Digital Signal Processing Introduction

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic

> amiri@mail.muni.cz prenosil@fi.muni.cz

> February 25, 2012

The Concept of Frequency

- Frequency is closely related to a specific type of periodic motion called harmonic oscillation
 - Described by sinusoidal functions
- Frequency has dimension of inverse time
 - Nature of time (continuous or discrete) would affect nature of frequency accordingly

Continuous-Time Sinusoidal Signals

• A simple harmonic oscillation

$$x_{a}(t) = A\cos(\Omega t + \theta), \ -\infty < t < \infty$$

- Subscript a = analog signal
- A =amplitude
- $\Omega = frequency (in rad/s)$
- $\theta = \text{phase} (\text{in radians})$
- Rewriting above equation using frequency F in cycles per second or hertz (Hz)

$$x_{\mathsf{a}}(t) = A\cos(2\pi F t + heta), \ -\infty < t < \infty$$

Continuous-Time Sinusoidal Signals

Figure 1.3.1 Example of an analog sinusoidal signal.

Continuous-Time Sinusoidal Signals

• Properties of $x_a(t) = A\cos(2\pi F t + \theta), \ -\infty < t < \infty$

1 For every fixed F, $x_a(t)$ is periodic

$$x_a(t+T_p)=x_a(t)$$

 $T_p = 1/F =$ fundamental period of sinusoidal signal

② Signals with distinct frequencies are themselves distinct

- ③ Increasing F results in an increase in rate of oscillation of signal
- Using Euler identity

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

and introducing negative frequencies

$$x_a(t) = A\cos(\Omega t + \theta) = \frac{A}{2}e^{j(\Omega t + \theta)} + \frac{A}{2}e^{-j(\Omega t + \theta)}$$

- A sinusoidal signal can be obtained by adding two equal-amplitude complex-conjugate exponential signals, called **phasors**
- As time progresses, phasors rotate in opposite directions with angular frequencies $\pm \Omega$ radians/second

• A discrete-time sinusoidal signal

$$x(n) = A\cos(\omega n + \theta), \ -\infty < n < \infty$$

- *n* = an integer called sample number
- A = amplitude
- $\omega = \text{frequency in radians/sample}$
- $\theta = \text{phase in radians}$
- Using $\omega = 2\pi f$ $x(n) = A\cos(2\pi f n + \theta), -\infty < n < \infty$

frequency f is in cycles/sample

Figure 1.3.3 Example of a discrete-time sinusoidal signal ($\omega = \pi/6$ and $\theta = \pi/3$).

- Properties of discrete-time sinusoids
 - A discrete-time sinusoid is periodic only if its frequency f is a rational number
 - x(n) is periodic with period N(N > 0) if and only if

$$x(n+N) = x(n)$$
 for all n

Smallest value of N for which this equation is true is called **fundamental period**

Proof of this property

$$cos[2\pi f_0(N+n) + \theta] = cos(2\pi f_0 n + \theta)$$
$$2\pi f_0 N = 2k\pi$$
$$f_0 = k/N$$

• To determine fundamental period N, express its frequency as $f_0 = k/N$ and cancel common factors so that k and N are relatively prime, then Nis answer

- Properties of discrete-time sinusoids (continued)
 - 2 Discrete-time sinusoids whose frequencies are separated by an integer multiple of 2π are identical

 $\cos[(\omega_0 + 2k\pi)n + \theta] = \cos(\omega_0 n + 2\pi kn + \theta) = \cos(\omega_0 n + \theta)$ where $-\pi \le \omega_0 \le \pi$

- Discrete-time sinusoids with $|\omega| \le \pi$ or $|f| \le \frac{1}{2}$ are unique
- Any sequence resulting from a sinusoid with $|\omega| > \pi$ or $|f| > \frac{1}{2}$ is identical to a sequence obtained from a sinusoid with $|\omega| < \pi$
- Sinusoid having $|\omega|>\pi$ is called an alias of a corresponding sinusoid with $|\omega|<\pi$

• Properties of discrete-time sinusoids (continued)

3 The highest rate of oscillation in a discrete-time sinusoid is attained when $\omega = \pi$ (or $\omega = -\pi$) or, equivalently, $f = \frac{1}{2}$ (or $f = -\frac{1}{2}$)

