o COMPUTER ORGANIZATION AND DESIGN «0@5&

The Hardware/Software Interface

Chapter 5

Large and Fast:
Exploiting Memory
Hierarchy

Memory Technology

Static RAM (SRAM)
0.5ns — 2.5ns, $2000 — $5000 per GB

Dynamic RAM (DRAM)
50ns — 70ns, $20 — $75 per GB

Magnetic disk
5ms — 20ms, $0.20 — $2 per GB

ldeal memory
Access time of SRAM
Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality

Programs access a small proportion of
their address space at any time

Temporal locality

Items accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables

Spatial locality

ltems near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality

Memory hierarchy
Store everything on disk

Copy recently accessed (and nearby)
items from disk to smaller DRAM memory

Main memory

Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in
upper level

Hit: access satisfied by upper level
u ! Hit ratio: hits/accesses
If accessed data is absent

. Miss: block copied from lower level
Data is transferred _ _
Y Time taken: miss penalty

Processor

A

Miss ratio: misses/accesses
=1 — hit ratio

_ Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Memory

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X, ..., X4, X,

X, X4

X, X .

. . How do we know if

the data is present?

X,_ 1 Xp_ 1

% % Where do we look?
X,

X3 X3

a. Before the reference to X,, b. After the reference to X,

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Direct Mapped Cache

OOOOOOOO
OOOOOOOO
OOOOOOOO

q

/

\

e

|

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

#Blocks is a
power of 2

Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Tags and Valid Bits

How do we know which particular block is
stored in a cache location”?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there is no data in a location”?
Valid bit: 1 = present, 0 = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

Index
000
001
010
011
100
101
110
111

Tag Data

Z|1Z2|1Z2|Z2|Z2|Z2(Z2|Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

Z|1Z2|1Z2|Z2(Z2|Z2|I<

111

Z

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index V Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem[11010]

10 Mem[10110]

Z | < Z|IZ2Z2|IX<|Z2|2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index V Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Address Subdivision

Address (showing bit positions)

3130 --- 131211--:2 10
Byte
offset
Hit 20 10
‘ Tag
Index Data
Index Valid Tag Data
0
1
2
1021
1022
1023
Jd20 Jd 32
(=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Example: Larger Block Size

64 blocks, 16 bytes/block

To what block number does address 1200
map?

Block address =| 1200/16] = 75
Block number = 75 modulo 64 = 11

31 10 9 4 3 0

Tag Index | Offset
22 bits 6 bits 4 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Block Size Considerations

Larger blocks should reduce miss rate
Due to spatial locality

But in a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache Misses

On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Write-Through

On data-write hit, could just update the block in
cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer

e.g., if base CPIl =1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPI =1 + 0.1x100 = 11

Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Write-Back

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Write Allocation

What should happen on a write miss?

Alternatives for write-through

Allocate on miss: fetch the block

Write around: don’t fetch the block

Since programs often write a whole block before
reading it (e.g., initialization)

For write-back
Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Example: Intrinsity FastMATH

Embedded MIPS processor

12-stage pipeline

Instruction and data access on each cycle
Split cache: separate I-cache and D-cache

Each 16KB: 256 blocks x 16 words/block

D-cache: write-through or write-back
SPEC2000 miss rates

|-cache: 0.4%

D-cache: 11.4%

Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Example: Intrinsity FastMATH

Address (showing bit positions)

31 -+ 1413:.--65-:210
. 418 48 44 Byte Data
I_ilt Tag offset 1
Index Block offset
18 bits 512 bhits
V Tag Data
A
256
° entries
e Y
J18 ~~%32 \32 ..,\32
(=
~
Mux
(o)
J4.32

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Main Memory Supporting Caches

Use DRAMs for main memory
Fixed width (e.g., 1 word)
Connected by fixed-width clocked bus

Bus clock is typically slower than CPU clock

Example cache block read
1 bus cycle for address transfer
15 bus cycles per DRAM access
1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM
Miss penalty = 1 + 4x15 + 4x1 = 65 bus cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Increasing Memory Bandwidth

