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Discrete-Time Signals

o A discrete-time signal x(n) (= x,(nT)) is a function of an independent
variable that is an integer

o We assume that x(n) is defined for every n for —co < n < oo
o x(n) is not defined for non-integer values of n
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Some Elementary Discrete-Time Signals

o Unit sample sequence or unit impulse
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Figure 1: Graphical representation of the unit sample signal.
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Some Elementary Discrete-Time Signals

o Unit step signal

(n) = 1, forn>0
= 0, forn<Q
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Figure 2: Graphical representation of the unit step signal.
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Some Elementary Discrete-Time Signals

o Unit ramp signal

(n) = n, forn>0
urtn) = 0, forn<0
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Figure 3: Graphical representation of the unit ramp signal.
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Some Elementary Discrete-Time Signals

o Exponential signal
x(n) = a" forall n

o If ais real, x(n) is a real signal

”“ 0<a<1 a>1 x(n) [”H
n n

Figure 4: Graphical representation of exponential signals.
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Some Elementary Discrete-Time Signals

o Exponential signal
x(n) =a" forall n

o If ais complex
a=rel
x(n) = r"ef®" = r"(cosOn + jsinOn)
o x(n) can be represented by separately plotting real part and imaginary
part as functions of n
xg(n) = r"cosOn
xi(n) = r"sinfn
o Alternatively, x(n) can be represented by separately plotting amplitude
and phase functions
Ix(n)] = A(n) = r"
Zx(n) = ¢(n) =6n
By convention, ¢(n) is plotted over —m < 6 < mor 0 <0 < 27
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Some Elementary Discrete-Time Signals
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Figure 5: Graph of the real (xg(n) = r" cosn) and imaginary (x;(n) = r"sinn)
components of a complex-valued exponential signal for r = 0.9 and 6 = 7/10.
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Some Elementary Discrete-Time Signals
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(a) Graph of A(n) =r",r=0.
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(b) Graph of ¢(n) = 110n , modulo 2 plotted in the range &, 7)

Figure 6: Graph of amplitude and phase function of a complex-valued
exponential signal: (a) graph of A(n) = r",r = 0.9; (b) graph of

¢(n) = (w/10)n, modulo 27 plotted in the range (—, 7].
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Classification of Discrete-Time Signals

o Energy signals and power signals
o Energy E of a signal x(n)

E= ) Ix(nP

n=—oo

If E is finite, x(n) is called an energy signal
Many signals with infinite energy have a finite average power
Average power of x(n)

_ 2
p=Jim 2N+1 Z ()]

If P is finite (and nonzero), x(n) is called a power signal
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Classification of Discrete-Time Signals

@ Power and energy of unit step sequence

N+l o 1+YN 1

N
P= lim ——) *(n)= lim -~—— = = =C
Ni"oozNJrlngO”(") Nos 2N +1  Nos2+1/N - 2

It is a power signal (its energy is infinite)

@ Power and energy of complex exponential sequence x(n) = Ae/*o”

N
. 1 2N+ 1)A2
P=lim - S A= |im LTI g2
N 2N + 1 nz NS 2N+ 1

It is a power signal
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Classification of Discrete-Time Signals

o Periodic signals and aperiodic signals
o x(n) is periodic with period N (N > 0) if and only if
x(n+ N) = x(n) for all n
o Smallest value of N is called fundamental period
o If there is no value of N that satisfies above equation, signal is called
aperiodic
o Remember x(n) = Asin2rfyn is periodic if fy = & = rational number

o Energy of a periodic signal over a single period is finite if it takes on
finite values

o It is infinite for —co < n < o0
o Average power of a periodic signal is finite
o Equal to average power over a single period
o If x(n) is periodic with fundamental period N and takes on finite values

=
—

P = [x(n)[?