•
$$x(n) = \cos \omega_0 n, \, \omega_0 = 0 \Longrightarrow N = \infty$$

• Properties of discrete-time sinusoids (continued)

③ The highest rate of oscillation is when $\omega = \pi$

• Properties of discrete-time sinusoids (continued)

(3) The highest rate of oscillation is when $\omega = \pi$

•
$$x(n) = \cos \omega_0 n, \, \omega_0 = \pi \Longrightarrow N = 2$$

• For $\pi \leq \omega_0 \leq 2\pi$, if consider sinusoids with $\omega_1 = \omega_0$ and $\omega_2 = 2\pi - \omega_0$

$$x_1(n) = A \cos \omega_1 n = A \cos \omega_0 n$$

$$x_2(n) = A \cos \omega_2 n = A \cos(2\pi - \omega_0) n$$

$$= A \cos(-\omega_0 n) = x_1(n)$$

Hence, ω_2 is an alias of ω_1

 Using a sine function, result would be same, except phase difference would be π between x₁(n) and x₂(n)

• Negative frequencies for discrete-time signals

$$x(n) = A\cos(\omega n + \theta) = \frac{A}{2}e^{j(\omega n + \theta)} + \frac{A}{2}e^{-j(\omega n + \theta)}$$

- $\bullet\,$ Since discrete-time sinusoids with frequencies separated by $2k\pi$ are identical
 - Frequency range for discrete-time sinusoids is finite with duration 2π
 - Usually $0 \le \omega \le 2\pi$ or $-\pi \le \omega \le \pi$ is called **fundamental range**

Harmonically Related Complex Exponentials

- Harmonically related complex exponentials
 - Sets of periodic complex exponentials with fundamental frequencies that are multiples of a single positive frequency
- Properties which hold for complex exponentials, also hold for sinusoidal signals
 - We confine our discussion to complex exponentials

Continuous-Time Exponentials

• Basic signals for continuous-time, harmonically related exponentials

$$s_k(t) = e^{jk\Omega_0 t} = e^{j2\pi kF_0 t}$$
 $k = 0, \pm 1, \pm 2, \dots$

- For each k, $s_k(t)$ is periodic with fundamental period $1/(kF_0) = T_p/k$ or fundamental frequency kF_0
- A signal that is periodic with period T_p/k is also periodic with period $k(T_p/k) = T_p$ for any positive integer k
 - Hence all $s_k(t)$ have a common period of T_p
- A linear combination of harmonically related complex exponentials

$$x_{\mathsf{a}}(t) = \sum_{k=-\infty}^{\infty} c_k s_k(t) = \sum_{k=-\infty}^{\infty} c_k \mathrm{e}^{jk\Omega_0 t}$$

- This is **Fourier series** expansion for $x_a(t)$
- c_k, k = 0, ±1, ±2,... are arbitrary complex constants (Fourier series coefficients)
- $s_k(t)$ is kth harmonic of $x_a(t)$
- $x_a(t)$ is periodic with fundamental period $T_p = 1/F_0$

- A discrete-time complex exponential is periodic if its frequency is a rational number
 - Hence, we choose $f_0 = 1/N$
- Sets of harmonically related complex exponentials

$$s_k(n) = e^{j2\pi k f_0 n}, \quad k = 0, \pm 1, \pm 2, \dots$$

Since

$$s_{k+N}(n) = e^{j2\pi n(k+N)/N} = e^{j2\pi n}s_k(n) = s_k(n)$$

there are only N distinct periodic complex exponentials in the set

- All members of the set have a common period of N samples
- We can choose any consecutive N complex exponentials to form a set
- For convenience

$$s_k(n) = e^{j2\pi kn/N}, \quad k = 0, 1, 2, \dots, N-1$$

• Fourier series representation for a periodic discrete-time sequence

$$x(n) = \sum_{k=0}^{N-1} c_k s_k(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

- Fundamental period = N
- Fourier coefficients = $\{c_k\}$
- Sequence $s_k(n)$ is called kth harmonic of x(n)

