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Arithmetic for Computers 
 Operations on integers 

 Addition and subtraction 
 Multiplication and division 
 Dealing with overflow 

 Floating-point real numbers 
 Representation and operations  

§3.1 Introduction 
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Integer Addition 
 Example: 7 + 6 

§3.2 A
ddition and S

ubtraction 

 Overflow if result out of range 
 Adding +ve and –ve operands, no overflow 
 Adding two +ve operands 

 Overflow if result sign is 1 

 Adding two –ve operands 
 Overflow if result sign is 0 
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Integer Subtraction 
 Add negation of second operand 
 Example: 7 – 6 = 7 + (–6) 

 +7: 0000 0000 … 0000 0111 
–6: 1111 1111 … 1111 1010 
+1: 0000 0000 … 0000 0001 

 Overflow if result out of range 
 Subtracting two +ve or two –ve operands, no overflow 
 Subtracting +ve from –ve operand 

 Overflow if result sign is 0 

 Subtracting –ve from +ve operand 
 Overflow if result sign is 1 
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Dealing with Overflow 
 Some languages (e.g., C) ignore overflow 

 Use MIPS addu, addui, subu instructions 
 Other languages (e.g., Ada, Fortran) 

require raising an exception 
 Use MIPS add, addi, sub instructions 
 On overflow, invoke exception handler 

 Save PC in exception program counter (EPC) 
register 

 Jump to predefined handler address 
 mfc0 (move from coprocessor reg) instruction can 

retrieve EPC value, to return after corrective action 
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Arithmetic for Multimedia 
 Graphics and media processing operates 

on vectors of 8-bit and 16-bit data 
 Use 64-bit adder, with partitioned carry chain 

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors 
 SIMD (single-instruction, multiple-data) 

 Saturating operations 
 On overflow, result is largest representable 

value 
 c.f. 2s-complement modulo arithmetic 

 E.g., clipping in audio, saturation in video 
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Multiplication 
 Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 
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Multiplication Hardware 

Initially 0 
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Optimized Multiplier 
 Perform steps in parallel: add/shift 

 One cycle per partial-product addition 
 That’s ok, if frequency of multiplications is low 
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Faster Multiplier 
 Uses multiple adders 

 Cost/performance tradeoff 

 Can be pipelined 
 Several multiplication performed in parallel 
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MIPS Multiplication 
 Two 32-bit registers for product 

 HI: most-significant 32 bits 
 LO: least-significant 32-bits 

 Instructions 
 mult rs, rt  /  multu rs, rt 

 64-bit product in HI/LO 
 mfhi rd  /  mflo rd 

 Move from HI/LO to rd 
 Can test HI value to see if product overflows 32 bits 

 mul rd, rs, rt 

 Least-significant 32 bits of product –> rd 
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Division 
 Check for 0 divisor 
 Long division approach 

 If divisor ≤ dividend bits 
 1 bit in quotient, subtract 

 Otherwise 
 0 bit in quotient, bring down next 

dividend bit 

 Restoring division 
 Do the subtract, and if remainder 

goes < 0, add divisor back 
 Signed division 

 Divide using absolute values 
 Adjust sign of quotient and remainder 

as required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 
quotient and remainder 

quotient 

dividend 

remainder 

divisor 

§3.4 D
ivision 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 
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Optimized Divider 

 One cycle per partial-remainder subtraction 
 Looks a lot like a multiplier! 

 Same hardware can be used for both 
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Faster Division 
 Can’t use parallel hardware as in multiplier 

 Subtraction is conditional on sign of remainder 
 Faster dividers (e.g. SRT devision) 

generate multiple quotient bits per step 
 Still require multiple steps 
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MIPS Division 
 Use HI/LO registers for result 

 HI: 32-bit remainder 
 LO: 32-bit quotient 

 Instructions 
 div rs, rt  /  divu rs, rt 

 No overflow or divide-by-0 checking 
 Software must perform checks if required 

 Use mfhi, mflo to access result 
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Floating Point 
 Representation for non-integral numbers 