==

3
I
o

o Periodic signals are power signals
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Classification of Discrete-Time Signals

e Symmetric (even) and antisymmetric (odd) signals
o Real-valued signal x(n) is symmetric (even) if

x(=n) = x(n)
o x(n) is antisymmetric (odd) if
x(=n) = —x(n)

o x(0)=0

o Any arbitrary signal can be expressed as sum of one even and one odd
signal components

xe(n) = 3 [x(n) + x(~n)]

xo(n) = 3[x(m) — x(~n)]

x(n) = xe(n) + xo(n)
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Classification of Discrete-Time Signals

x(n)

(b)

Figure 7: Example of even (a) and odd (b) signals.
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Simple Manipulations of Discrete-Time Signals

o Transformation of independent variable (time)
o x(n) is shifted in time by replacing n by n — k
o If k > 0 — delay of signal by k units of time
o If k < 0 — advance of signal by |k| units in time
o x(n) is folded or reflected about time origin n = 0 by replacing n by —n
o Operations of folding (FD) and time delaying (TD) (or advancing) a
signal are not commutative
TDi[x(n)] =x(n—k), k>0
FD[x(n)] = x(—n)
TD{FD[x(n)]} = TD[x(—n)] = x(—n+ k)
FD{TDk[x(n)]} = FD[x(n — k)] = x(—n — k)
o x(n) is time scaled or down-sampled by replacing n by pun where p is
an integer
o If y(n) = x(2n)
we know x(n) = xa(nT)
y(n) = x(2n) = xa(2Tn)
Hence this time-scaling operation is equivalent to changing sampling
rate from 1/T to 1/2T — a down-sampling operation
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Simple Manipulations of Discrete-Time Signals
alll[]
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Figure 8: Graphical representation of a signal, and its delayed and advanced
versions. 16/49



Simple Manipulations of Discrete-Time Signals
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Figure 9: Graphical illustration of the folding and shifting operations.
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Simple Manipulations of Discrete-Time Signals
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Figure 10: Graphical illustration of down-sampling operation.
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Simple Manipulations of Discrete-Time Signals

o Amplitude modifications
o Amplitude scaling by a constant A
y(n) = Ax(n), —oco<n< oo
o Sum of two signals
y(n) = x1(n) + x(n), —oo < n< oo
o Product of two signals
y(n) = x1(n)xa2(n), —oco<n< oo
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Discrete-Time Systems

@ Discrete-time system

o A device or algorithm that operates on a discrete-time signal called
input or excitation, according to some well-defined rule, to produce
another discrete-time signal called output or response of system

o Input signal x(n) is transformed by system into output signal y(n)

y(n) = 7x(n)]

RN 1MRIRTE

x(m) Discrete-time y(m)
. System R
Input signal Output signal
or excitation or response

Figure 11: Block diagram representation of a discrete-time system.
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Input-Output Description of Systems

@ Input-output description of a system
o Consists of a mathematical expression or a rule defining relation between
input and output signals
e The only way to interact with system is by using its input and output
terminals
o System is assumed to be a black box
o Exact internal structure of system is either unknown or ignored
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Input-Output Description of Systems

@ Response of following systems to the input signal

Al = |n| —-3<n<3
0, otherwise

X(n) :{"'v07372717?7172a3505---}

@ y(n) = x(n) (identity system)
y(m) =x(n) = {...,0,3,2,1,0,1,2.3,0,.. }

Q@ y(n) = x(n - 1) (unit delay system)
y(n)={.. 32,1,01230 .}

® y(n)=x(n+1) (unlt advance system)
y(m={..0,32101230,..]
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Input-Output Description of Systems

Q y(n)= [x(n+ 1) + x(n) + x(n — 1)] (moving average filter)
y(n) { O 1 2’2’1’%3132’%a1707 }
T

E.g. y(0) = 3[x(—1) + x(0) + x(1)] = 3[1+ 0+ 1] = 2
1 )

@ y(n) = median{x(n+ 1), x(n),x(n— 1)} (median filter
y(m={..0,22111220,..]
@ y(n) = Z oox(k =x(n)+x(n—1)4+x(n—2)+--- (accumulator)
y(n) ={.. 3,5»67?,7,9,12’---}
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Input-Output Description of Systems

o For some systems, output at n = ny depends not only on input at
n = ng, but on input values before and after n = ng

e E.g., for accumulator

n n—1
y(m) = " x(k)= Y x(k)+x(n) = y(n—1) + x(n)
k=—0oc0 k=—oc0

o Given input signal x(n) for n > ng, output y(n) for n > ng
y(no) = y(no — 1) + x(no)
y(no + 1) = y(no) + x(no + 1)

