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Memory Technology 
 Static RAM (SRAM) 

 0.5ns – 2.5ns, $2000 – $5000 per GB 
 Dynamic RAM (DRAM) 

 50ns – 70ns, $20 – $75 per GB 
 Magnetic disk 

 5ms – 20ms, $0.20 – $2 per GB 
 Ideal memory 

 Access time of SRAM 
 Capacity and cost/GB of disk 

§5.1 Introduction 
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Principle of Locality 
 Programs access a small proportion of 

their address space at any time 
 Temporal locality 

 Items accessed recently are likely to be 
accessed again soon 

 e.g., instructions in a loop, induction variables 
 Spatial locality 

 Items near those accessed recently are likely 
to be accessed soon 

 E.g., sequential instruction access, array data 
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Taking Advantage of Locality 
 Memory hierarchy 
 Store everything on disk 
 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory 
 Main memory 

 Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory 
 Cache memory attached to CPU 
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Memory Hierarchy Levels 
 Block (aka line): unit of copying 

 May be multiple words 

 If accessed data is present in 
upper level 
 Hit: access satisfied by upper level 

 Hit ratio: hits/accesses 

 If accessed data is absent 
 Miss: block copied from lower level 

 Time taken: miss penalty 
 Miss ratio: misses/accesses 

= 1 – hit ratio 
 Then accessed data supplied from 

upper level 
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Cache Memory 
 Cache memory 

 The level of the memory hierarchy closest to 
the CPU 

 Given accesses X1, …, Xn–1, Xn 

§5.2 The B
asics of C

aches 

 How do we know if 
the data is present? 

 Where do we look? 
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Direct Mapped Cache 
 Location determined by address 
 Direct mapped: only one choice 

 (Block address) modulo (#Blocks in cache) 

 #Blocks is a 
power of 2 

 Use low-order 
address bits 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8 

Tags and Valid Bits 
 How do we know which particular block is 

stored in a cache location? 
 Store block address as well as the data 
 Actually, only need the high-order bits 
 Called the tag 

 What if there is no data in a location? 
 Valid bit: 1 = present, 0 = not present 
 Initially 0 
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Cache Example 
 8-blocks, 1 word/block, direct mapped 
 Initial state 

Index V Tag Data 
000 N 
001 N 
010 N 
011 N 
100 N 
101 N 
110 N 
111 N 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10 

Cache Example 

Index V Tag Data 
000 N 
001 N 
010 N 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
22 10 110 Miss 110 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 Y 11 Mem[11010] 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
26 11 010 Miss 010 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 Y 11 Mem[11010] 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
22 10 110 Hit 110 
26 11 010 Hit 010 
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Cache Example 

Index V Tag Data 
000 Y 10 Mem[10000] 
001 N 
010 Y 11 Mem[11010] 
011 Y 00 Mem[00011] 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
16 10 000 Miss 000 
3 00 011 Miss 011 
16 10 000 Hit 000 
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Cache Example 

Index V Tag Data 
000 Y 10 Mem[10000] 
001 N 
010 Y 10 Mem[10010] 
011 Y 00 Mem[00011] 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
18 10 010 Miss 010 
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Address Subdivision 
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Example: Larger Block Size 
 64 blocks, 16 bytes/block 

 To what block number does address 1200 
map? 

 Block address = 1200/16 = 75 
 Block number = 75 modulo 64 = 11 

Tag Index Offset 
0 3 4 9 10 31 

4 bits 6 bits 22 bits 
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Block Size Considerations 
 Larger blocks should reduce miss rate 

 Due to spatial locality 
 But in a fixed-sized cache 

 Larger blocks ⇒ fewer of them 
 More competition ⇒ increased miss rate 

 Larger blocks ⇒ pollution 
 Larger miss penalty 

 Can override benefit of reduced miss rate 
 Early restart and critical-word-first can help 
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Cache Misses 
 On cache hit, CPU proceeds normally 
 On cache miss 

 Stall the CPU pipeline 
 Fetch block from next level of hierarchy 
 Instruction cache miss 

 Restart instruction fetch 
 Data cache miss 

 Complete data access 
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Write-Through 
 On data-write hit, could just update the block in 

cache 
 But then cache and memory would be inconsistent 

 Write through: also update memory 
 But makes writes take longer 

 e.g., if base CPI = 1, 10% of instructions are stores, 
write to memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 
 CPU continues immediately 

 Only stalls on write if write buffer is already full 
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Write-Back 
 Alternative: On data-write hit, just update 

the block in cache 
 Keep track of whether each block is dirty 

 When a dirty block is replaced 
 Write it back to memory 
 Can use a write buffer to allow replacing block 

to be read first 
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Write Allocation 
 What should happen on a write miss? 
 Alternatives for write-through 

 Allocate on miss: fetch the block 
 Write around: don’t fetch the block 

 Since programs often write a whole block before 
reading it (e.g., initialization) 

 For write-back 
 Usually fetch the block 
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Example: Intrinsity FastMATH 
 Embedded MIPS processor 

 12-stage pipeline 
 Instruction and data access on each cycle 

 Split cache: separate I-cache and D-cache 
 Each 16KB: 256 blocks × 16 words/block 
 D-cache: write-through or write-back 

 SPEC2000 miss rates 
 I-cache: 0.4% 
 D-cache: 11.4% 
 Weighted average: 3.2% 
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Example: Intrinsity FastMATH 
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Main Memory Supporting Caches 
 Use DRAMs for main memory 