 Including very small and very large numbers 
 Like scientific notation 

 –2.34 × 1056 
 +0.002 × 10–4 
 +987.02 × 109 

 In binary 
 ±1.xxxxxxx2 × 2yyyy 

 Types float and double in C 

normalized 

not normalized 

§3.5 Floating P
oint 
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Floating Point Standard 
 Defined by IEEE Std 754-1985 
 Developed in response to divergence of 

representations 
 Portability issues for scientific code 

 Now almost universally adopted 
 Two representations 

 Single precision (32-bit) 
 Double precision (64-bit)  
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IEEE Floating-Point Format 

 S: sign bit (0 ⇒ non-negative, 1 ⇒ negative) 
 Normalize significand: 1.0 ≤ |significand| < 2.0 

 Always has a leading pre-binary-point 1 bit, so no need to 
represent it explicitly (hidden bit) 

 Significand is Fraction with the “1.” restored 
 Exponent: excess representation: actual exponent + Bias 

 Ensures exponent is unsigned 
 Single: Bias = 127; Double: Bias = 1203 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x −×+×−=
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Single-Precision Range 
 Exponents 00000000 and 11111111 reserved 
 Smallest value 

 Exponent: 00000001 
⇒ actual exponent = 1 – 127 = –126 

 Fraction: 000…00 ⇒ significand = 1.0 
 ±1.0 × 2–126 ≈ ±1.2 × 10–38 

 Largest value 
 exponent: 11111110 
⇒ actual exponent = 254 – 127 = +127 

 Fraction: 111…11 ⇒ significand ≈ 2.0 
 ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 
 Exponents 0000…00 and 1111…11 reserved 
 Smallest value 

 Exponent: 00000000001 
⇒ actual exponent = 1 – 1023 = –1022 

 Fraction: 000…00 ⇒ significand = 1.0 
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

 Largest value 
 Exponent: 11111111110 
⇒ actual exponent = 2046 – 1023 = +1023 

 Fraction: 111…11 ⇒ significand ≈ 2.0 
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 
 Relative precision 

 all fraction bits are significant 
 Single: approx 2–23 

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 
digits of precision 

 Double: approx 2–52 

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 
digits of precision 



Chapter 3 — Arithmetic for Computers — 23 

Floating-Point Example 
 Represent –0.75 

 –0.75 = (–1)1 × 1.12 × 2–1 

 S = 1 
 Fraction = 1000…002 
 Exponent = –1 + Bias 

 Single: –1 + 127 = 126 = 011111102 
 Double: –1 + 1023 = 1022 = 011111111102 

 Single: 1011111101000…00 
 Double: 1011111111101000…00 
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Floating-Point Example 
 What number is represented by the single-

precision float 
 11000000101000…00 

 S = 1 
 Fraction = 01000…002 
 Fxponent = 100000012 = 129 

 x = (–1)1 × (1 + 012) × 2(129 – 127) 
 = (–1) × 1.25 × 22 
 = –5.0 
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Floating-Point Addition 
 Consider a 4-digit decimal example 

 9.999 × 101 + 1.610 × 10–1 

 1. Align decimal points 
 Shift number with smaller exponent 
 9.999 × 101 + 0.016 × 101 

 2. Add significands 
 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

 3. Normalize result & check for over/underflow 
 1.0015 × 102 

 4. Round and renormalize if necessary 
 1.002 × 102 
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Floating-Point Addition 
 Now consider a 4-digit binary example 

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 
 1. Align binary points 

 Shift number with smaller exponent 
 1.0002 × 2–1 + –0.1112 × 2–1 

 2. Add significands 
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

 3. Normalize result & check for over/underflow 
 1.0002 × 2–4, with no over/underflow 

 4. Round and renormalize if necessary 
 1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 
 Much more complex than integer adder 
 Doing it in one clock cycle would take too 

long 
 Much longer than integer operations 
 Slower clock would penalize all instructions 

 FP adder usually takes several cycles 
 Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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Exercise 1 
 Show the contents of the two registers of the optimized 

multiplication hardware shown below when multiplying X 
= 1001 by Y = 0110 over the 4 multiplication steps. 
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Exercise 2 
 What number (in decimal) is represented by the following 

single-precision float in the IEEE 754 format? 
 1  10000010  01100000000000000000000 
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Exercise 3 
 Represent (-2.25)10 in single-precision float in the IEEE 

754 format. The IEEE 754 single-precision format is as 
follows. 
 

Sign: 1 bit Exponent: 8 bits Fraction: 23 bits 


