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The Concept of Frequency

Frequency is closely related to a specific type of periodic motion called
harmonic oscillation

Described by sinusoidal functions

Frequency has dimension of inverse time

Nature of time (continuous or discrete) would affect nature of frequency
accordingly
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Continuous-Time Sinusoidal Signals

A simple harmonic oscillation

xa(t) = A cos(Ωt + θ), −∞ < t <∞

Subscript a = analog signal
A = amplitude
Ω = frequency (in rad/s)
θ = phase (in radians)

Rewriting above equation using frequency F in cycles per second or
hertz (Hz)

xa(t) = A cos(2πFt + θ), −∞ < t <∞
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Continuous-Time Sinusoidal Signals
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Continuous-Time Sinusoidal Signals

Properties of xa(t) = A cos(2πFt + θ), −∞ < t <∞
1 For every fixed F , xa(t) is periodic

xa(t + Tp) = xa(t)

Tp = 1/F= fundamental period of sinusoidal signal
2 Signals with distinct frequencies are themselves distinct
3 Increasing F results in an increase in rate of oscillation of signal

Using Euler identity

e±jφ = cosφ± j sinφ

and introducing negative frequencies

xa(t) = A cos(Ωt + θ) = A
2 e

j(Ωt+θ) + A
2 e
−j(Ωt+θ)

A sinusoidal signal can be obtained by adding two equal-amplitude
complex-conjugate exponential signals, called phasors
As time progresses, phasors rotate in opposite directions with angular
frequencies ±Ω radians/second
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Discrete-Time Sinusoidal Signals

A discrete-time sinusoidal signal

x(n) = A cos(ωn + θ), −∞ < n <∞

n = an integer called sample number
A = amplitude
ω = frequency in radians/sample
θ = phase in radians

Using ω = 2πf

x(n) = A cos(2πfn + θ), −∞ < n <∞
frequency f is in cycles/sample
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Discrete-Time Sinusoidal Signals
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Discrete-Time Sinusoidal Signals

Properties of discrete-time sinusoids
1 A discrete-time sinusoid is periodic only if its frequency f is a rational

number

x(n) is periodic with period N(N > 0) if and only if

x(n + N) = x(n) for all n

Smallest value of N for which this equation is true is called fundamental
period
Proof of this property

cos[2πf0(N + n) + θ] = cos(2πf0n + θ)
2πf0N = 2kπ
f0 = k/N

To determine fundamental period N, express its frequency as f0 = k/N
and cancel common factors so that k and N are relatively prime, then N
is answer
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Discrete-Time Sinusoidal Signals

Properties of discrete-time sinusoids (continued)
2 Discrete-time sinusoids whose frequencies are separated by an integer

multiple of 2π are identical

cos[(ω0 + 2kπ)n + θ] = cos(ω0n + 2πkn + θ) = cos(ω0n + θ)

where −π ≤ ω0 ≤ π
Discrete-time sinusoids with |ω| ≤ π or |f | ≤ 1

2
are unique

Any sequence resulting from a sinusoid with |ω| > π or |f | > 1
2

is
identical to a sequence obtained from a sinusoid with |ω| < π
Sinusoid having |ω| > π is called an alias of a corresponding sinusoid
with |ω| < π
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Discrete-Time Sinusoidal Signals

Properties of discrete-time sinusoids (continued)
3 The highest rate of oscillation in a discrete-time sinusoid is attained

when ω = π (or ω = −π) or, equivalently, f = 1
2 (or f = − 1

2 )

x(n) = cosω0n, ω0 = 0 =⇒ N =∞
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Discrete-Time Sinusoidal Signals

Properties of discrete-time sinusoids (continued)
3 The highest rate of oscillation is when ω = π

x(n) = cosω0n, ω0 = π
4

=⇒ N = 8
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Discrete-Time Sinusoidal Signals

Properties of discrete-time sinusoids (continued)
3 The highest rate of oscillation is when ω = π

x(n) = cosω0n, ω0 = π =⇒ N = 2
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For π ≤ ω0 ≤ 2π, if consider sinusoids with ω1 = ω0 and ω2 = 2π − ω0

x1(n) = A cosω1n = A cosω0n

x2(n) = A cosω2n = A cos(2π − ω0)n

= A cos(−ω0n) = x1(n)

