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The Concept of Frequency

o Frequency is closely related to a specific type of periodic motion called
harmonic oscillation

o Described by sinusoidal functions
o Frequency has dimension of inverse time

o Nature of time (continuous or discrete) would affect nature of frequency
accordingly
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Continuous-Time Sinusoidal Signals

@ A simple harmonic oscillation
Xa(t) = Acos(Qt +0), —oo < t < 00

Subscript a = analog signal
A = amplitude

Q = frequency (in rad/s)

6 = phase (in radians)

@ Rewriting above equation using frequency F in cycles per second or
hertz (Hz)

x5(t) = Acos(2mFt +6), —oco < t < 00
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Continuous-Time Sinusoidal Signals

x,()=A cos(2Ft + 0)
A

<——Tp =1/F—
FA
AcosQ

0 \/ \ t

Figure 1.3.1 Example of an analog sinusoidal signal.
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Continuous-Time Sinusoidal Signals

o Properties of x,(t) = Acos(2nFt + ), —oco < t < 00
@ For every fixed F, x,(t) is periodic
X(t+ Tp) = xa(t)
T, = 1/F= fundamental period of sinusoidal signal

@ Signals with distinct frequencies are themselves distinct
© Increasing F results in an increase in rate of oscillation of signal

o Using Euler identity
et = cosp & jsin g
and introducing negative frequencies
xs(t) = Acos(Qt + 0) = 5e/(+0) | 2e-i(t+0)
e A sinusoidal signal can be obtained by adding two equal-amplitude
complex-conjugate exponential signals, called phasors

o As time progresses, phasors rotate in opposite directions with angular
frequencies +Q radians/second
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Discrete-Time Sinusoidal Signals

o A discrete-time sinusoidal signal
x(n) = Acos(wn+0), —oo < n < o0

n = an integer called sample number
A = amplitude

w = frequency in radians/sample

6 = phase in radians

o Using w = 2nf
x(n) = Acos(2nfn+ ), —oco < n < o0

frequency f is in cycles/sample
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Discrete-Time Sinusoidal Signals

x(n) = A cos(wn + 0)

$-A

Figure 1.3.3 Example of a discrete-time sinusoidal signal (w = 7 /6 and
0 =m/3).
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Discrete-Time Sinusoidal Signals

o Properties of discrete-time sinusoids
@ A discrete-time sinusoid is periodic only if its frequency f is a rational
number
o x(n) is periodic with period N(N > 0) if and only if
x(n+ N)=x(n) foralln

Smallest value of N for which this equation is true is called fundamental
period

o Proof of this property

cos[2wfo(N + n) + 0] = cos(2wfon + )
2nfoN = 2km
fo=k/N

o To determine fundamental period N, express its frequency as fo = k/N
and cancel common factors so that k and N are relatively prime, then N
is answer
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Discrete-Time Sinusoidal Signals

o Properties of discrete-time sinusoids (continued)
@ Discrete-time sinusoids whose frequencies are separated by an integer
multiple of 27 are identical
cos[(wo + 2km)n + 0] = cos(won + 2mkn + 6) = cos(won + 0)
where —m <wo <7
o Discrete-time sinusoids with |w| < 7 or |f| < 1 are unique
@ Any sequence resulting from a sinusoid with |w| > 7 or |f| > 1 is
identical to a sequence obtained from a sinusoid with |w| < 7
o Sinusoid having |w| > 7 is called an alias of a corresponding sinusoid
with |w| < 7
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o Properties of discrete-time sinusoids (continued)

—oN

3 (or f

—m) or, equivalently, f

=7 (orw=

© The highest rate of oscillation in a discrete-time sinusoid is attained
when w

=

coswon, wp = 0= N

o x(n)

x(n)

x(n)

n

Coswoh, wo

o x(n)
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COS won, wWo

© The highest rate of oscillation is when w =7
o x(n)

o Properties of discrete-time sinusoids (continued)

x(n)

n

x(n)

7 =>N=4

COoswoh, wo

o x(n)
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Discrete-Time Sinusoidal Signals

o Properties of discrete-time sinusoids (continued)
© The highest rate of oscillation is when w = 7
o x(n) =coswon, wo =1 = N =2

o
£ o -----

o For m < wp < 2m, if consider sinusoids with wy = wp and wy = 27 — wp

x1(n) = Acoswin = Acoswon
x2(n) = Acoswyn = Acos(2m — wo)n
= Acos(—won) = x1(n)

