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Embedded Systems Laboratory
Faculty of Informatics, Masaryk University

Brno, Czech Republic

amiri@mail.muni.cz

prenosil@fi.muni.cz

March, 2012



Discrete-Time Signals

A discrete-time signal x(n) (≡ xa(nT )) is a function of an independent
variable that is an integer

We assume that x(n) is defined for every n for −∞ < n <∞
x(n) is not defined for non-integer values of n
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Some Elementary Discrete-Time Signals

Unit sample sequence or unit impulse

δ(n) ≡
{

1, for n = 0
0, for n 6= 0

Figure 1: Graphical representation of the unit sample signal.
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Some Elementary Discrete-Time Signals

Unit step signal

u(n) ≡
{

1, for n ≥ 0
0, for n < 0

Figure 2: Graphical representation of the unit step signal.
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Some Elementary Discrete-Time Signals

Unit ramp signal

ur (n) ≡
{

n, for n ≥ 0
0, for n < 0

Figure 3: Graphical representation of the unit ramp signal.
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Some Elementary Discrete-Time Signals

Exponential signal

x(n) = an for all n

If a is real, x(n) is a real signal

Figure 4: Graphical representation of exponential signals.
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Some Elementary Discrete-Time Signals

Exponential signal

x(n) = an for all n

If a is complex

a ≡ re jθ

x(n) = rne jθn = rn(cos θn + j sin θn)

x(n) can be represented by separately plotting real part and imaginary
part as functions of n

xR(n) ≡ rn cos θn
xl(n) ≡ rn sin θn

Alternatively, x(n) can be represented by separately plotting amplitude
and phase functions

|x(n)| = A(n) ≡ rn

∠x(n) = φ(n) ≡ θn
By convention, φ(n) is plotted over −π < θ ≤ π or 0 ≤ θ < 2π
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Some Elementary Discrete-Time Signals

Figure 5: Graph of the real (xR(n) ≡ rn cos θn) and imaginary (xl(n) ≡ rn sin θn)
components of a complex-valued exponential signal for r = 0.9 and θ = π/10.
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Some Elementary Discrete-Time Signals

Figure 6: Graph of amplitude and phase function of a complex-valued
exponential signal: (a) graph of A(n) = rn, r = 0.9; (b) graph of
φ(n) = (π/10)n, modulo 2π plotted in the range (−π, π].
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Classification of Discrete-Time Signals

Energy signals and power signals
Energy E of a signal x(n)

E ≡
∞∑

n=−∞
|x(n)|2

If E is finite, x(n) is called an energy signal
Many signals with infinite energy have a finite average power
Average power of x(n)

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2

If P is finite (and nonzero), x(n) is called a power signal
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Classification of Discrete-Time Signals

Example

Power and energy of unit step sequence

P = lim
N→∞

1

2N + 1

N∑
n=0

u2(n) = lim
N→∞

N + 1

2N + 1
= lim

N→∞

1 + 1/N

2 + 1/N
=

1

2

It is a power signal (its energy is infinite)

Example

Power and energy of complex exponential sequence x(n) = Ae jω0n

P = lim
N→∞

1

2N + 1

N∑
n=−N

A2 = lim
N→∞

(2N + 1)A2

2N + 1
= A2

It is a power signal
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Classification of Discrete-Time Signals

Periodic signals and aperiodic signals
x(n) is periodic with period N (N > 0) if and only if

x(n + N) = x(n) for all n

Smallest value of N is called fundamental period
If there is no value of N that satisfies above equation, signal is called
aperiodic
Remember x(n) = A sin 2πf0n is periodic if f0 = k

N = rational number
Energy of a periodic signal over a single period is finite if it takes on
finite values

It is infinite for −∞ ≤ n ≤ ∞
Average power of a periodic signal is finite

Equal to average power over a single period

If x(n) is periodic with fundamental period N and takes on finite values

P =
1

N

N−1∑
n=0

|x(n)|2

Periodic signals are power signals
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Classification of Discrete-Time Signals

Symmetric (even) and antisymmetric (odd) signals
Real-valued signal x(n) is symmetric (even) if

x(−n) = x(n)

x(n) is antisymmetric (odd) if

x(−n) = −x(n)

x(0) = 0

Any arbitrary signal can be expressed as sum of one even and one odd
signal components

xe(n) =
1

2
[x(n) + x(−n)]

xo(n) =
1

2
[x(n)− x(−n)]

x(n) = xe(n) + xo(n)
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Classification of Discrete-Time Signals

