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Characteristics of regulation

protein A protein B

gene a gene b

0 1 20 1

� target level B →− B (B = 2⇒ B → 0)
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Characteristics of regulation – input function

protein A protein B

gene a gene b

0 1 20 1

� range of regulatory activity B →− A (B ∈ {1, 2} ⇒ reg.
active)
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Characteristics of regulation – input function

protein A protein B

gene a gene b

0 1 20 1

� range of regulatory activity A→− A (A = 1⇒ reg. active)



Continuous mass action Stochastic mass action Beyond elementary reaction kinetics

Characteristics of regulation – input function

protein A protein B

gene a gene b

0 1 20 1

AND

� AND-combined regulation A→− A ∧ B →− A:
A = 1 ∧ B ∈ {1, 2} ⇒ regulation active
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Characteristics of regulation – input function

protein A protein B

gene a gene b

0 1 20 1

AND

� target levels of combined regulation A→− A ∧ B →− A:
A = 1 ∧ B ∈ {1, 2} ⇒ A→ 0
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State space – synchronnous semantics

� state transition system 〈S ,T , S0〉
� S ≡ {0, 1} × {0, 1, 2}
� S0 ⊆ S , we consider S0 = S
� T ⊆ S × S transition function:

source state active regulation target state

[0, 0] ∅; [A→ 1,B → 2] [1, 1]
[0, 1] B →− A; [A→ 0,B → 2] [0, 2]
[0, 2] B →− B ∧ B →− A; [A→ 0,B → 0] [0, 1]
[1, 0] A→− A; [A→ 0,B → 2] [0, 1]
[1, 1] A→− A ∧ B →− A; [A→ 0,B → 2] [0, 2]
[1, 2] A→− A ∧ B →− A ∧ B →− B; [A→ 0,B → 0] [0, 1]
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State space – synchronnous semantics

state transition system 〈S ,T ,S0 = S〉 :
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State space – asynchronnous semantics

� state transition system 〈S ,T , S0〉
� S ≡ {0, 1} × {0, 1, 2}
� S0 ⊆ S , we consider S0 = S
� T ⊆ S × S transition function:

source state active regulation target states

[0, 0] ∅; [A→ 1,B → 2] [1, 0], [0, 1]
[0, 1] B →− A; [A→ 0,B → 2] [0, 2]
[0, 2] B →− B ∧ B →− A; [A→ 0,B → 0] [0, 1]
[1, 0] A→− A; [A→ 0,B → 2] [0, 0], [1, 1]
[1, 1] A→− A ∧ B →− A; [A→ 0,B → 2] [0, 1], [1, 2]
[1, 2] A→− A ∧ B →− A ∧ B →− B; [A→ 0,B → 0] [0, 2], [1, 1]
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State space – asynchronnous semantics

state transition system 〈S ,T ,S0 = S〉 :
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Properties of discrete semantics

� synchronous semantics
� effect of active regulations is realized in terms of a single event
� strong approximation leading to deterministic state transition

system

� asynchronnous semantics
� effect of active regulations is realized for each gene/protein

individually in terms of single events
� nondeterminism models all possible serializations (so called

interleaving)
� approximation is rather conservative
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Free Tool Support

� Gene Interaction Network simulation (GINsim)
http://gin.univ-mrs.fr/GINsim/accueil.html

� asynchronous and synchronous simulation
� allows to get rough understanding of regulatory logic
� allows to identify potential steady states of regulation
� purely qualitative modelling and analysis

� directly allow application of a large set of computer scientific
tools

� graph algorithms for state space graph analysis
� model checking

� Genetic Network Analyzer (GNA)
http://www.genostar.com/en/genostar-software/gnasim.html

� rigorous relation to continuous model

http://gin.univ-mrs.fr/GINsim/accueil.html
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