o COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow

Floating-point real numbers
Representation and operations

Chapter 3 — Arithmetic for Computers — 2

Integer Addition

Example: 7 + 6

RTHHR

0 (0) 0 O 1 (1) 1 (1) 0

Overflow if result out of range
Adding +ve and —ve operands, no overflow

Adding two +ve operands
Overflow if result sign is 1

Adding two —ve operands
Overflow if result signis 0

Chapter 3 — Arithmetic for Computers — 3

Integer Subtraction

Add negation of second operand
Example: 7 -6 =7 + (-0)
+7: 0000 0000 ... 0000 0111

—06: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001

Overflow if result out of range
Subtracting two +ve or two —ve operands, no overflow

Subtracting +ve from —ve operand
Overflow if result signis 0

Subtracting —ve from +ve operand
Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 4

Dealing with Overflow

Some languages (e.g., C) ignore overflow
Use MIPS addu, addu1i, subu instructions

Other languages (e.g., Ada, Fortran)
require raising an exception
Use MIPS add, add1i, sub instructions

On overflow, invoke exception handler

Save PC in exception program counter (EPC)
register

Jump to predefined handler address

mfcO (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 5

Arithmetic for Multimedia

Graphics and media processing operates
on vectors of 8-bit and 16-bit data

Use 64-bit adder, with partitioned carry chain
Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors
SIMD (single-instruction, multiple-data)
Saturating operations

On overflow, result is largest representable
value

c.f. 2s-complement modulo arithmetic
E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 6

Multiplication

Start with long-multiplication approach

multiplicand \ Multiplicand
— 1000 Shift left |—
multiplier ? 1001 64 bits
1000 Y j’ —
0000 N 4 Multiplier
OOOO 64-bit ALU Shift right
1000 32 bits A—|
roduct | T
Y 1001000 Product e Conm
Length of product is papls

the sum of operand
lengths

Chapter 3 — Arithmetic for Computers — 7

Multiplication Hardware

Y B

Multiplier0 = 1 Multiplier0 = 0 Multiplicand

1. Test

Multiplier0 Shift left |-e—

| 64 bits
1a. Add multiplicand to product and Y
place the result in Product register \/ e
| _ Multiplier
64-bit ALU Shift right
Y Y
|2. Shift the Multiplicand register Ieﬁ1bit| 32 bits
Y
| 3. Shift the Multiplier register right 1 bit | Product Control test
l Write
64 bits
No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Initially O

Chapter 3 — Arithmetic for Computers — 8

Optimized Multiplier

Perform steps in parallel: add/shift

Multiplicand

_l 132 bits

\/

3o-bit ALU

——

Product Shift rlght
Write

64 bits

One cycle per partial-product addition
That's ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 9

Faster Multiplier

Uses multiple adders
Cost/performance tradeoff

Mplier31 « Mcand Mplier30 « Mcand Mplier29 » Mcand Mplier28 » Mcand Mplier3 »« Mcand Mplier2 « Mcand Mplier1 « Mcand Mplier0 « Mcand

‘lll lll,

1 bit -+ 1 bit—+ .. L bt
AV
32 bits
Product63 Product62 Product47..16 C Product1 Product0

Can be plpellned
Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 10

MIPS Multiplication

Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions
mult rs, rt / multu rs, rt
64-bit product in HI/LO

mfhi rd / mflo rd

Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits

mul rd, rs, rt
Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers — 11

Division

quotient
dividend \

1001

1000)1001010

/" ~1000
10

divisor

101
1010
-1000

—— 10

remainder

n-bit operands yield n-bit
quotient and remainder

Check for O divisor

Long division approach

If divisor < dividend bits
1 bit in quotient, subtract
Otherwise

0 bit in quotient, bring down next
dividend bit

Restoring division

Do the subtract, and if remainder
goes < 0, add divisor back

Signed division
Divide using absolute values

Adjust sign of quotient and remainder
as required

Chapter 3 — Arithmetic for Computers — 12

Ivision Hardware

(Start)

-l
-«

Y Initially divisor
1. Subtract the Divisor register from the .
Remainder register and place the In Ieﬂ half
result in the Remainder register

_..
Divisor
Remainder = 0 Remainder < 0 it ri <
Test Remainder Shift right |
64 bits
i
‘, ‘ l
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding \/
setting the new rightmost bit to 1 the Divisor register to the Remainder . Quotient
register and placing the sum in the 64-bit ALU Shift left |-
Remainder register. Also shift the -
Quotient register to the left, setting the v 32 bits
new least significant bit to 0
| Remainder Control
Write test
\ Y 64 bits

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Initially dividend

Yes: 33 repetitions

Chapter 3 — Arithmetic for Computers — 13

Optimized Divider

Divisor

32 bits
l \

\/

32-bit ALU

~¢

T

' Shift right
Remainder Shift left
Write

64 bits

One cycle per partial-remainder subtraction

Looks a lot like a multiplier!
Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 14

Faster Division

Can'’t use parallel hardware as in multiplier
Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision)
generate multiple quotient bits per step