Figure 7: Example of even (a) and odd (b) signals.
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Simple Manipulations of Discrete-Time Signals

Transformation of independent variable (time)
x(n) is shifted in time by replacing n by n − k

If k > 0 −→ delay of signal by k units of time
If k < 0 −→ advance of signal by |k| units in time

x(n) is folded or reflected about time origin n = 0 by replacing n by −n
Operations of folding (FD) and time delaying (TD) (or advancing) a
signal are not commutative

TDk [x(n)] = x(n − k), k > 0
FD[x(n)] = x(−n)

TDk{FD[x(n)]} = TDk [x(−n)] = x(−n + k)
FD{TDk [x(n)]} = FD[x(n − k)] = x(−n − k)

x(n) is time scaled or down-sampled by replacing n by µn where µ is
an integer

If y(n) = x(2n)

we know x(n) = xa(nT )
y(n) = x(2n) = xa(2Tn)

Hence this time-scaling operation is equivalent to changing sampling
rate from 1/T to 1/2T −→ a down-sampling operation
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Simple Manipulations of Discrete-Time Signals

Figure 8: Graphical representation of a signal, and its delayed and advanced
versions. 16 / 49



Simple Manipulations of Discrete-Time Signals

Figure 9: Graphical illustration of the folding and shifting operations.
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Simple Manipulations of Discrete-Time Signals

Figure 10: Graphical illustration of down-sampling operation.
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Simple Manipulations of Discrete-Time Signals

Amplitude modifications

Amplitude scaling by a constant A

y(n) = Ax(n), −∞ < n <∞
Sum of two signals

y(n) = x1(n) + x2(n), −∞ < n <∞
Product of two signals

y(n) = x1(n)x2(n), −∞ < n <∞
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Discrete-Time Systems

Discrete-time system

A device or algorithm that operates on a discrete-time signal called
input or excitation, according to some well-defined rule, to produce
another discrete-time signal called output or response of system
Input signal x(n) is transformed by system into output signal y(n)

y(n) ≡ τ [x(n)]

Figure 11: Block diagram representation of a discrete-time system.
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Input-Output Description of Systems

Input-output description of a system

Consists of a mathematical expression or a rule defining relation between
input and output signals
The only way to interact with system is by using its input and output
terminals
System is assumed to be a black box
Exact internal structure of system is either unknown or ignored

21 / 49



Input-Output Description of Systems

Example

Response of following systems to the input signal

x(n) =

{
|n|, −3 ≤ n ≤ 3
0, otherwise

x(n) = {. . . , 0, 3, 2, 1, 0
↑
, 1, 2, 3, 0, . . .}

1 y(n) = x(n) (identity system)
y(n) = x(n) = {. . . , 0, 3, 2, 1, 0

↑
, 1, 2, 3, 0, . . .}

2 y(n) = x(n − 1) (unit delay system)
y(n) = {. . . , 0, 3, 2, 1

↑
, 0, 1, 2, 3, 0, . . .}

3 y(n) = x(n + 1) (unit advance system)
y(n) = {. . . , 0, 3, 2, 1, 0, 1

↑
, 2, 3, 0, . . .}
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Input-Output Description of Systems

Example (continued)

4 y(n) = 1
3 [x(n + 1) + x(n) + x(n − 1)] (moving average filter)

y(n) = {. . . , 0, 1, 53 , 2, 1,
2
3
↑
, 1, 2, 53 , 1, 0, . . .}

E.g., y(0) = 1
3 [x(−1) + x(0) + x(1)] = 1

3 [1 + 0 + 1] = 2
3

5 y(n) = median{x(n + 1), x(n), x(n − 1)} (median filter)
y(n) = {. . . , 0, 2, 2, 1, 1

↑
, 1, 2, 2, 0, . . .}

6 y(n) =
∑n

k=−∞ x(k) = x(n) + x(n− 1) + x(n− 2) + · · · (accumulator)
y(n) = {. . . , 0, 3, 5, 6, 6

↑
, 7, 9, 12, . . .}
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Input-Output Description of Systems

For some systems, output at n = n0 depends not only on input at
n = n0, but on input values before and after n = n0