 Fixed width (e.g., 1 word) 
 Connected by fixed-width clocked bus 

 Bus clock is typically slower than CPU clock 

 Example cache block read 
 1 bus cycle for address transfer 
 15 bus cycles per DRAM access 
 1 bus cycle per data transfer 

 For 4-word block, 1-word-wide DRAM 
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles 
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle 
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Increasing Memory Bandwidth 

 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle 

 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles 
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle 
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Advanced DRAM Organization 
 Bits in a DRAM are organized as a 

rectangular array 
 DRAM accesses an entire row 
 Burst mode: supply successive words from a 

row with reduced latency 
 Double data rate (DDR) DRAM 

 Transfer on rising and falling clock edges 
 Quad data rate (QDR) DRAM 

 Separate DDR inputs and outputs 
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DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 
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Measuring Cache Performance 
 Components of CPU time 

 Program execution cycles 
 Includes cache hit time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 

§5.3 M
easuring and Im

proving C
ache P

erform
ance 

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

××=

××=
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Cache Performance Example 
 Given 

 I-cache miss rate = 2% 
 D-cache miss rate = 4% 
 Miss penalty = 100 cycles 
 Base CPI (ideal cache) = 2 
 Load & stores are 36% of instructions 

 Miss cycles per instruction 
 I-cache: 0.02 × 100 = 2 
 D-cache: 0.36 × 0.04 × 100 = 1.44 

 Actual CPI = 2 + 2 + 1.44 = 5.44 
 Ideal CPU is 5.44/2 =2.72 times faster 
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Average Access Time 
 Hit time is also important for performance 
 Average memory access time (AMAT) 

 AMAT = Hit time + Miss rate × Miss penalty 
 Example 

 CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5% 

 AMAT = 1 + 0.05 × 20 = 2ns 
 2 cycles per instruction 
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Performance Summary 
 When CPU performance increased 

 Miss penalty becomes more significant 
 Decreasing base CPI 

 Greater proportion of time spent on memory 
stalls 

 Increasing clock rate 
 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when 
evaluating system performance 
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Associative Caches 
 Fully associative 

 Allow a given block to go in any cache entry 
 Requires all entries to be searched at once 
 Comparator per entry (expensive) 

 n-way set associative 
 Each set contains n entries 
 Block number determines which set 

 (Block number) modulo (#Sets in cache) 
 Search all entries in a given set at once 
 n comparators (less expensive) 
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Associative Cache Example 
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Spectrum of Associativity 
 For a cache with 8 entries 
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Associativity Example 
 Compare 4-block caches 

 Direct mapped, 2-way set associative, 
fully associative 

 Block access sequence: 0, 8, 0, 6, 8 

 Direct mapped 
Block 

address 
Cache 
index 

Hit/miss Cache content after access 
0 1 2 3 

0 0 miss Mem[0] 
8 0 miss Mem[8] 
0 0 miss Mem[0] 
6 2 miss Mem[0] Mem[6] 
8 0 miss Mem[8] Mem[6] 
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Associativity Example 
 2-way set associative 

Block 
address 

Cache 
index 

Hit/miss Cache content after access 
Set 0 Set 1 

0 0 miss Mem[0] 
8 0 miss Mem[0] Mem[8] 
0 0 hit Mem[0] Mem[8] 
6 0 miss Mem[0] Mem[6] 
8 0 miss Mem[8] Mem[6] 

 Fully associative 
Block 

address 
Hit/miss Cache content after access 

0 miss Mem[0] 
8 miss Mem[0] Mem[8] 
0 hit Mem[0] Mem[8] 
6 miss Mem[0] Mem[8] Mem[6] 
8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 
 Increased associativity decreases miss 

rate 
 But with diminishing returns 

 Simulation of a system with 64KB 
D-cache, 16-word blocks, SPEC2000 
 1-way: 10.3% 
 2-way: 8.6% 
 4-way: 8.3% 
 8-way: 8.1% 
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Set Associative Cache Organization 
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Replacement Policy 
 Direct mapped: no choice 
 Set associative 

 Prefer non-valid entry, if there is one 
 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 

 Simple for 2-way, manageable for 4-way, too hard 
beyond that 

 Random 
 Gives approximately the same performance 

as LRU for high associativity 
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Multilevel Caches 
 Primary cache attached to CPU 

 Small, but fast 
 Level-2 cache services misses from 

primary cache 
 Larger, slower, but still faster than main 

memory 
 Main memory services L-2 cache misses 
 Some high-end systems include L-3 cache 
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Multilevel Cache Example 
 Given 

 CPU base CPI = 1, clock rate = 4GHz 
 Miss rate/instruction = 2% 
 Main memory access time = 100ns 

 With just primary cache 
 Miss penalty = 100ns/0.25ns = 400 cycles 
 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 
 Now add L-2 cache 

 Access time = 5ns 
 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 
 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 
 Extra penalty = 500 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 
 Performance ratio = 9/3.4 = 2.6 
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Multilevel Cache Considerations 
 Primary cache 

 Focus on minimal hit time 
 L-2 cache 

 Focus on low miss rate to avoid main memory 
access 

 Hit time has less overall impact 
 Results 

 L-1 cache usually smaller than a single cache 
 L-1 block size smaller than L-2 block size 
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Interactions with Advanced CPUs 

 Out-of-order CPUs can execute 
instructions during cache miss 
 Pending store stays in load/store unit 
 Dependent instructions wait in reservation 

stations 
 Independent instructions continue 

 Effect of miss depends on program data 
flow 
 Much harder to analyse 
 Use system simulation 
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Interactions with Software 
 Misses depend on 

memory access 
patterns 
 Algorithm behavior 
 Compiler 

optimization for 
memory access 