Processor Processor Processor
__—Multiplexor
Cache Cache
Cache
’/\\ — //\\
Bus Bus Bus
\\// —\/— \\ //
Memory Memory || Memory || Memory |[Memory
bank 0 bank 1 bank 2 bank 3
b. Wider memory organization c. Interleaved memory organization
Memory 4-word wide memory

Miss penalty =1+ 15+ 1 =17 bus cycles

Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
4-bank interleaved memory

o cremzation Miss penalty = 1 + 15 + 4x1 = 20 bus cycles

Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Advanced DRAM Organization

Bits in a DRAM are organized as a
rectangular array

DRAM accesses an entire row

Burst mode: supply successive words from a
row with reduced latency

Double data rate (DDR) DRAM
Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

DRAM Generations

Year | Capacity | $/GB 300
1980 | 64Kbit $1500000 250
1983 | 256Kbit | $500000

1985 1Mbit $200000 200
1989 | 4Mbit $50000

1992 | 16Mbit | $15000 190
1996 | 64Mbit $10000 100
1998 128Mbit | $4000

2000 | 256Mbit | $1000 >0
2004 512Mbit | $250 0
2007 1Gbit $50

——Trac
—=—Tcac

‘80 '83 "85 '89 '92 '96 '98 '00 '04 '07

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Measuring Cache Performance

Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:
Memory stall cycles

- Memory accesses
Program

x Miss rate x Miss penalty

Instructions Misses .
— X x Miss penalty

Program Instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Cache Performance Example

Given
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
|-cache: 0.02 x 100 = 2
D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44 =544
ldeal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Average Access Time

Hit time is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, |-cache miss rate = 5%

AMAT =1+ 0.05 x 20 = 2ns
2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Performance Summary

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Associative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries

Block number determines which set
(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Associative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ag 2 I 2 J 2

comcn s T sewn TTTTTTT]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Spectrum of Associativity

For a cache with 8 entries

One-way set associative
(direct mapped)

Block Tag Data

(1) Two-way set associative
5 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Associativity Example

Compare 4-block caches

Direct mapped, 2-way set associative,
fully associative

Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss
8 0 miss Mem([8]
0 0 miss Mem|[0]
6 2 miss Mem[O0]
8 0 miss Mem|[8] Mem([6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Associativity Example

2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss
8 0 miss Mem[O0]
0 0 hit Mem|[0] Mem([8]
6 0 miss Mem]O] Mem([6]
8 0 miss Mem([8] Mem[6]

Fully associative

Block Hit/miss Cache content after access
address
0 miss
8 miss Mem[O0]
0 hit Mem[0] Mem[8]
6 miss Mem[O0] Mem[8]
8 hit Mem]O0] Mem([8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

How Much Associativity

Increased associativity decreases miss
rate
But with diminishing returns
Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Set Associative Cache Organization

Address
3130---12111098---3210

J22 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® L L L J L L q L ® p L p
253
254
255
422 32
(= (= (= (=

\H [=——Ha-to1 muttiplexo)

Hit Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Multilevel Caches

Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Multilevel Cache Example

Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI=1+0.02 x400=9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Example (cont.)

Now add L-2 cache

Access time = 5ns
Global miss rate to main memory = 0.5%

Primary miss with L-2 hit
Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
Extra penalty = 500 cycles

CPI=1+0.02x20+0.005x400=34
Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Multilevel Cache Considerations

Primary cache
Focus on minimal hit time

L-2 cache

Focus on low miss rate to avoid main memory
access

Hit time has less overall impact

Results
L-1 cache usually smaller than a single cache
L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Interactions with Advanced CPUs

Out-of-order CPUs can execute
instructions during cache miss

Pending store stays in load/store unit

Dependent instructions wait in reservation
stations

Independent instructions continue

Effect of miss depends on program data
flow

Much harder to analyse
Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Interactions with Software

Misses depend on

memory access
patterns

Algorithm behavior

Compiler
optimization for
Memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