E.g., for accumulator

y(n) =
n∑

k=−∞
x(k) =

n−1∑
k=−∞

x(k) + x(n) = y(n − 1) + x(n)

Given input signal x(n) for n ≥ n0, output y(n) for n ≥ n0
y(n0) = y(n0 − 1) + x(n0)

y(n0 + 1) = y(n0) + x(n0 + 1)

and so on
The additional information required to determine y(n) for n ≥ n0 is
initial condition y(n0 − 1)
With no excitation prior to n0, initial condition is y(n0 − 1) = 0

System is initially relaxed

Every system is relaxed at n = −∞
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Input-Output Description of Systems

Example

Following accumulator is excited by sequence x(n) = nu(n)

y(n) =
n∑

k=−∞
x(k)

Output of system

y(n) =
−1∑

k=−∞
x(k) +

n∑
k=0

x(k) = y(−1) +
n∑

k=0

x(k) = y(−1) +
n(n + 1)

2

If system is initially relaxed −→ y(−1) = 0

y(n) = n(n+1)
2 , n ≥ 0

If initial condition is y(−1) = 1

y(n) = 1 + n(n+1)
2 = n2+n+2

2 , n ≥ 0
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Block Diagram Representation of Discrete-Time Systems

Symbols used to denote different basic building blocks
An adder

This operation is memoryless (not necessary to store sequences)

A constant multiplier (memoryless operation)

A signal multiplier (memoryless operation)
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Block Diagram Representation of Discrete-Time Systems

Symbols used to denote different basic building blocks
A unit delay element (requires memory)

A unit advance element (requires memory)

Example

Using basic building blocks, sketch block diagram of

y(n) = 1
4y(n − 1) + 1

2x(n) + 1
2x(n − 1)

Shown in Fig. 12 (a)

A simple rearrangement

y(n) = 1
4y(n − 1) + 1

2 [x(n) + x(n − 1)]

Shown in Fig. 12 (b)
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Block Diagram Representation of Discrete-Time Systems

Example (continued)

Figure 12: Block diagram realizations of the system
y(n) = 0.25y(n − 1) + 0.5x(n) + 0.5x(n − 1).
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Classification of Discrete-Time Systems: Static vs Dynamic

Static or memoryless system

Output at any instant n depends at most on input sample at same time,
but not on past or future samples of input

Dynamic
A system which is not static

Has memory

If output at time n is completely determined by input samples from
n − N to n (N ≥ 0), system is said to have memory of duration N
N = 0 −→ system is static
0 < N <∞ −→ system has finite memory
N =∞ −→ system has infinite memory
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Classification of Discrete-Time Systems: Static vs Dynamic

Example

Following systems are static

y(n) = ax(n)
y(n) = nx(n) + bx3(n)

Following systems are dynamic

y(n) = x(n) + 3x(n − 1)

This system has finite memory

y(n) =
∑n

k=0 x(n − k)

This system has finite memory

y(n) =
∑∞

k=0 x(n − k)

This system has infinite memory
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Classification of D-T Systems:Time-Invariant,Time-Variant

A relaxed system τ is time invariant or shift invariant if and only if

x(n)
τ→ y(n)

implies that

x(n − k)
τ→ y(n − k)

for every input signal x(n) and every time shift k

To determine if any given system is time invariant
1 Excite system with an arbitrary sequence x(n), which produces y(n)
2 Delay input sequence by some amount k and recompute output

y(n, k) = τ [x(n − k)]

3 If y(n, k) = y(n − k), for all possible k , system is time invariant. If not,
even for one k , system is time variant
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Classification of D-T Systems:Time-Invariant,Time-Variant

Example

Is this system time invariant or time variant?