and so on
o The additional information required to determine y(n) for n > ng is
initial condition y(ny — 1)
With no excitation prior to ng, initial condition is y(ng — 1) =0

o System is initially relaxed

Every system is relaxed at n = —oo
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Input-Output Description of Systems

o Following accumulator is excited by sequence x(n) = nu(n)

n

y(n)= > x(k)
k=—00
@ Output of system
- ° z n(n+1)
y(n) = Y x(k)+>_ x(k) = y(=1)+>_ x(k) = y(-1)+ 5
k=—00 k=0 k=0

o If system is initially relaxed — y(—1) =0
y(n) =" n>0

e If initial condition is y(—1) =1

y(n) =1+ "(";1) = ”2+2"+2, n>0
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Block Diagram Representation of Discrete-Time Systems

@ Symbols used to denote different basic building blocks
o An adder

x(n)

y(n) =x,(n) + x5(n)

x5(n)

o This operation is memoryless (not necessary to store sequences)

o A constant multiplier (memoryless operation)

x(n) a y(n) = ax(n)

o A signal multiplier (memoryless operation)

x(n) m y(n) =x(n)xy(n)
>
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Block Diagram Representation of Discrete-Time Systems

@ Symbols used to denote different basic building blocks
o A unit delay element (requires memory)

x(n) 1 y(n)=x(n-1)
e

o A unit advance element (requires memory)

x(n) y(n)=x(n+1)
b4

@ Using basic building blocks, sketch block diagram of
y(n) =3y(n—1)+ 3x(n) + ix(n— 1)
e Shown in Fig. 12 (a)

@ A simple rearrangement
y(n) = 3y(n—1) + 3[x(n) +x(n - 1)]
e Shown in Fig. 12 (b)
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Block Diagram Representation of Discrete-Time Systems

Example (continued)

Black box
I :
X | " i
— + + X y(n)
: 0.5 N -1 '
025 L
(a)
e Blaekbox
: 77! i
x(n) : @ 0.5 @ : )
E 0.25 ! :
()
Figure 12: Block diagram realizations of the system
y(n) = 0.25y(n — 1) 4+ 0.5x(n) + 0.5x(n — 1).
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Classification of Discrete-Time Systems: Static vs Dynamic

@ Static or memoryless system
o Output at any instant n depends at most on input sample at same time,
but not on past or future samples of input
o Dynamic
o A system which is not static
o Has memory

If output at time n is completely determined by input samples from
n— N to n (N > 0), system is said to have memory of duration N
N = 0 — system is static

0 < N < oo —> system has finite memory

o N = 0o — system has infinite memory
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Classification of Discrete-Time Systems: Static vs Dynamic

@ Following systems are static
y(n) = ax(n)
y(n) = nx(n) + bx*(n)
o Following systems are dynamic
y(n) = x(n) +3x(n—1)
This system has finite memory
y(n) =3 Zkox(n = k)
This system has finite memory
y(n) =320 x(n = k)
This system has infinite memory

30/49



Classification of D-T Systems:Time-Invariant, Time-Variant

o A relaxed system 7 is time invariant or shift invariant if and only if
x(n) = y(n)
implies that
x(n—k) = y(n— k)
for every input signal x(n) and every time shift k

o To determine if any given system is time invariant

@ Excite system with an arbitrary sequence x(n), which produces y(n)
@ Delay input sequence by some amount k and recompute output

y(n k) = 7x(n = k)]
O If y(n, k) = y(n— k), for all possible k, system is time invariant. If not,
even for one k, system is time variant
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Classification of D-T Systems:Time-Invariant, Time-Variant

@ Is this system time invariant or time variant?

x(n) f_DY(n)=X(n);X(n—1)

Z—l

@ Input-output equation of system
y(n) = 7x(n)] = x(n) = x(n - 1)
Delaying input by k units, it is clear from block diagram that
y(n, k) =x(n—k)—x(n—k—1)
On the other hand, delaying y(n) by k units
y(n—k)=x(n—k)—x(n—k—1)
Since y(n, k) = y(n — k), system is time invariant
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Classification of D-T Systems:Time-Invariant, Time-Variant

Example

@ Is this system time invariant or time variant?
x(n n) = nx(n
() oy ¥ =mx(n) |

n
@ Input-output equation of system
y(n) = 7lx(n)] = nx(n)
Response of this system to x(n — k) is
y(n, k) = nx(n — k)
If we delay y(n) by k units
y(n—k)=(n—k)x(n— k) = nx(n— k) — kx(n — k)

Since y(n, k) # y(n — k), system is time variant
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Classification of D-T Systems:Time-Invariant, Time-Variant

@ Is this system time invariant or time variant?