Discrete-Time Exponentials

Example

• Stored in memory is one cycle of sinusoidal signal

$$x(n) = \sin\left(\frac{2\pi n}{N} + \theta\right)$$

where $\theta = 2\pi q/N$, where q and N are integers

• Obtain values of harmonically related sinusoids having the same phase $x_k(n) = \sin\left(\frac{2\pi nk}{N} + \theta\right) = \sin\left(\frac{2\pi(kn)}{N} + \theta\right) = x(kn)$

Thus $x_k(0) = x(0), x_k(1) = x(k), x_k(2) = x(2k), \dots$

• Obtain sinusoids of the same frequency but different phase We control phase θ of sinusoid with $f_k = k/N$ by taking first value of sequence from memory location $q = \theta N/2\pi$, where q is an integer We wrap around table each time index (kn) exceeds N

Analog-to-Digital and Digital-to-Analog Conversion

- Analog-to-digital (A/D) conversion
 - Converting analog signals to a sequence of numbers having finite precision
 - Corresponding devices are called A/D converters (ADCs)
- $\bullet~A/D$ conversion is a three-step process

Figure 1.4.1 Basic parts of an analog-to-digital (A/D) converter.

Analog-to-Digital and Digital-to-Analog Conversion

- A/D conversion process
 - Sampling
 - Taking samples of continuous-time signal at discrete-time instants
 - $x_a(t)$ is input $\longrightarrow x_a(nT) \equiv x(n)$ is output
 - T = sampling interval
 - Quantization
 - Conversion of a discrete-time continuous-valued signal into a discrete-time, discrete-valued signal
 - Value of each sample is selected from a finite set of possible values
 - Quantization error: Difference between unquantized sample x(n) and quantized output $x_q(n)$
 - Coding
 - Each discrete value $x_q(n)$ is represented by a *b*-bit binary sequence

Analog-to-Digital and Digital-to-Analog Conversion

• Digital-to-analog (D/A) conversion

- Process of converting a digital signal into an analog signal
- Interpolation
 - Connecting dots in a digital signal
 - Approximations: zero-order hold (staircase), linear, quadratic, and so on

Figure 1.4.2 Zero-order hold digital-to-analog (D/A) conversion.

• Periodic or uniform sampling

•
$$x(n) = x_a(nT), -\infty < n < \infty$$

- T = sampling period or sample interval
- $1/T = F_s$ = sampling rate (samples/second) or sampling frequency (hertz)

Figure 1.4.3 Periodic sampling of an analog signal.

• Relationship between t of continuous-time and n of discrete-time signals

$$t = nT = \frac{n}{F_s}$$

• To establish a relationship between F (or Ω) and f (or ω)

$$x_{a}(t) = A\cos(2\pi Ft + \theta)$$
$$x_{a}(nT) \equiv x(n) = A\cos(2\pi FnT + \theta) = A\cos\left(\frac{2\pi nF}{F_{s}} + \theta\right)$$
$$f = F/F_{s}$$
$$\omega = \Omega T$$

• Substituting $f = F/F_s$ and $\omega = \Omega T$ into following range

$$\begin{array}{l} -\frac{1}{2} < f < \frac{1}{2} \\ -\pi < \omega < \pi \end{array}$$

we find that F and Ω must fall in the range

$$-\frac{1}{2T} = -\frac{F_s}{2} \le F \le \frac{F_s}{2} = \frac{1}{2T}$$
$$-\frac{\pi}{T} = -\pi F_s \le \Omega \le \pi F_s = \frac{\pi}{T}$$

• Summary of relations among frequency variables

Continuous-time signals		Discrete-time signals
$\Omega=2\pi F$		$\omega = 2\pi f$
<u>radians</u> Hz		<u>radians</u> cycles sample sample
	$\xrightarrow{\omega=\Omega T, f=F/F_s}$	
		$-\pi \le \omega \le \pi$
		$-rac{1}{2} \leq f \leq rac{1}{2}$
	$\xleftarrow{\Omega = \omega/T, F = f.F_s}$	
$-\infty < \Omega < \infty$		$-\pi/T \le \Omega \le \pi/T$
$-\infty < F < \infty$		$-F_s/2 \le F \le F_s/2$

• Since the highest frequency in a discrete-time signal is $\omega = \pi$ or $f = \frac{1}{2}$

$$F_{max} = \frac{F_s}{2} = \frac{1}{2T}$$
$$\Omega_{max} = \pi F_s = \frac{\pi}{T}$$