1z

)1()()(  nxnxny)(nx


Input-output equation of system

y(n) = τ [x(n)] = x(n)− x(n − 1)

Delaying input by k units, it is clear from block diagram that

y(n, k) = x(n − k)− x(n − k − 1)

On the other hand, delaying y(n) by k units

y(n − k) = x(n − k)− x(n − k − 1)

Since y(n, k) = y(n − k), system is time invariant
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Classification of D-T Systems:Time-Invariant,Time-Variant

Example

Is this system time invariant or time variant?
)(nx


)()( nnxny 

n

Input-output equation of system

y(n) = τ [x(n)] = nx(n)

Response of this system to x(n − k) is

y(n, k) = nx(n − k)

If we delay y(n) by k units

y(n − k) = (n − k)x(n − k) = nx(n − k)− kx(n − k)

Since y(n, k) 6= y(n − k), system is time variant
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Classification of D-T Systems:Time-Invariant,Time-Variant

Example

Is this system time invariant or time variant?
)(nx )()( nxny 



Input-output equation of system

y(n) = τ [x(n)] = x(−n)

Response of this system to x(n − k) is

y(n, k) = τ [x(n − k)] = x(−n − k)

If we delay y(n) by k units

y(n − k) = x(−n + k)

Since y(n, k) 6= y(n − k), system is time variant
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Classification of D-T Systems:Time-Invariant,Time-Variant

Example

Is this system time invariant or time variant?
)(nx  nnxny 0cos)()( 

n0cos

Input-output equation of system

y(n) = x(n) cosω0n

Response of this system to x(n − k) is

y(n, k) = x(n − k) cosω0n

If we delay y(n) by k units

y(n − k) = x(n − k) cosω0(n − k)

Since y(n, k) 6= y(n − k), system is time variant
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Classification of D-Time Systems: Linear vs Nonlinear

A system is linear if and only if

τ [a1x1(n) + a2x2(n)] = a1τ [x1(n)] + a2τ [x2(n)]

for any arbitrary input sequences x1(n) and x2(n), and any arbitrary
constants a1 and a2
A linear system satisfies superposition principle

This principle requires that response of system to a weighted sum of
signals be equal to the corresponding weighted sum of responses of
system to each of individual input signals
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Classification of D-Time Systems: Linear vs Nonlinear

Figure 13: Graphical representation of the superposition principle. τ is linear if
and only if y(n) = y ′(n).
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Classification of D-Time Systems: Linear vs Nonlinear

Linearity condition (superposition principle)

τ [a1x1(n) + a2x2(n)] = a1τ [x1(n)] + a2τ [x2(n)]

Suppose a2 = 0

τ [a1x1(n)] = a1τ [x1(n)] = a1y1(n)
This is multiplicative or scaling property of a linear system

If a1 = 0, then y(n) = 0 −→ a relaxed, linear system with zero input
produces a zero output

Suppose a1 = a2 = 1

τ [x1(n) + x2(n)] = τ [x1(n)] + τ [x2(n)] = y1(n) + y2(n)

This is additivity property of a linear system
Extension of linearity condition

x(n) =
M−1∑
k=1

akxk(n)
τ−→ y(n) =

M−1∑
k=1

akyk(n)

where yk(n) = τ [xk(n)], k = 1, 2, . . . ,M − 1
If a relaxed system does not satisfy superposition principle, it is
nonlinear
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Classification of D-Time Systems: Linear vs Nonlinear

Example

Determine if y(n) = nx(n) is linear or nonlinear

For two inputs x1(n) and x2(n), outputs are

y1(n) = nx1(n)
y2(n) = nx2(n)

A linear combination of two input sequences results in output

y3(n) = τ [a1x1(n) + a2x2(n)] = n[a1x1(n) + a2x2(n)] =
a1nx1(n) + a2nx2(n)

A linear combination of two output sequences results in output

a1y1(n) + a2y2(n) = a1nx1(n) + a2nx2(n)

Since right-hand sides of two above equations are identical, system is
linear
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Classification of D-Time Systems: Linear vs Nonlinear

Example

Determine if y(n) = x(n2) is linear or nonlinear

Response of system to two separate inputs x1(n) and x2(n)

y1(n) = x1(n2)
y2(n) = x2(n2)

Output of system to a linear combination of x1(n) and x2(n)

y3(n) = τ [a1x1(n) + a2x2(n)] = a1x1(n2) + a2x2(n2)

A linear combination of two output sequences

a1y1(n) + a2y2(n) = a1x1(n2) + a2x2(n2)

Since right-hand sides of two above equations are identical, system is
linear
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Classification of D-Time Systems: Linear vs Nonlinear

Example

Determine if y(n) = x2(n) is linear or nonlinear

Response of system to two separate inputs

y1(n) = x21 (n)
y2(n) = x22 (n)