X [y =x(n)

@ Input-output equation of system
y(n) = 7[x(n)] = x(=n)
Response of this system to x(n — k) is
y(n, k) = 7[x(n — k)] = x(—=n — k)
If we delay y(n) by k units
y(n—k)=x(—n+ k)
Since y(n, k) # y(n — k), system is time variant
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Classification of D-T Systems:Time-Invariant, Time-Variant

Example
@ Is this system time invariant or time variant?
x(n) y(n) = x(n)cos w,n
X >
COS W,y n

@ Input-output equation of system
y(n) = x(n) coswon
Response of this system to x(n — k) is
y(n, k) = x(n — k) coswon
If we delay y(n) by k units
y(n— k) = x(n— k) coswy(n — k)
Since y(n, k) # y(n — k), system is time variant
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Classification of D-Time Systems: Linear vs Nonlinear

o A system is linear if and only if
Tlaix(n) + a2xe(n)] = a17[x1(n)] + a27[x2(n)]
for any arbitrary input sequences xi(n) and x2(n), and any arbitrary
constants a; and a»

@ A linear system satisfies superposition principle

o This principle requires that response of system to a weighted sum of
signals be equal to the corresponding weighted sum of responses of
system to each of individual input signals
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Classification of D-Time Systems: Linear vs Nonlinear

xi(n)
aj
y(n)
+ T
xp(n)
]
x1(n) a
_— T
y'(n)
xp(n) aj
_— | T —

Figure 13: Graphical representation of the superposition principle. 7 is linear if

and only if y(n) = y'(n).
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Classification of D-Time Systems: Linear vs Nonlinear

o Linearity condition (superposition principle)
Tlaxi(n) + axxa(n)] = armpa(n)] + a27[x2(n)]
o Suppose a, =0
Tlawxa(n)] = a17[xa(n)] = ary1(n)
This is multiplicative or scaling property of a linear system

o If a1 =0, then y(n) = 0 — a relaxed, linear system with zero input
produces a zero output

o Suppose a; = a, =1
Tla(n) +xe(n)] = 7l (n)] + 7Da(n)] = y1(n) + y2(n)
This is additivity property of a linear system
o Extension of linearity condition

M-1 M-1
x(n) = Z axi(n) = y(n) = Z aryk(n)
k=1 k=1

where yi(n) = 7[xc(n)], k=1,2,....M—1
o If a relaxed system does not satisfy superposition principle, it is
nonlinear
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Classification of D-Time Systems: Linear vs Nonlinear

@ Determine if y(n) = nx(n) is linear or nonlinear
@ For two inputs x;(n) and x2(n), outputs are
y1(n) = nxy(n)
y2(n) = nxa(n)
A linear combination of two input sequences results in output
y3(n) = T[aix1(n) + axx2(n)] = nlaix1(n) + axx2(n)] =
ainxi(n) + azxnxa(n)
A linear combination of two output sequences results in output

a1y1(n) + a2y2(n) = ainxi(n) + aznxz(n)

Since right-hand sides of two above equations are identical, system is

linear
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Classification of D-Time Systems: Linear vs Nonlinear

o Determine if y(n) = x(n?) is linear or nonlinear
@ Response of system to two separate inputs x1(n) and xz(n)
y1(n) = xi(n?)
y2(n) = xo(n?)
Output of system to a linear combination of x;(n) and x2(n)
y3(n) = [arx1(n) + axxa(n)] = arx1(n?) + axxa(n?)
A linear combination of two output sequences

a1y1(n) + azya(n) = arxa(n?) + axxo(n?)