Example

• Consider these analog sinusoids sampled at $F_s = 40$ Hz

$$x_1(t) = \cos 2\pi (10)t$$

 $x_2(t) = \cos 2\pi (50)t$

• Corresponding discrete-time signals

$$x_1(n) = \cos 2\pi \left(\frac{10}{40}\right) n = \cos \frac{\pi}{2} n$$
$$x_2(n) = \cos 2\pi \left(\frac{50}{40}\right) n = \cos \frac{5\pi}{2} n$$

However

$$\cos 5\pi n/2 = \cos(2\pi n + \pi n/2) = \cos \pi n/2$$

x₂(n) = x₁(n)

- Given sampled values generated by cos(π/2)n, there is ambiguity as to whether they correspond to x₁(t) or x₂(t)
 - $F_2 = 50$ Hz is an **alias** of $F_1 = 10$ Hz at $F_s = 40$
 - All $\cos 2\pi (F_1 + 40k)t$, k = 1, 2, ... sampled at $F_s = 40$ are aliases of $F_1 = 10$

• If sinusoids

$$x_a(t) = A\cos(2\pi F_k t + \theta)$$

where

$$F_k = F_0 + kF_s, \quad k = \pm 1, \pm 2, \dots$$

are sampled at F_s , then F_k is outside the range $-F_s/2 \le F \le F_s/2$

$$\begin{aligned} x(n) &\equiv x_a(nT) = A\cos\left(2\pi \frac{F_0 + kF_s}{F_s}n + \theta\right) \\ &= A\cos(2\pi nF_0/F_s + \theta + 2\pi kn) \\ &= A\cos(2\pi f_0 n + \theta) \end{aligned}$$

Frequencies

$$F_k = F_0 + kF_s, \quad -\infty < k < \infty$$

are aliases of F_0 after sampling

Figure 1.4.4 Relationship between the continuous-time and discrete-time frequency variables in the case of periodic sampling.

Example

- $F_s/2$ (which corresponds to $\omega = \pi$) is highest frequency that can be represented uniquely with F_s
 - Use $F_s/2$ or $\omega = \pi$ as pivotal point and **fold** alias frequency to range $0 \le \omega \le \pi$
 - $F_s/2 \ (\omega = \pi)$ is called folding frequency

Example

$$x_a(t) = 3\cos 100\pi t$$

Minimum sampling rate required to avoid aliasing $F = 50 \text{ Hz} \longrightarrow F_s = 100 \text{ Hz}$ 2 Suppose $F_s = 200$ Hz. Discrete-time signal obtained after sampling $x(n) = 3\cos\frac{100\pi}{200}n = 3\cos\frac{\pi}{2}n$ Suppose $F_s = 75$ Hz. Discrete-time signal obtained after sampling $x(n) = 3\cos\frac{100\pi}{75}n = 3\cos\frac{4\pi}{2}n = 3\cos\left(2\pi - \frac{2\pi}{2}\right)n = 3\cos\frac{2\pi}{2}n$ • Frequency $0 < F < F_s/2$ of a sinusoid that yields samples identical to those obtained in part (3)For $F_s = 75$ Hz, $F = fF_s = 75f$ In part (3), $f = \frac{1}{3} \longrightarrow F = 25$ Hz

 $y_a(t) = 3\cos 2\pi F t = 3\cos 50\pi t$ Hence F = 50 Hz is an alias of F = 25 Hz for $F_s = 75$ Hz

- Given any analog signal, how T or equivalently F_s should be selected
 - Knowing F_{max} of general class of signals (e.g., class of speech signals), we can specify F_s
- Suppose any analog signal can be represented as

$$x_a(t) = \sum_{i=1}^N A_i \cos(2\pi F_i t + \theta_i)$$

- N = number of frequency components
 - F_{max} may vary slightly from different realizations among signals of any given class (e.g., from speaker to speaker)
 - To ensure F_{max} does not exceed some predetermined value, pass analog signal through a filter that attenuates frequency components above F_{max}
 - Any frequency outside $-F_s/2 \le F \le F_s/2$ results in samples identical with a corresponding frequency inside this range
 - To avoid aliasing

$$F_s > 2F_{max}$$

• This condition ensures that any frequency component $(|F_i| < F_{max})$ in analog signal is mapped into a discrete-time sinusoid with a frequency $-\frac{1}{2} \leq f_i = \frac{F_i}{F_s} \leq \frac{1}{2}$