Response of system to a linear combination of these two inputs

y3(n) = τ [a1x1(n) + a2x2(n)] = [a1x1(n) + a2x2(n)]2 =
a21x

2
1 (n) + 2a1a2x1(n)x2(n) + a22x

2
2 (n)

If system is linear, it will produce a linear combination of two outputs

a1y1(n) + a2y2(n) = a1x
2
1 (n) + a2x

2
2 (n)

Since right-hand sides of two above equations are not identical, system
is nonlinear
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Classification of D-Time Systems: Linear vs Nonlinear

Example

Determine if y(n) = Ax(n) + B is linear or nonlinear

For two inputs x1(n) and x2(n), outputs are

y1(n) = Ax1(n) + B
y2(n) = Ax2(n) + B

A linear combination of x1(n) and x2(n) results in output

y3(n) = τ [a1x1(n) + a2x2(n)] = A[a1x1(n) + a2x2(n)] + B =
a1Ax1(n) + a2Ax2(n) + B

If system were linear, its output would be

a1y1(n) + a2y2(n) = a1Ax1(n) + a1B + a2Ax2(n) + a2B

The two results are different and system fails to satisfy linearity test.
Reason is not that system is nonlinear but with B 6= 0 system is not
relaxed.

42 / 49



Classification of D-Time Systems: Linear vs Nonlinear

Example

Determine if y(n) = ex(n) is linear or nonlinear

This system is relaxed
If x(n) = 0 −→ y(n) = 1
Hence system is nonlinear
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Classification of D-Time Systems: Causal vs Noncausal

A system is causal if its output at any time depends only on present
and past inputs but not on future inputs

y(n) = F [x(n), x(n − 1), x(n − 2), . . .]

If a system does not satisfy this definition, it is noncausal

Example

These systems are causal

y(n) = x(n)− x(n − 1)
y(n) =

∑n
k=−∞ x(k)

y(n) = ax(n)

These systems are noncausal

y(n) = x(n) + 3x(n + 4)
y(n) = x(n2)
y(n) = x(2n)

y(n) = x(−n)
e.g ., n=−1−−−−−−−→ y(−1) = x(1)
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Classification of D-Time Systems: Stable vs Unstable

A relaxed system is bounded input-bounded output (BIBO) stable if
and only if every bounded input produces a bounded output

x(n) and y(n) are bounded if there exist some finite numbers, Mx and
My , such that for all n

|x(n)| ≤ Mx <∞, |y(n)| ≤ My <∞
If for bounded x(n), output is unbounded (infinite), system is unstable

Example

Consider nonlinear system

y(n) = y2(n − 1) + x(n)

We select bounded input

x(n) = Cδ(n)

where C is a constant. Assume y(−1) = 0. Output sequence is

y(0) = C , y(1) = C 2, y(2) = C 4, . . . , y(n) = C 2n

Output is unbounded when 1 < |C | <∞
System is BIBO unstable
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Interconnection of Discrete-Time Systems

Systems can be interconnected in two ways to form larger systems
Cascade (series)
Parallel

)(nx )(ny
1

)(1 ny
2

c

)(nx
1

)(1 ny

p



2
)(2 ny

)(3 ny

Figure 14: Cascade and parallel interconnections of systems.
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Interconnection of Discrete-Time Systems

In cascade interconnection

Output of first system is

y1(n) = τ1[x(n)]

Output of second system

y(n) = τ2[y1(n)] = τ2[τ1[x(n)]]

Combining systems τ1 and τ2 into a single system τc
τc ≡ τ2τ1 −→ y(n) = τc [x(n)]

For arbitrary systems τ1 and τ2
τ2τ1 6= τ1τ2

If systems τ1 and τ2 are linear and time invariant, then
1 τc is time invariant

x(n − k)
τ1−→ y1(n − k)

and

y1(n − k)
τ2−→ y(n − k)

thus

x(n − k)
τc=τ2τ1−−−−−→ y(n − k)

2 τ2τ1 = τ1τ2
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Interconnection of Discrete-Time Systems

Output of parallel interconnection is

y3(n) = y1(n)+y2(n) = τ1[x(n)]+τ2[x(n)] = (τ1+τ2)[x(n)] = τp[x(n)]

where τp = τ1 + τ2
Parallel and cascade interconnections can be used to construct larger,
more complex systems

Conversely, a larger system can be broken down into smaller subsystems
for purposes of analysis and implementation
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