Since right-hand sides of two above equations are identical, system is

linear
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Classification of D-Time Systems: Linear vs Nonlinear

o Determine if y(n) = x?(n) is linear or nonlinear
@ Response of system to two separate inputs
n(n) = X]z(n)
ya(n) = x3(n)
Response of system to a linear combination of these two inputs

y3(n) = 7’[31X1(n) + axxa(n)] = [arxa(n ) + axxo(n)]? =
a?x2(n) + 2araxxa(n)xa(n) + a3x3(n)

If system is linear, it will produce a linear combination of two outputs

ary1(n) + azy2(n) = a1xf(n) + a2x3(n)

Since right-hand sides of two above equations are not identical, system

is nonlinear

v
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Classification of D-Time Systems: Linear vs Nonlinear

o Determine if y(n) = Ax(n) + B is linear or nonlinear
@ For two inputs x;(n) and x2(n), outputs are
y1(n) = Axy(n) + B
ya2(n) = Axa(n) + B
A linear combination of x;(n) and x2(n) results in output
y3(n) = T[alxl(n) + 32X2(n)] = A[alxl(n) + 22X2(n)] + B =
alel(n) + azAX2(n) + B
If system were linear, its output would be
a1y1(n) + a2y2(n) = a1Axi(n) + a1B + axAxz(n) + a2 B
The two results are different and system fails to satisfy linearity test.

Reason is not that system is nonlinear but with B # 0 system is not
relaxed.
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Classification of D-Time Systems: Linear vs Nonlinear

o Determine if y(n) = eX(") is linear or nonlinear
@ This system is relaxed

If x(n)=0—y(n)=1

Hence system is nonlinear
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Classification of D-Time Systems: Causal vs Noncausal

@ A system is causal if its output at any time depends only on present
and past inputs but not on future inputs

y(n) = F[x(n),x(n—1),x(n—2),..]

o If a system does not satisfy this definition, it is noncausal

@ These systems are causal
y(n) = x(n) = x(n—1)
y(n) =32k oo x(K)
y(n) = ax(n)
@ These systems are noncausal
y(n) = x(n) +3x(n + 4)
y(n) = x(n?)
y(n) = x(2n)
it} = ) s 1) = )
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Classification of D-Time Systems: Stable vs Unstable

o A relaxed system is bounded input-bounded output (BIBO) stable if
and only if every bounded input produces a bounded output
o x(n) and y(n) are bounded if there exist some finite numbers, M, and
M, such that for all n
X(M) < My < o0, [y(m)] < M, < o
o If for bounded x(n), output is unbounded (infinite), system is unstable

@ Consider nonlinear system

y(n) = y?(n—1) + x(n)
We select bounded input

x(n) = Co(n)
where C is a constant. Assume y(—1) = 0. Output sequence is
y0)=C, y(1)=C y(2)=C* ..., y(n)=C"

Output is unbounded when 1 < |C] < o0
System is BIBO unstable
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Interconnection of Discrete-Time Systems

@ Systems can be interconnected in two ways to form larger systems

o Cascade (series)

o Parallel
X | [l [ v
T
IR0
x(n) y3(n)
. y.()
T

Figure 14: Cascade and parallel interconnections of systems.
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Interconnection of Discrete-Time Systems

@ In cascade interconnection
o Output of first system is
y1(n) = 7a[x(n)]
Output of second system
y(n) = r2[y1(n)] = m2[ri[x(n)]]
Combining systems 7, and 7 into a single system 7
Te = 1o — y(n) = 7[x(n)]
o For arbitrary systems 7 and
2T # TIT2
o If systems 71 and 7 are linear and time invariant, then
@ 7. is time invariant
x(n—k) 2 yi(n— k)
and
yi(n—k) = y(n— k)
thus
x(n— k) === y(n— k)

Q nn=nmn
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Interconnection of Discrete-Time Systems

@ Output of parallel interconnection is
y3(n) = y1(n)+y2(n) = mu[x(n)]+72[x(n)] = (71 +72)[x(n)] = 7p[x(n)]
where 7, = 71 + 7

o Parallel and cascade interconnections can be used to construct larger,
more complex systems

o Conversely, a larger system can be broken down into smaller subsystems
for purposes of analysis and implementation
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