Chapter 3

Arithmetic for Computers

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

Integer Addition

Example: 7 + 6

Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two -ve operands

Overflow if result sign is 0

Integer Subtraction

Add negation of second operand
Example: 7-6 = $7+(-6)$

| $+7:$ | $00000000 \ldots 00000111$ |
| :--- | :--- | :--- | :--- |
| $-6:$ | $11111111 \ldots 11111010$ |
| $+1:$ | $00000000 \ldots 00000001$ |

Overflow if result out of range

- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand

Overflow if result sign is 0

- Subtracting -ve from +ve operand
- Overflow if result sign is 1

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception

- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler

Save PC in exception program counter (EPC) register
Jump to predefined handler address
mfc 0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8 -bit and 16-bit data

- Use 64-bit adder, with partitioned carry chain

Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

- SIMD (single-instruction, multiple-data)

Saturating operations

- On overflow, result is largest representable value
- c.f. 2 s -complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Chapter 3 - Arithmetic for Computers - 8

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
- Several multiplication performed in parallel

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits

Instructions

- mult rs, rt / multu rs, rt

64-bit product in HI/LO

- mfhi rd / mflo rd
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt
- Least-significant 32 bits of product -> rd

Division

n-bit operands yield n-bit quotient and remainder

Check for 0 divisor
Long division approach

- If divisor \leq dividend bits 1 bit in quotient, subtract
- Otherwise

0 bit in quotient, bring down next dividend bit
Restoring division

- Do the subtract, and if remainder goes < 0, add divisor back
Signed division
- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

One cycle per partial-remainder subtraction Looks a lot like a multiplier!

- Same hardware can be used for both

Faster Division

Can't use parallel hardware as in multiplier

- Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision) generate multiple quotient bits per step

- Still require multiple steps

MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient

Instructions

- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking

Software must perform checks if required

- Use mfhi, mflo to access result

Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Like scientific notation
-2.34×10^{56} normalized

- $+0.002 \times 10^{-4}$
- $+987.02 \times 10^{9}$

In binary

- $\pm 1 . x x x x x x x_{2} \times 2^{y y y y}$

Types float and double in C

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits
single: 23 bits double: 52 bits

S Exponent

$$
x=(-1)^{\mathrm{S}} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) })}
$$

S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative) Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$

- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: $000 . . .00 \Rightarrow$ significand $=1.0$
$- \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
Largest value
- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
$\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved Smallest value

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: $000 . . .00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
$- \pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2-23
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75
$-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$

- S = 1
- Fraction = 1000...002
- Exponent $=-1+$ Bias

Single: $-1+127=126=01111110_{2}$

- Double: $-1+1023=1022=01111111110_{2}$

Single: 1011111101000... 00
Double: 1011111111101000... 00

Floating-Point Example

What number is represented by the singleprecision float
11000000101000... 00

- S = 1
- Fraction $=01000 \ldots 00_{2}$
- Fxponent $=10000001_{2}=129$
$x=(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)}$
$=(-1) \times 1.25 \times 2^{2}$
$=-5.0$

Floating-Point Addition

Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$

1. Align decimal points

- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary

- 1.002×10^{2}

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$

3. Normalize result \& check for over/underflow

- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

Much more complex than integer adder Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

Exercise 1

Show the contents of the two registers of the optimized multiplication hardware shown below when multiplying X $=1001$ by $\mathrm{Y}=0110$ over the 4 multiplication steps.

Exercise 2

What number (in decimal) is represented by the following single-precision float in the IEEE 754 format?
11000001001100000000000000000000

Exercise 3

Represent (-2.25) ${ }_{10}$ in single-precision float in the IEEE 754 format. The IEEE 754 single-precision format is as follows.

Sign: 1 bit	Exponent: 8 bits	Fraction: 23 bits