Hence, ω2 is an alias of ω1

Using a sine function, result would be same, except phase difference
would be π between x1(n) and x2(n)
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Discrete-Time Sinusoidal Signals

Negative frequencies for discrete-time signals

x(n) = A cos(ωn + θ) = A
2 e

j(ωn+θ) + A
2 e
−j(ωn+θ)

Since discrete-time sinusoids with frequencies separated by 2kπ are
identical

Frequency range for discrete-time sinusoids is finite with duration 2π
Usually 0 ≤ ω ≤ 2π or −π ≤ ω ≤ π is called fundamental range
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Harmonically Related Complex Exponentials

Harmonically related complex exponentials

Sets of periodic complex exponentials with fundamental frequencies that
are multiples of a single positive frequency

Properties which hold for complex exponentials, also hold for
sinusoidal signals

We confine our discussion to complex exponentials
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Continuous-Time Exponentials

Basic signals for continuous-time, harmonically related exponentials

sk(t) = e jkΩ0t = e j2πkF0t k = 0,±1,±2, . . .

For each k , sk(t) is periodic with fundamental period 1/(kF0) = Tp/k
or fundamental frequency kF0

A signal that is periodic with period Tp/k is also periodic with period
k(Tp/k) = Tp for any positive integer k

Hence all sk(t) have a common period of Tp

A linear combination of harmonically related complex exponentials

xa(t) =
∑∞

k=−∞ cksk(t) =
∑∞

k=−∞ cke
jkΩ0t

This is Fourier series expansion for xa(t)
ck , k = 0,±1,±2, . . . are arbitrary complex constants (Fourier series
coefficients)
sk(t) is kth harmonic of xa(t)
xa(t) is periodic with fundamental period Tp = 1/F0
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Discrete-Time Exponentials

A discrete-time complex exponential is periodic if its frequency is a
rational number

Hence, we choose f0 = 1/N

Sets of harmonically related complex exponentials

sk(n) = e j2πkf0n, k = 0,±1,±2, . . .

Since
sk+N(n) = e j2πn(k+N)/N = e j2πnsk(n) = sk(n)

there are only N distinct periodic complex exponentials in the set
All members of the set have a common period of N samples
We can choose any consecutive N complex exponentials to form a set
For convenience

sk(n) = e j2πkn/N , k = 0, 1, 2, . . . ,N − 1

Fourier series representation for a periodic discrete-time sequence

x(n) =
∑N−1

k=0 cksk(n) =
∑N−1

k=0 cke
j2πkn/N

Fundamental period = N
Fourier coefficients = {ck}
Sequence sk(n) is called kth harmonic of x(n)

16 / 45



Discrete-Time Exponentials

Example

Stored in memory is one cycle of sinusoidal signal

x(n) = sin
(

2πn
N + θ

)
where θ = 2πq/N, where q and N are integers

Obtain values of harmonically related sinusoids having the same phase

xk(n) = sin
(

2πnk
N + θ

)
= sin

(
2π(kn)

N + θ
)

= x(kn)

Thus xk(0) = x(0), xk(1) = x(k), xk(2) = x(2k), . . .

Obtain sinusoids of the same frequency but different phase
We control phase θ of sinusoid with fk = k/N by taking first value of
sequence from memory location q = θN/2π, where q is an integer
We wrap around table each time index (kn) exceeds N
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Analog-to-Digital and Digital-to-Analog Conversion

Analog-to-digital (A/D) conversion

Converting analog signals to a sequence of numbers having finite
precision
Corresponding devices are called A/D converters (ADCs)

A/D conversion is a three-step process
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Analog-to-Digital and Digital-to-Analog Conversion

A/D conversion process
1 Sampling

Taking samples of continuous-time signal at discrete-time instants
xa(t) is input −→ xa(nT ) ≡ x(n) is output
T = sampling interval

2 Quantization

Conversion of a discrete-time continuous-valued signal into a
discrete-time, discrete-valued signal
Value of each sample is selected from a finite set of possible values
Quantization error: Difference between unquantized sample x(n) and
quantized output xq(n)