Hence, w» is an alias of w;
o Using a sine function, result would be same, except phase difference

would be 7 between x1(n) and x2(n)
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Discrete-Time Sinusoidal Signals

o Negative frequencies for discrete-time signals
x(n) = Acos(wn+60) = éei(“’””) + ée‘j(w"”)
@ Since discrete-time sinusoids with frequencies separated by 2k7 are
identical

o Frequency range for discrete-time sinusoids is finite with duration 27
o Usually 0 <w <27 or — < w < 71 is called fundamental range
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Harmonically Related Complex Exponentials

@ Harmonically related complex exponentials

o Sets of periodic complex exponentials with fundamental frequencies that
are multiples of a single positive frequency

@ Properties which hold for complex exponentials, also hold for
sinusoidal signals

o We confine our discussion to complex exponentials
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Continuous-Time Exponentials

o Basic signals for continuous-time, harmonically related exponentials
si(t) = ekt = ef2mkFot | — 0 41,42, . ..

o For each k, si(t) is periodic with fundamental period 1/(kFo) = T,/k
or fundamental frequency kFy
o A signal that is periodic with period T,/k is also periodic with period
k(T,/k) = T, for any positive integer k
o Hence all si(t) have a common period of T,

@ A linear combination of harmonically related complex exponentials
xa(t) = D200 cks(t) = 3202 ceksot

This is Fourier series expansion for x,(t)

ck, k =0,£1,42, ... are arbitrary complex constants (Fourier series
coefficients)

sk(t) is kth harmonic of x,(t)

Xa(t) is periodic with fundamental period T, = 1/F
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Discrete-Time Exponentials

@ A discrete-time complex exponential is periodic if its frequency is a
rational number
o Hence, we choose fy = 1/N

@ Sets of harmonically related complex exponentials
si(n) = e2mkhn k= 0,41,42,. ..

o Since
5k+N(n) e2mn(k+N)/N — e/27rnsk( ) _ sk(n)
there are only N distinct periodic complex exponentials in the set
o All members of the set have a common period of N samples
o We can choose any consecutive N complex exponentials to form a set

e For convenience
s(n) = e2kn/N | =0,1,2,...,N—1
o Fourier series representation for a periodic discrete—time sequence
x(n) = Y10 cksk(n) = Y30 ckel?mkn/N
o Fundamental period = N

o Fourier coefficients = {ck}
o Sequence sk(n) is called kth harmonic of x(n)
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Discrete-Time Exponentials

Example

@ Stored in memory is one cycle of sinusoidal signal
x(n) = sin (32 +0)

where § = 2mq/N, where g and N are integers

@ Obtain values of harmonically related sinusoids having the same phase
xk(n) = sin (2“—,\7" +6) =sin (&A;m) + 9) = x(kn)

Thus x4(0) = x(0), x(1) = x(k), xk(2) = x(2k), . ..
@ Obtain sinusoids of the same frequency but different phase

We control phase 6 of sinusoid with fy = k/N by taking first value of

sequence from memory location g = @N /2w, where q is an integer
We wrap around table each time index (kn) exceeds N
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Analog-to-Digital and Digital-to-Analog Conversion

o Analog-to-digital (A/D) conversion
o Converting analog signals to a sequence of numbers having finite
precision
o Corresponding devices are called A/D converters (ADCs)

@ A/D conversion is a three-step process

A/D converter

x(0) x(n x,(n E 01011...

o0 ; Sampler i Quantizer o) Coder e
Analog Discrete-time Quantized Digital
signal signal signal signal

Figure 1.4.1 Basic parts of an analog-to-digital (A/D) converter.
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Analog-to-Digital and Digital-to-Analog Conversion

o A/D conversion process
O Sampling
o Taking samples of continuous-time signal at discrete-time instants
o xa(t) is input — x,(nT) = x(n) is output
o T = sampling interval
@ Quantization
o Conversion of a discrete-time continuous-valued signal into a
discrete-time, discrete-valued signal
o Value of each sample is selected from a finite set of possible values
o Quantization error: Difference between unquantized sample x(n) and
quantized output xq4(n)
@ Coding

o Each discrete value xq(n) is represented by a b-bit binary sequence
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Analog-to-Digital and Digital-to-Analog Conversion

o Digital-to-analog (D/A) conversion
o Process of converting a digital signal into an analog signal
o Interpolation
o Connecting dots in a digital signal
o Approximations: zero-order hold (staircase), linear, quadratic, and so on

