Digital Signal Processing An Overview of Complex Numbers

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic
amiri@mail.muni.cz
prenosil@fi.muni.cz

February 24, 2012

The Complex Number System

Example

- Consider throwing a ball straight up into air with an initial velocity $\left(v_{i}\right)$ of 9.8 meters $/ \mathrm{sec}$
Height of ball (h) at any instant of time (t)

$$
h=\frac{-g t^{2}}{2}+v_{i} t \longrightarrow t=1 \pm \sqrt{1-h / 4.9}
$$

E.g., ball reaches $h=3$ meters twice: $t=0.38$ (going up), $t=1.62$ (going down)

- $h=10 \longrightarrow t=$?
- Never in reality
- But $h=10 \longrightarrow t=1+\sqrt{-1.041}$ and $t=1-\sqrt{-1.041}$
- Contain square-root of a negative number
- Called complex numbers

The Complex Number System

- Every complex number is sum of two components
- A real part: an ordinary number
- An imaginary part: square-root of a negative number
- Imaginary part is usually reduced to an ordinary number times $\sqrt{-1}$

Example

- Consider

$$
\begin{aligned}
t & =1+\sqrt{-1.041} \\
& =1+\sqrt{1.041} \sqrt{-1} \\
& =1+1.02 \sqrt{-1}
\end{aligned}
$$

- Real part: 1 Imaginary part: $1.02 \sqrt{-1}$
- Abstract term $\sqrt{-1}$ is given a special symbol: \mathbf{j} (sometimes \mathbf{i})
- Therefore, $t=1+1.02 j$
- Complex numbers are represented by locations in a two-dimensional display called complex plane
- Horizontal axis = real part of complex number
- Vertical axis = imaginary part

The Complex Number System

- In equations, a complex number is represented by a single variable

Example

$$
\begin{gathered}
A=2+6 j \\
\operatorname{Re} A=2, \operatorname{Im} A=6
\end{gathered}
$$

- Complex numbers follow the same algebra as ordinary numbers, treating j as a constant
- Addition, subtraction, multiplication, and division of complex numbers

$$
\begin{gathered}
(a+b j)+(c+d j)=(a+c)+j(b+d) \\
(a+b j)-(c+d j)=(a-c)+j(b-d) \\
(a+b j)(c+d j)=(a c-b d)+j(b c+a d) \\
\frac{(a+b j)}{(c+d j)}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+j\left(\frac{b c-a d}{c^{2}+d^{2}}\right)
\end{gathered}
$$

- Complex conjugate
- A complex number with sign of imaginary part switched

$$
\begin{gathered}
Z=a+b j \\
Z^{*}=a-b j
\end{gathered}
$$

- Some properties of complex numbers
(1) Commutative property

$$
A B=B A
$$

(2) Associative property

$$
(A+B)+C=A+(B+C)
$$

(3) Distributive property

$$
A(B+C)=A B+A C
$$

Polar Notation

- Complex numbers can be expressed in two notations
- Rectangular notation (which was just described)
- Polar notation
- In polar notation
- Magnitude
- Length of vector starting at origin and ending at complex point
- Phase angle
- measured between this vector and positive x-axis
- Rectangular-to-polar conversion

$$
\begin{gathered}
M=\sqrt{(\operatorname{Re} A)^{2}+(\operatorname{Im} A)^{2}} \\
\theta=\arctan \left[\frac{\operatorname{Im} A}{\operatorname{Re} A}\right]
\end{gathered}
$$

- Polar-to-rectangular conversion

$$
\begin{aligned}
& \operatorname{Re} A=M \cos (\theta) \\
& \operatorname{Im} A=M \sin (\theta)
\end{aligned}
$$

- Using above equations

$$
a+j b=M(\cos \theta+j \sin \theta)
$$

- Euler's relation

$$
e^{j x}=\cos x+j \sin x
$$

- Rewriting equation

$$
a+j b=M(\cos \theta+j \sin \theta)
$$

using Euler's relation results in a complex exponential

$$
a+j b=M e^{j \theta}
$$

- Using exponential polar form makes multiplication and division simple

$$
\begin{gathered}
M_{1} e^{j \theta_{1}} M_{2} e^{j \theta_{2}}=M_{1} M_{2} e^{j\left(\theta_{1}+\theta_{2}\right)} \\
\frac{M_{1} e^{j \theta_{1}}}{M_{2} e^{j \theta_{2}}}=\left[\frac{M_{1}}{M_{2}}\right] e^{j\left(\theta_{1}-\theta_{2}\right)}
\end{gathered}
$$

- In Euler's relation

$$
\begin{gathered}
\begin{array}{c}
e^{j x}=\cos (x)+j \sin (x) \\
\text { or } e^{-j x}=\cos (x)-j \sin (x)
\end{array}
\end{gathered}
$$

one complex expression is equal to another complex expression

- This is not useful
- Rearranging relations

$$
\begin{gathered}
\cos (x)=\frac{e^{j x}+e^{-j x}}{2} \\
\sin (x)=\frac{e^{j x}-e^{-j x}}{2 j}=\frac{j\left(e^{-j x}-e^{j x}\right)}{2}
\end{gathered}
$$

Using Complex Numbers

- Question
- How to use a mathematics that has no connection with everyday experience?
- Answer
- Change physical problem into a complex number form
- Manipulate complex numbers
- Then change back into a physical answer
- Two ways that physical problems can be represented using complex numbers
- Substitution
- Mathematical equivalence

Using Complex Numbers by Substitution

- Substitution
- Takes two real physical parameters
- Places one in real part of complex number and one in imaginary part
- After mathematical operations, complex number is separated into its real and imaginary parts corresponding to physical parameters
- Substitution allows two values to be manipulated as a single complex number

Example

- A boat is pushed in one direction by wind, and in another direction by ocean current
- Resulting force is vector sum of two force vectors
- Use complex numbers
- Place east/west coordinate into real part of a complex number
- North/south coordinate into imaginary part
- Substitution allows us to treat each vector as a single complex number

Using Complex Numbers by Substitution

Example (Continued)

- Wind (2 parts to east, 6 parts to north) $\longrightarrow A: 2+6 j$

Ocean current (4 parts to east, 3 parts to south) $\longrightarrow B: 4-3 j$ Sum, $C: 6+3 j \longrightarrow 6$ parts to east, 3 parts to north

Using Complex Numbers by Substitution

- Substitution method is mathematically awkward
- There is no equation, there is representation

Example

- When A equals B, we know countless consequences: $5 A=5 B$, $1+A=1+B, A / x=B / x$, etc.
- When A represents B, without additional information, we know nothing
- E.g., when sinusoids are represented by complex numbers, we allow addition and subtraction, but prohibit multiplication and division

Using Complex Numbers by Mathematical Equivalence

- Mathematical equivalence is a way of making complex numbers mathematically equivalent to physical problem

Example

- In DSP, sine and cosine waves can be described as having a positive frequency or a negative frequency
- Substitution method ignores negative frequencies
- Since there are applications where negative frequencies are important, mathematical equivalence is of help here
- This will be discussed throughout this course

References

\& Steven W. Smith, The Scientist \& Engineer's Guide to Digital Signal Processing, California Technical Pub, 1997.