3 Coding

Each discrete value xq(n) is represented by a b-bit binary sequence
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Analog-to-Digital and Digital-to-Analog Conversion

Digital-to-analog (D/A) conversion
Process of converting a digital signal into an analog signal
Interpolation

Connecting dots in a digital signal
Approximations: zero-order hold (staircase), linear, quadratic, and so on
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Sampling of Analog Signals

Periodic or uniform sampling
x(n) = xa(nT ), −∞ < n <∞
T = sampling period or sample interval
1/T = Fs = sampling rate (samples/second) or sampling frequency
(hertz)
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Sampling of Analog Signals

Relationship between t of continuous-time and n of discrete-time
signals

t = nT = n
Fs

To establish a relationship between F (or Ω) and f (or ω)

xa(t) = A cos(2πFt + θ)

xa(nT ) ≡ x(n) = A cos(2πFnT + θ) = A cos
(

2πnF
Fs

+ θ
)

f = F/Fs
ω = ΩT

Substituting f = F/Fs and ω = ΩT into following range

−1
2 < f < 1

2
−π < ω < π

we find that F and Ω must fall in the range

− 1
2T = −Fs

2 ≤ F ≤ Fs
2 = 1

2T

− π
T = −πFs ≤ Ω ≤ πFs = π

T
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Sampling of Analog Signals

Summary of relations among frequency variables
Continuous-time signals Discrete-time signals

Ω = 2πF ω = 2πf
radians
sec Hz radians

sample
cycles
sample

ω=ΩT ,f =F/Fs−−−−−−−−−→
−π ≤ ω ≤ π
−1

2 ≤ f ≤ 1
2

Ω=ω/T ,F=f .Fs←−−−−−−−−−−
−∞ < Ω <∞ −π/T ≤ Ω ≤ π/T
−∞ < F <∞ −Fs/2 ≤ F ≤ Fs/2

Since the highest frequency in a discrete-time signal is ω = π or f = 1
2

Fmax = Fs
2 = 1

2T
Ωmax = πFs = π

T
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Sampling of Analog Signals

Example

Consider these analog sinusoids sampled at Fs = 40 Hz

x1(t) = cos 2π(10)t
x2(t) = cos 2π(50)t

Corresponding discrete-time signals

x1(n) = cos 2π
(

10
40

)
n = cos π2n

x2(n) = cos 2π
(

50
40

)
n = cos 5π

2 n

However

cos 5πn/2 = cos(2πn + πn/2) = cosπn/2
x2(n) = x1(n)

Given sampled values generated by cos(π/2)n, there is ambiguity as to
whether they correspond to x1(t) or x2(t)

F2 = 50 Hz is an alias of F1 = 10 Hz at Fs = 40
All cos 2π(F1 + 40k)t, k = 1, 2, . . . sampled at Fs = 40 are aliases of
F1 = 10
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Sampling of Analog Signals

If sinusoids

xa(t) = A cos(2πFkt + θ)

where

Fk = F0 + kFs , k = ±1,±2, . . .

are sampled at Fs , then Fk is outside the range −Fs/2 ≤ F ≤ Fs/2

x(n) ≡ xa(nT ) = A cos

(
2π

F0 + kFs
Fs

n + θ

)
= A cos(2πnF0/Fs + θ + 2πkn)

= A cos(2πf0n + θ)

Frequencies

Fk = F0 + kFs , −∞ < k <∞
are aliases of F0 after sampling
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Sampling of Analog Signals
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Sampling of Analog Signals

Example

Two sinusoids: F1 = −7
8 Hz and F2 = 1

8 Hz with Fs = 1 Hz

F1 = F2 + kFs , k = ±1,±2, . . .
k = −1,F2 = F1 + Fs = (−7

8 + 1)Hz = 1
8Hz
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Sampling of Analog Signals

Fs/2 (which corresponds to ω = π) is highest frequency that can be
represented uniquely with Fs

Use Fs/2 or ω = π as pivotal point and fold alias frequency to range
0 ≤ ω ≤ π
Fs/2 (ω = π) is called folding frequency
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Sampling of Analog Signals

