
Chapter 5
Large and Fast:
Exploiting Memory
Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology
 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB
 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB
 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB
 Ideal memory

 Access time of SRAM
 Capacity and cost/GB of disk

§5.1 Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality
 Programs access a small proportion of

their address space at any time
 Temporal locality

 Items accessed recently are likely to be
accessed again soon

 e.g., instructions in a loop, induction variables
 Spatial locality

 Items near those accessed recently are likely
to be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality
 Memory hierarchy
 Store everything on disk
 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
 Main memory

 Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
 Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels
 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio
 Then accessed data supplied from

upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory
 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 The B
asics of C

aches

 How do we know if
the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Tags and Valid Bits
 How do we know which particular block is

stored in a cache location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Example: Larger Block Size
 64 blocks, 16 bytes/block

 To what block number does address 1200
map?

 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
0 3 4 9 10 31

4 bits 6 bits 22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality
 But in a fixed-sized cache

 Larger blocks ⇒ fewer of them
 More competition ⇒ increased miss rate

 Larger blocks ⇒ pollution
 Larger miss penalty

 Can override benefit of reduced miss rate
 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss

 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss

 Restart instruction fetch
 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Write-Through
 On data-write hit, could just update the block in

cache
 But then cache and memory would be inconsistent

 Write through: also update memory
 But makes writes take longer

 e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately

 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Write-Back
 Alternative: On data-write hit, just update

the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Write Allocation
 What should happen on a write miss?
 Alternatives for write-through

 Allocate on miss: fetch the block
 Write around: don’t fetch the block

 Since programs often write a whole block before
reading it (e.g., initialization)

 For write-back
 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus

 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Advanced DRAM Organization
 Bits in a DRAM are organized as a

rectangular array
 DRAM accesses an entire row
 Burst mode: supply successive words from a

row with reduced latency
 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges
 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Measuring Cache Performance
 Components of CPU time

 Program execution cycles
 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§5.3 M
easuring and Im

proving C
ache P

erform
ance

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Performance Example
 Given

 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Average Access Time
 Hit time is also important for performance
 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty
 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Performance Summary
 When CPU performance increased

 Miss penalty becomes more significant
 Decreasing base CPI

 Greater proportion of time spent on memory
stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Associative Caches
 Fully associative

 Allow a given block to go in any cache entry
 Requires all entries to be searched at once
 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries
 Block number determines which set

 (Block number) modulo (#Sets in cache)
 Search all entries in a given set at once
 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Spectrum of Associativity
 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Associativity Example
 Compare 4-block caches

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Associativity Example
 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

How Much Associativity
 Increased associativity decreases miss

rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Replacement Policy
 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Multilevel Caches
 Primary cache attached to CPU

 Small, but fast
 Level-2 cache services misses from

primary cache
 Larger, slower, but still faster than main

memory
 Main memory services L-2 cache misses
 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Multilevel Cache Example
 Given

 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Example (cont.)
 Now add L-2 cache

 Access time = 5ns
 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Multilevel Cache Considerations
 Primary cache

 Focus on minimal hit time
 L-2 cache

 Focus on low miss rate to avoid main memory
access

 Hit time has less overall impact
 Results

 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Interactions with Advanced CPUs

 Out-of-order CPUs can execute
instructions during cache miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation

stations
 Independent instructions continue

 Effect of miss depends on program data
flow
 Much harder to analyse
 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Interactions with Software
 Misses depend on

memory access
patterns
 Algorithm behavior
 Compiler

optimization for
memory access

