
Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers
 Operations on integers

 Addition and subtraction
 Multiplication and division
 Dealing with overflow

 Floating-point real numbers
 Representation and operations

§3.1 Introduction

Chapter 3 — Arithmetic for Computers — 3

Integer Addition
 Example: 7 + 6

§3.2 A
ddition and S

ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow
 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction
 Add negation of second operand
 Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow
 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 5

Dealing with Overflow
 Some languages (e.g., C) ignore overflow

 Use MIPS addu, addui, subu instructions
 Other languages (e.g., Ada, Fortran)

require raising an exception
 Use MIPS add, addi, sub instructions
 On overflow, invoke exception handler

 Save PC in exception program counter (EPC)
register

 Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can

retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 6

Arithmetic for Multimedia
 Graphics and media processing operates

on vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable

value
 c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 7

Multiplication
 Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 9

Optimized Multiplier
 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 10

Faster Multiplier
 Uses multiple adders

 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 11

MIPS Multiplication
 Two 32-bit registers for product

 HI: most-significant 32 bits
 LO: least-significant 32-bits

 Instructions
 mult rs, rt / multu rs, rt

 64-bit product in HI/LO
 mfhi rd / mflo rd

 Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 12

Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next

dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back
 Signed division

 Divide using absolute values
 Adjust sign of quotient and remainder

as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Chapter 3 — Arithmetic for Computers — 13

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 14

Optimized Divider

 One cycle per partial-remainder subtraction
 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 15

Faster Division
 Can’t use parallel hardware as in multiplier

 Subtraction is conditional on sign of remainder
 Faster dividers (e.g. SRT devision)

generate multiple quotient bits per step
 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 16

MIPS Division
 Use HI/LO registers for result

 HI: 32-bit remainder
 LO: 32-bit quotient

 Instructions
 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 17

Floating Point
 Representation for non-integral numbers

 Including very small and very large numbers
 Like scientific notation

 –2.34 × 1056
 +0.002 × 10–4
 +987.02 × 109

 In binary
 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§3.5 Floating P
oint

Chapter 3 — Arithmetic for Computers — 18

Floating Point Standard
 Defined by IEEE Std 754-1985
 Developed in response to divergence of

representations
 Portability issues for scientific code

 Now almost universally adopted
 Two representations

 Single precision (32-bit)
 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 19

IEEE Floating-Point Format

 S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored
 Exponent: excess representation: actual exponent + Bias

 Ensures exponent is unsigned
 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −×+×−=

Chapter 3 — Arithmetic for Computers — 20

Single-Precision Range
 Exponents 00000000 and 11111111 reserved
 Smallest value

 Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126

 Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value
 exponent: 11111110
⇒ actual exponent = 254 – 127 = +127

 Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 21

Double-Precision Range
 Exponents 0000…00 and 1111…11 reserved
 Smallest value

 Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value
 Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Precision
 Relative precision

 all fraction bits are significant
 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example
 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1
 Fraction = 1000…002
 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102
 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00
 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Example
 What number is represented by the single-

precision float
 11000000101000…00

 S = 1
 Fraction = 01000…002
 Fxponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)
 = (–1) × 1.25 × 22
 = –5.0

Chapter 3 — Arithmetic for Computers — 25

Floating-Point Addition
 Consider a 4-digit decimal example

 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent
 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 26

Floating-Point Addition
 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
 1. Align binary points

 Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 27

FP Adder Hardware
 Much more complex than integer adder
 Doing it in one clock cycle would take too

long
 Much longer than integer operations
 Slower clock would penalize all instructions

 FP adder usually takes several cycles
 Can be pipelined

Chapter 3 — Arithmetic for Computers — 28

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 29

Exercise 1
 Show the contents of the two registers of the optimized

multiplication hardware shown below when multiplying X
= 1001 by Y = 0110 over the 4 multiplication steps.

Chapter 3 — Arithmetic for Computers — 30

Exercise 2
 What number (in decimal) is represented by the following

single-precision float in the IEEE 754 format?
 1 10000010 01100000000000000000000

Chapter 3 — Arithmetic for Computers — 31

Exercise 3
 Represent (-2.25)10 in single-precision float in the IEEE

754 format. The IEEE 754 single-precision format is as
follows.

Sign: 1 bit Exponent: 8 bits Fraction: 23 bits