Example

xa(t) = 3 cos 100πt

1 Minimum sampling rate required to avoid aliasing
F = 50 Hz −→ Fs = 100 Hz

2 Suppose Fs = 200 Hz. Discrete-time signal obtained after sampling
x(n) = 3 cos 100π

200 n = 3 cos π2n

3 Suppose Fs = 75 Hz. Discrete-time signal obtained after sampling
x(n) = 3 cos 100π

75 n = 3 cos 4π
3 n = 3 cos

(
2π − 2π

3

)
n = 3 cos 2π

3 n

4 Frequency 0 < F < Fs/2 of a sinusoid that yields samples identical to
those obtained in part (3)
For Fs = 75 Hz, F = fFs = 75f
In part (3), f = 1

3 −→ F = 25 Hz
ya(t) = 3 cos 2πFt = 3 cos 50πt
Hence F = 50 Hz is an alias of F = 25 Hz for Fs = 75 Hz
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The Sampling Theorem

Given any analog signal, how T or equivalently Fs should be selected
Knowing Fmax of general class of signals (e.g., class of speech signals),
we can specify Fs

Suppose any analog signal can be represented as

xa(t) =
∑N

i=1 Ai cos(2πFi t + θi )

N = number of frequency components
Fmax may vary slightly from different realizations among signals of any
given class (e.g., from speaker to speaker)

To ensure Fmax does not exceed some predetermined value, pass analog
signal through a filter that attenuates frequency components above Fmax

Any frequency outside −Fs/2 ≤ F ≤ Fs/2 results in samples identical
with a corresponding frequency inside this range
To avoid aliasing

Fs > 2Fmax

This condition ensures that any frequency component (|Fi | < Fmax) in
analog signal is mapped into a discrete-time sinusoid with a frequency
− 1

2
≤ fi = Fi

Fs
≤ 1

2
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The Sampling Theorem

Sampling theorem
If Fmax = B for xa(t) and Fs > 2Fmax ≡ 2B, then xa(t) can be exactly
recovered from its sample values using the interpolation function

g(t) =
sin 2πBt

2πBt

xa(t) =
∞∑

n=−∞
xa

(
n

Fs

)
g

(
t − n

Fs

)
where xa(n/Fs) = xa(nT ) ≡ x(n) are samples of xa(t)
Nyquist rate = FN = 2B = 2Fmax
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The Sampling Theorem

Example

xa(t) = 3 cos 50πt + 10 sin 300πt + cos 100πt

Nyquist rate for this signal

F1 = 25 Hz , F2 = 150 Hz , F3 = 50 Hz −→ Fmax = 150 Hz
Fs > 2Fmax = 300 Hz
FN = 2Fmax = 300 Hz

Component 10 sin 300πt sampled at FN = 300 results in 10 sinπn
which are identically zero
If θ 6= 0 or π, samples taken at Nyquist rate are not all zero

10 sin(πn + θ) = 10(sinπn cos θ + cosπn sin θ) = 10 sin θ cosπn =
(−1)n10 sin θ

To avoid this uncertain situation, sample analog signal at a rate higher
than Nyquist
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The Sampling Theorem

Example

xa(t) = 3 cos 2000πt + 5 sin 6000πt + 10 cos 12000πt

Nyquist rate for this signal

F1 = 1 kHz , F2 = 3 kHz , F3 = 6 kHz −→ Fmax = 6 kHz
Fs > 2Fmax = 12 kHz

FN = 12 kHz

Assume Fs = 5000 samples/s. Signal obtained after sampling

Folding frequency = Fs
2 = 2.5 kHz

x(n) = xa(nT ) = xa
(

n
Fs

)
= 3 cos 2π( 1

5 )n + 5 sin 2π( 3
5 )n +

10 cos 2π( 6
5 )n = 3 cos 2π( 1

5 )n + 5 sin 2π(1− 2
5 )n + 10 cos 2π(1 + 1

5 )n =
3 cos 2π( 1

5 )n + 5 sin 2π(−2
5 )n + 10 cos 2π( 1

5 )n =
13 cos 2π( 1

5 )n − 5 sin 2π( 2
5 )n
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The Sampling Theorem

Example (continued)

Second solution:
Aliases of F0: Fk = F0 + kFs −→ F0 = Fk − kFs such that
−Fs/2 ≤ F0 ≤ Fs/2