.. Staircase
Ol:ngmal Approximation
— Signal
X‘ -
Q
EF 7
£
gL/
/
/
-/
/
/ ] ] 1 1
0 2T 4T 6T 8T

Time

Figure 1.4.2 Zero-order hold digital-to-analog (D/A) conversion.
20/45



Sampling of Analog Signals

@ Periodic or uniform sampling
o x(n) =x,(nT), —oco<n<oo
o T = sampling period or sample interval
o 1/T = F; = sampling rate (samples/second) or sampling frequency

(hertz)
Analog Xo(1) x X(1) = xq(nT) Discrete-time
signal 1,: T signal
s
Sampler
Xal1) x(n) a(l)
W ‘ x(n) = x,(nT)
0 t 0| 1234506738 9 n
T2T ... . 9T ...t=nT

Figure 1.4.3  Periodic sampling of an analog signal.
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Sampling of Analog Signals

@ Relationship between t of continuous-time and n of discrete-time

signals
t=nT = i

o To establish a relationship between F (or Q) and f (or w)
x5(t) = Acos(2mFt + 0)
xa(nT) = x(n) = Acos(2rFnT + ) = Acos (27”": + 0)

f=F/Fs
w=QT

o Substituting f = F/F; and w = QT into following range

1 1
—T<w< T
we find that F and € must fall in the range

l_F Fs 1
F=—3<F<F =5

=
F=-1F<Q<nF=7F
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Sampling of Analog Signals

@ Summary of relations among frequency variables

Continuous-time signals Discrete-time signals
Q =2nF w = 2nf
radians Hz radians cycles
sec sample sample

w=QT,f=F/F,
Sy

—rm<w<T
1
—3<f<3
Q=w/T,F=Ff.Fs
<__—_
—00 < 2 <00 /T <Q<7/T
—00 < F <0 —Fs/2<F<Fg/2

@ Since the highest frequency in a discrete-time signal isw =m or f = %
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Sampling of Analog Signals

Example

o Consider these analog sinusoids sampled at F; = 40 Hz
x1(t) = cos 2m(10)t
xp(t) = cos 2m(50)t
@ Corresponding discrete-time signals
x1(n) = cos2rm (33) n=cos In

xp(n) = cos2m (33) n = cos 2Fn

@ However
cosb5mn/2 = cos(2mn+ mn/2) = cosmn/2
x2(n) = x1(n)
@ Given sampled values generated by cos(7/2)n, there is ambiguity as to
whether they correspond to xj(t) or xx(t)

o F> =50 Hz is an alias of F; = 10 Hz at F; = 40
o All cos2m(Fy + 40k)t, k =1,2,... sampled at F; = 40 are aliases of
FL =10
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Sampling of Analog Signals

o If sinusoids
x5(t) = Acos(2mFit + 0)
where
Fi=Fo+ kFs, k==1,+£2, ...
are sampled at Fs, then Fy is outside the range —F¢/2 < F < F¢/2

S

Fo + kF.
x(n) = x,(nT) = Acos (2W%n + 9)

= Acos(2mnfFy/Fs 4 0 + 2mkn)
= Acos(2mfon + 6)

o Frequencies
Fx = Fo+ kFs, —oo < k < o0
are aliases of f( after sampling
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Sampling of Analog Signals

RI— =
e

Figure 1.4.4 Relationship between the continuous-time and discrete-time
frequency variables in the case of periodic sampling.

26 /45



Sampling of Analog Signals

@ Two sinusoids: F; = _% Hz and F>, = % Hz with Fs =1 Hz
Fi = Fo+ kFs, k=41,42,...
k=-1F=F+F =(—f+1)Hz=LHz
FF%HZ Flz—%Hz

% O | 1 1 1 1 1 -

g 1 2 3 4 5 6 7 8  Time, sec

<

\/ \/ \/ WFV -
Figure 1.4.5 lllustration of aliasing.
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Sampling of Analog Signals

o Fs/2 (which corresponds to w = 7) is highest frequency that can be
represented uniquely with F;

o Use Fs/2 or w = as pivotal point and fold alias frequency to range
0<w<m
o F/2 (w =) is called folding frequency
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Sampling of Analog Signals

xa(t) = 3 cos 1007t

@ Minimum sampling rate required to avoid aliasing
F =50 Hz — F; = 100 Hz

@ Suppose Fs = 200 Hz. Discrete-time signal obtained after sampling

x(n) =3 cos ¥ n = 3cos 5n

© Suppose Fs = 75 Hz. Discrete-time signal obtained after sampling
x(n) =3cos 192 n = 3cos %n = 3cos (2r — Z) n =3 cos Zn