- Sampling theorem
 - If $F_{max} = B$ for $x_a(t)$ and $F_s > 2F_{max} \equiv 2B$, then $x_a(t)$ can be exactly recovered from its sample values using the interpolation function

$$g(t) = \frac{\sin 2\pi Bt}{2\pi Bt}$$
$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a\left(\frac{n}{F_s}\right) g\left(t - \frac{n}{F_s}\right)$$

where $x_a(n/F_s) = x_a(nT) \equiv x(n)$ are samples of $x_a(t)$ • Nyquist rate $= F_N = 2B = 2F_{max}$

Figure 1.4.6 Ideal D/A conversion (interpolation).

Example

$$x_a(t) = 3\cos 50\pi t + 10\sin 300\pi t + \cos 100\pi t$$

• Nyquist rate for this signal

$$\begin{array}{ll} F_1=25 \ \text{Hz}, & F_2=150 \ \text{Hz}, & F_3=50 \ \text{Hz} \longrightarrow F_{max}=150 \ \text{Hz} \\ & F_s>2F_{max}=300 \ \text{Hz} \\ & F_N=2F_{max}=300 \ \text{Hz} \end{array}$$

• Component $10 \sin 300\pi t$ sampled at $F_N = 300$ results in $10 \sin \pi n$ which are identically zero If $\theta \neq 0$ or π , samples taken at Nyquist rate are not all zero $10 \sin(\pi n + \theta) = 10(\sin \pi n \cos \theta + \cos \pi n \sin \theta) = 10 \sin \theta \cos \pi n = (-1)^n 10 \sin \theta$

To avoid this uncertain situation, sample analog signal at a rate higher than Nyquist

Example

$$x_a(t) = 3\cos 2000\pi t + 5\sin 6000\pi t + 10\cos 12000\pi t$$

• Nyquist rate for this signal

$$\begin{array}{ll} F_1=1 \ \textit{kHz}, & F_2=3 \ \textit{kHz}, & F_3=6 \ \textit{kHz} \longrightarrow F_{max}=6 \ \textit{kHz} \\ & F_s>2F_{max}=12 \ \textit{kHz} \\ & F_N=12 \ \textit{kHz} \end{array}$$

• Assume $F_s = 5000$ samples/s. Signal obtained after sampling

Folding frequency =
$$\frac{F_s}{2}$$
 = 2.5 kHz
 $x(n) = x_a(nT) = x_a\left(\frac{n}{F_s}\right) = 3\cos 2\pi(\frac{1}{5})n + 5\sin 2\pi(\frac{3}{5})n + 10\cos 2\pi(\frac{6}{5})n = 3\cos 2\pi(\frac{1}{5})n + 5\sin 2\pi(1-\frac{2}{5})n + 10\cos 2\pi(1+\frac{1}{5})n = 3\cos 2\pi(\frac{1}{5})n + 5\sin 2\pi(-\frac{2}{5})n + 10\cos 2\pi(\frac{1}{5})n = 13\cos 2\pi(\frac{1}{5})n - 5\sin 2\pi(\frac{2}{5})n$

Example (continued)

• Second solution:

Aliases of F_0: $F_k = F_0 + kF_s \longrightarrow F_0 = F_k - kF_s$ such that $-F_s/2 \le F_0 \le F_s/2$

$$F_1 \text{ is less than } F_s/2$$

$$F'_2 = F_2 - F_s = -2 \text{ kHz}$$

$$F'_3 = F_3 - F_s = 1 \text{ kHz}$$

$$f = \frac{F}{F_s} \longrightarrow f_1 = \frac{1}{5}, f_2 = -\frac{2}{5}, f_3 = \frac{1}{5}$$

 Analog signal y_a(t) reconstructed from samples using ideal interpolation
 Only frequency components at 1 kHz and 2 kHz are present in sampled signal

$$y_{a}(t) = 13 \cos 2000 \pi t - 5 \sin 4000 \pi t$$

This distortion was caused by aliasing effect due to low F_s used

- Quantization
 - Process of converting a discrete-time continuous-amplitude signal into a digital signal