F1 is less than Fs/2
F ′2 = F2 − Fs = −2 kHz
F ′3 = F3 − Fs = 1 kHz

f = F
Fs
−→ f1 = 1

5 , f2 = −2
5 , f3 = 1

5

Analog signal ya(t) reconstructed from samples using ideal
interpolation
Only frequency components at 1 kHz and 2 kHz are present in
sampled signal

ya(t) = 13 cos 2000πt − 5 sin 4000πt

This distortion was caused by aliasing effect due to low Fs used
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Quantization of Continuous-Amplitude Signals

Quantization

Process of converting a discrete-time continuous-amplitude signal into a
digital signal

xq(n) = Q[x(n)] = sequence of quantized samples

Each sample value is expressed as a finite number of digits
Error introduced is called quantization error or quantization noise

eq(n) = xq(n)− x(n)

Example

Consider discrete-time signal

x(n) =

{
0.9n, n ≥ 0
0, n < 0

obtained by sampling xa(t) = 0.9t , t ≥ 0 with Fs = 1 Hz
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Quantization of Continuous-Amplitude Signals

Example (continued)

Following table shows values of first 10 samples of x(n)

Description of sample value x(n) requires n significant digits
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Quantization of Continuous-Amplitude Signals

Example (continued)

x(n) xq(n) xq(n) eq(n) = xq(n)− x(n)
n Discrete-time signal (Truncation) (Rounding) (Rounding)
0 1 1.0 1.0 0.0
1 0.9 0.9 0.9 0.0
2 0.81 0.8 0.8 -0.01
3 0.729 0.7 0.7 -0.029
4 0.6561 0.6 0.7 0.0439
5 0.59049 0.5 0.6 0.00951
6 0.531441 0.5 0.5 -0.031441
7 0.4782969 0.4 0.5 0.0217031
8 0.43046721 0.4 0.4 -0.03046721
9 0.387420489 0.3 0.4 0.012579511

Assume using one significant digit. To eliminate excess digits

do truncation
or do rounding

Rounding process is illustrated in next figure
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Quantization of Continuous-Amplitude Signals

Example (continued)

Quantization step size (or resolution) = ∆ = 1−0
11−1 = 0.1
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Quantization of Continuous-Amplitude Signals

Range of quantization error eq(n) in rounding

−∆

2
≤ eq(n) ≤ ∆

2

∆ =
xmax − xmin

L− 1

xmin and xmax = minimum and maximum value of x(n)
L = number of quantization levels
Dynamic range of signal = xmax − xmin

Quantization of analog signals always results in a loss of information
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Quantization of Sinusoidal Signals

Sampling and quantization of xa(t) = A cos Ω0t
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Quantization of Sinusoidal Signals

If Fs satisfies sampling theorem, quantization is the only error in A/D
process

Thus we can evaluate quantization error by quantizing xa(t) instead of
x(n) = xa(nT )

xa(t) is almost linear between quantization levels

Quantization error = eq(t) = xa(t)− xq(t)
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Quantization of Sinusoidal Signals

Mean-square error power

Pq =
1

2τ

∫ τ

−τ
e2
q(t) dt =

1

τ

∫ τ

0
e2
q(t) dt

since eq(t) = (∆/2τ)t, −τ ≤ t ≤ τ

Pq =
1

τ

∫ τ

0

(
∆

2τ

)2

t2 dt =
∆2

12

If quantizer has b bits of accuracy and covers range 2A

∆ =
2A

2b
−→ Pq =

A2/3

22b

Average power of xa(t)

Px =
1

Tp

∫ Tp

0
(A cos Ω0t)2 dt =

A2

2
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Quantization of Sinusoidal Signals

Quality of output of A/D converter is measured by
signal-to-quantization noise ratio (SQNR)

Provides ratio of signal power to noise power

SQNR =
Px

Pq
=

3

2
.22b

SQNR(dB) = 10 log10 SQNR = 1.76 + 6.02b
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Coding of Quantized Samples

Coding process assigns a unique binary number to each quantization
level

L levels need at least L different binary numbers

b bits −→ 2b different binary numbers−→ 2b ≥ L −→ b ≥ log2 L
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