@ Frequency 0 < F < F5/2 of a sinusoid that yields samples identical to
those obtained in part (3)
For Fs =75 Hz, F = fFs = 75f
In part (3), fz%—)F:25 Hz
ya(t) = 3cos2mFt = 3 cos 507t
Hence F = 50 Hz is an alias of F = 25 Hz for Fs = 75 Hz
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The Sampling Theorem

o Given any analog signal, how T or equivalently Fs should be selected
o Knowing Fp,ax of general class of signals (e.g., class of speech signals),
we can specify F;
@ Suppose any analog signal can be represented as
Xa(t) = ZlNzl A; COS(27TF;t + 9,’)
N = number of frequency components
o Fpax may vary slightly from different realizations among signals of any
given class (e.g., from speaker to speaker)
o To ensure Fp. does not exceed some predetermined value, pass analog
signal through a filter that attenuates frequency components above Fp.x
o Any frequency outside —F;/2 < F < F;/2 results in samples identical
with a corresponding frequency inside this range
o To avoid aliasing

Fs > 2Fmax

o This condition ensures that any frequency component (|Fj| < Fmax) in

analog signal is mapped into a discrete-time sinusoid with a frequency
1 - __ F 1
-3 <fi= E < 3
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The Sampling Theorem

@ Sampling theorem
o If Frax = B for x,(t) and Fs > 2F,,.x = 2B, then x,(t) can be exactly
recovered from its sample values using the interpolation function

sin 2w Bt
glt)=—_5—
xa(t) = i Xa (%) g (t - Fis)

n=—o00
where x5(n/Fs) = xa(nT) = x(n) are samples of x,(t)
o Nyquist rate = Fy = 2B = 2F .«

——. x,(1) sample of x,(7)

(n-2)T (n-DT nT (n+ DT

Figure 1.4.6 Ideal D/A conversion (interpolation).
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The Sampling Theorem

xa(t) = 3 cos 507t + 105sin 3007t + cos 1007t

@ Nyquist rate for this signal
FiL=25Hz, F,=150Hz, F3=50Hz— F,.x =150 Hz
Fs > 2F.x = 300 Hz
Fn = 2Fmax = 300 Hz
@ Component 10sin 3007t sampled at Fy = 300 results in 10sin7n
which are identically zero
If & £ 0 or 7, samples taken at Nyquist rate are not all zero
10sin(7wn + 0) = 10(sin mncos @ + coswnsin @) = 10sin O cosn =
(=1)"10sin 6
To avoid this uncertain situation, sample analog signal at a rate higher
than Nyquist

v
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The Sampling Theorem

Xa(t) = 3c0s20007t + 5sin 60007t + 10 cos 120007t

@ Nyquist rate for this signal
Fir=1kHz, F,=3kHz, F3=6kHz — Fpax =6 kHz
Fs > 2Fmax = 12 kHz
Fn =12 kHz
@ Assume F; = 5000 samples/s. Signal obtained after sampling
Folding frequency = % = 2.5 kHz
x(n) = xa(nT) = xa (FLS) = 3cos2m(%)n + 5sin2m(3)n +
10 cos 27(2)n = 3cos 2m(§)n+ 5sin 2m(1 — £)n+ 10cos 2mr(1 + 1 )n =
3cos2m(3)n + 5sin 2m(—2)n + 10 cos 27 (%)n =
13 cos 27(§)n — 5sin27(E)n
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The Sampling Theorem

Example (continued)

@ Second solution:
Aliases of Fg: Fi = Fo + kFs — Fog = F) — kFs such that
_Fs/2§ FOS Fs/2
Fy is less than Fs/2
Fi=F,— Fs = -2 kHz
F;=F3—Fs=1kHz
fmfoh=lh=-2h=1
@ Analog signal y,(t) reconstructed from samples using ideal
interpolation
Only frequency components at 1 kHz and 2 kHz are present in
sampled signal

ya(t) = 13 cos 20007t — 5 sin 40007t

This distortion was caused by aliasing effect due to low Fs used
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Quantization of Continuous-Amplitude Signals