 $x_q(n) = Q[x(n)] =$ sequence of quantized samples

- Each sample value is expressed as a finite number of digits
- Error introduced is called quantization error or quantization noise

$$e_q(n) = x_q(n) - x(n)$$

Example

• Consider discrete-time signal

$$\mathbf{x}(n) = \begin{cases} 0.9^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

obtained by sampling $x_a(t) = 0.9^t$, $t \ge 0$ with $F_s = 1$ Hz

Example (continued)

Following table shows values of first 10 samples of x(n)
Description of sample value x(n) requires n significant digits

Example (continued)

	<i>x</i> (<i>n</i>)	$x_q(n)$	$x_q(n)$	$e_q(n) = x_q(n) - x(n)$
п	Discrete-time signal	(Truncation)	(Rounding)	(Rounding)
0	1	1.0	1.0	0.0
1	0.9	0.9	0.9	0.0
2	0.81	0.8	0.8	-0.01
3	0.729	0.7	0.7	-0.029
4	0.6561	0.6	0.7	0.0439
5	0.59049	0.5	0.6	0.00951
6	0.531441	0.5	0.5	-0.031441
7	0.4782969	0.4	0.5	0.0217031
8	0.43046721	0.4	0.4	-0.03046721
9	0.387420489	0.3	0.4	0.012579511

• Assume using one significant digit. To eliminate excess digits

- do truncation
- or do rounding
- Rounding process is illustrated in next figure

38 / 45

• Range of quantization error $e_q(n)$ in rounding

$$-\frac{\Delta}{2} \leq e_q(n) \leq \frac{\Delta}{2}$$

$$\Delta = \frac{x_{max} - x_{min}}{L - 1}$$

- x_{min} and x_{max} = minimum and maximum value of x(n)
- L = number of quantization levels
- Dynamic range of signal $= x_{max} x_{min}$

• Quantization of analog signals always results in a loss of information

Quantization of Sinusoidal Signals

• Sampling and quantization of $x_a(t) = A \cos \Omega_0 t$

Quantization of Sinusoidal Signals

- If *F_s* satisfies sampling theorem, quantization is the only error in A/D process
 - Thus we can evaluate quantization error by quantizing $x_a(t)$ instead of $x(n) = x_a(nT)$
- $x_a(t)$ is almost linear between quantization levels
 - Quantization error $= e_q(t) = x_a(t) x_q(t)$

• τ denotes time that $x_a(t)$ stays within quantization levels

Quantization of Sinusoidal Signals

Mean-square error power

$$P_q = rac{1}{2 au} \int_{- au}^{ au} e_q^2(t) \, dt = rac{1}{ au} \int_0^{ au} e_q^2(t) \, dt$$

since $e_q(t) = (\Delta/2\tau)t, \ -\tau \le t \le \tau$

$$P_q = rac{1}{ au} \int_0^ au \left(rac{\Delta}{2 au}
ight)^2 t^2 \, dt = rac{\Delta^2}{12}$$

• If quantizer has b bits of accuracy and covers range 2A

$$\Delta = \frac{2A}{2^b} \longrightarrow P_q = \frac{A^2/3}{2^{2b}}$$

• Average power of $x_a(t)$

$$P_{x} = \frac{1}{T_{p}} \int_{0}^{T_{p}} (A \cos \Omega_{0} t)^{2} dt = \frac{A^{2}}{2}$$

- Quality of output of A/D converter is measured by signal-to-quantization noise ratio (SQNR)
 - Provides ratio of signal power to noise power

$$SQNR = \frac{P_x}{P_q} = \frac{3}{2}.2^{2b}$$

 $SQNR(dB) = 10 \log_{10} SQNR = 1.76 + 6.02b$

Coding of Quantized Samples

- Coding process assigns a unique binary number to each quantization level
 - L levels need at least L different binary numbers

b bits $\longrightarrow 2^{b}$ different binary numbers $\longrightarrow 2^{b} \ge L \longrightarrow b \ge \log_{2} L$

References

JOHN G. PROAKIS, DIMITRIS G. MANOLAKIS, Digital Signal Processing: Principles, Algorithms, and Applications, PRENTICE HALL, 2006.