Still require multiple steps

Chapter 3 — Arithmetic for Computers — 15

MIPS Division

Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt / divu rs, rt

No overflow or divide-by-0 checking
Software must perform checks if required

Use mfthi, mflo to access result

Chapter 3 — Arithmetic for Computers — 16

Floating Point

Representation for non-integral numbers
Including very small and very large numbers

Like scientific notation
—2.34 x 1056 - normalized

+0.002 x 10* ~—u«n—

not normalized
+087.02 x 10° —

In binary
+1.XXXXXXX, X 2/VVY

Types float and doublein C

Chapter 3 — Arithmetic for Computers — 17

Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of
representations

Portability issues for scientific code
Now almost universally adopted

Two representations
Single precision (32-bit)
Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 18

IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

x = (=1)° x (1+Fraction) x 2(E®onent-&ias)

S: sign bit (0 = non-negative, 1 = negative)
Normalize significand: 1.0 < |significand| < 2.0

Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

Significand is Fraction with the “1.” restored

Exponent: excess representation: actual exponent + Bias

Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1203

Chapter 3 — Arithmetic for Computers — 19

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

Exponent: 00000001
= actual exponent =1 - 127 = -126

Fraction: 000...00 = significand = 1.0
+1.0 x 2716 = +1.2 x 1038
Largest value

exponent: 11111110
— actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
+2.0 x 2+127 = £3 .4 x 10*38

Chapter 3 — Arithmetic for Computers — 20

Double-Precision Range

Exponents 0000...00 and 1111...11 reserved

Smallest value

Exponent: 00000000001
= actual exponent =1 — 1023 = -1022

Fraction: 000...00 = significand = 1.0
+1.0 x 271022 = £2 2 x 10308

Largest value

Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

Fraction: 111...11 = significand = 2.0
+2.0 x 2+1023 = +1 .8 x 1(*308

Chapter 3 — Arithmetic for Computers — 21

Floating-Point Precision

Relative precision
all fraction bits are significant
Single: approx 223

Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal
digits of precision

Double: approx 22

Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Example

Represent —0.75
—0.75=(-1)1x 1.1, x 21
S =
Fraction = 1000...00,

Exponent = -1 + Bias
Single: =1 + 127 =126 = 01111110,
Double: -1 + 1023 = 1022 =01111111110,

Single: 1011111101000...00
Double: 1011111111101000...00

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example

What number is represented by the single-
precision float
1000000101000...00
S =
Fraction = 01000...00,
Fxponent = 10000001, = 129
x=(=1)"x(1+ 01,) x 2(129 - 127)
= (=1) x 1.25 x 22
=-5.0

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Addition

Consider a 4-digit decimal example
9.999 x 10" + 1.610 x 10"

1. Align decimal points

Shift number with smaller exponent
9.999 x 107 + 0.016 x 10’

2. Add significands
9.999 x 10" + 0.016 x 10" = 10.015 x 101

3. Normalize result & check for over/underflow
1.0015 x 102

4. Round and renormalize if necessary
1.002 x 102

Chapter 3 — Arithmetic for Computers — 25

Floating-Point Addition

Now consider a 4-digit binary example
1.000, x 2-1 + -1.110, x 22 (0.5 + —0.4375)
1. Align binary points

Shift number with smaller exponent
1.000, x 2-1 + -0.111, x 2
2. Add significands
1.000, x 2-1+-0.111, x 2-1 = 0.001, x 21
3. Normalize result & check for over/underflow
1.000, x 2—4, with no over/underflow

4. Round and renormalize if necessary
1.000, x 24 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 26

FP Adder Hardware

Much more complex than integer adder

Doing it in one clock cycle would take too
long

Much longer than integer operations
Slower clock would penalize all instructions

FP adder usually takes several cycles
Can be pipelined

Chapter 3 — Arithmetic for Computers — 27

FP Adder Hardware

Sign | Exponent Fraction Sign | Exponent Fraction
\ \d \
N Compare
Small ALU
exponents
A
Exponent
difference >
\ A | Y \j Y Y Step 1
Co__1)= (o0 1) |—>Q_1)
Y
Y
— Shift smaller
Control p-| Shift right number right)
. Add
Eﬂ/ - | Step 2
] L4 <
0o 1 0 1
Increment or > . :
decrement | _Shift left or right Normalize Step 3
I
-1 Rounding hardware Round Step 4

\ Y

Sign | Exponent Fraction

-

Chapter 3 — Arithmetic for Computers — 28

Exercise 1

Show the contents of the two registers of the optimized
multiplication hardware shown below when multiplying X
= 1001 by Y = 0110 over the 4 multiplication steps.

Multiplicand

L

NS
4-bit ALU

.

Shift right
Write

Product

o bits

rd
- (Control
g1 test

!

Chapter 3 — Arithmetic for Computers — 29

Exercise 2

What number (in decimal) is represented by the following
single-precision float in the IEEE 754 format?

1 10000010 01100000000000000000000

Chapter 3 — Arithmetic for Computers — 30

Exercise 3

Represent (-2.25),, in single-precision float in the IEEE
754 format. The IEEE 754 single-precision format is as
follows.

Sign: 1 bit Exponent: 8 bits | Fraction: 23 bits

Chapter 3 — Arithmetic for Computers — 31