@ Quantization
o Process of converting a discrete-time continuous-amplitude signal into a
digital signal
xq(n) = Q[x(n)] = sequence of quantized samples
o Each sample value is expressed as a finite number of digits
o Error introduced is called quantization error or quantization noise

q(n) = xq(n) — x(n)

o Consider discrete-time signal

J >
X(n):{ 09", n>0

0, n<0

obtained by sampling x,(t) = 0.9%, t > 0 with F; =1 Hz
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Quantization of Continuous-Amplitude Signals

Example (continued)

N,

x(n)=0.97

osd TN
x,(1) = 0.9¢

0.6

0.4

02

o 1 2 3 4 5 6 7 8 .. p
e T
T=1sec

e Following table shows values of first 10 samples of x(n)
o Description of sample value x(n) requires n significant digits
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Quantization of Continuous-Amplitude Signals

Example (continued)

x(n) xq(7) (1) eq(n) = xq(n) — x(7)
n Discrete-time signal  (Truncation) (Rounding) (Rounding)
0 1 1.0 1.0 0.0
1 09 0.9 0.9 0.0
2 0381 0.8 0.8 -0.01
3 0.729 0.7 0.7 -0.029
4 0.6561 0.6 0.7 0.0439
5 0.59049 0.5 0.6 0.00951
6 0.531441 0.5 0.5 -0.031441
7 0.4782969 0.4 0.5 0.0217031
8 0.43046721 0.4 0.4 -0.03046721
9 0.387420489 0.3 0.4 0.012579511
@ Assume using one significant digit. To eliminate excess digits
e do truncation
e or do rounding
@ Rounding process is illustrated in next figure

v
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Quantization of Continuous-Amplitude Signals

Example (continued)

x,(1)y=0.9 xn)

- 1.0 Levels of
0.9 quantization
0.8 s
0.7

T~
Range of (.6 P~ i Quantization
the 0.5 — — step
quantizer (.4 —— *
0.3
0.2
0.1

0 1 2 3 4 5 6 7 8§ .. n
(b)

Figure 1.4.7 lllustration of quantization.

e Quantization step size (or resolution) = A = 5= = 0.1

W
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Quantization of Continuous-Amplitude Signals

o Range of quantization error eq(n) in rounding

Xmax — Xmin
A= —"——

L-1

® Xmin and Xpax = minimum and maximum value of x(n)
o L = number of quantization levels
e Dynamic range of signal = Xmax — Xmin

o Quantization of analog signals always results in a loss of information
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Quantization of Sinusoidal Signals

e Sampling and quantization of x,(t) = AcosQgt

Time
Discretization

Amplitude
Discretization

Quantization

| I ' Level
l L Original Analog Signal
4A X0 ‘
3A -
\ Unquantized Samples
2A / Xalnt) I / Quantization
Ste;
o A . | P
E’: quantllz od \ Output of Zero-Order
2 0 ampies  Hold D/A Converter
£ x(nf) \ 0
< A q Range of the
/ Quantizer
—2A \ /
” \ / ;
—4A
0O T 2 3T 4T ST 6T 1T 8T 9T !
Time
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Quantization of Sinusoidal Signals

o If F, satisfies sampling theorem, quantization is the only error in A/D
process

o Thus we can evaluate quantization error by quantizing x,(t) instead of
x(n) = x5(nT)
@ x,(t) is almost linear between quantization levels
o Quantization error = eq(t) = x4(t) — xg(t)

| =
A2

4 ! o .~
T / N e _';/) ' '

-T 0 T t

o 7 denotes time that x,(t) stays within quantization levels
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Quantization of Sinusoidal Signals

@ Mean-square error power

1 (7 1 /(7
Pg=5- _Tef,(t) dt = —/0 e (t)dt

T

since eq(t) = (A/27)t, -7 <t <7

1 [T /AN A2
P,== ) 2dt=—
q T/O (27) 12

o If quantizer has b bits of accuracy and covers range 2A

2A A3

A= P

o Average power of x,(t)

1 Tp A2
P, = — Acos Qot)? dt = —
TP/O (AcosQot) 5
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Quantization of Sinusoidal Signals

o Quality of output of A/D converter is measured by
signal-to-quantization noise ratio (SQNR)

o Provides ratio of signal power to noise power
P 3
SQNR = X = Z.2%
@ P, 2

SQNR(dB) = 10log;o SQNR = 1.76 + 6.02b

43 /45



Coding of Quantized Samples

o Coding process assigns a unique binary number to each quantization
level

o L levels need at least L different binary numbers
b bits — 2° different binary numbers— 2° > [ — b > log, L
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