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Techniques for the Analysis of Linear Systems

Methods for analyzing behavior or response of a linear system to a
given input

First method: through difference equations (will not be discussed)
Second method:

1 Decompose input signal into a weighted sum of elementary signals

x(n) =
∑
k

ckxk(n)

2 Using linearity property of system, responses of system to elementary
signals are added to obtain total response of system
Assuming system is relaxed

yk(n) ≡ τ [xk(n)]

y(n) = τ [x(n)] = τ

[∑
k

ckxk(n)

]
=
∑
k

ckτ [xk(n)] =
∑
k

ckyk(n)

Resolution of input signals into a weighted sum of unit sample
(impulse) sequences is mathematically convenient and general
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Resolution of a Discrete-Time Signal into Impulses

An arbitrary signal x(n) is to be resolved into a sum of unit sample
sequences

We select elementary signals xk(n) to be

xk(n) = δ(n − k)

If x(n) and δ(n − k) are multiplied, result is another sequence that is
zero everywhere except at n = k , where it is x(k)

x(n)δ(n − k) = x(k)δ(n − k)

Consequently

x(n) =
∞∑

k=−∞

x(k)δ(n − k)
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Resolution of a Discrete-Time Signal into Impulses

Figure 1: Multiplication of a signal x(n) with a shifted unit sample sequence.
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Resolution of a Discrete-Time Signal into Impulses

Example

Resolve following finite-duration sequence into a sum of weighted
impulse sequences

x(n) = {2, 4
↑
, 0, 3}

x(n) is nonzero for n = −1, 0, 2

x(n) = 2δ(n + 1) + 4δ(n) + 3δ(n − 2)
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The Convolution Sum

The response y(n, k) of any relaxed linear system to the input unit
sample sequence at n = k is denoted by h(n, k)

y(n, k) ≡ h(n, k) = τ [δ(n − k)]

If impulse at input is scaled by ck , response of system is

ckh(n, k) = x(k)h(n, k)

For input x(n)

x(n) =
∞∑

k=−∞
x(k)δ(n − k)

response of system is following superposition summation

y(n) = τ [x(n)] = τ

[ ∞∑
k=−∞

x(k)δ(n − k)

]
=

∞∑
k=−∞

x(k)τ [δ(n − k)]

=
∞∑

k=−∞
x(k)h(n, k)
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The Convolution Sum

If response of LTI (Linear Time-Invariant) system to δ(n) is denoted as

h(n) ≡ τ [δ(n)]

then

h(n − k) = τ [δ(n − k)]

Consequently, response of system is

y(n) =
∞∑

k=−∞
x(k)h(n − k) (1)

This formula is called a convolution sum
Input x(n) is convolved with impulse response h(n) to yield output y(n)
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The Convolution Sum

Suppose we wish to compute output of system at n = n0

y(n0) =
∞∑

k=−∞
x(k)h(n0 − k)

Process of computing convolution between x(k) and h(k):
1 Folding. Fold h(k) about k = 0 to obtain h(−k)
2 Shifting. Shift h(−k) by n0 to right (left) if n0 is positive (negative) to

obtain h(n0 − k)
3 Multiplication. υn0(k) ≡ x(k)h(n0 − k)
4 Summation. Sum all values of υn0(k) to obtain output at n = n0
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The Convolution Sum

Example

Impulse response of an LTI system is

h(n) = {1, 2
↑
, 1,−1}

Determine response of system to input signal

x(n) = {1
↑
, 2, 3, 1}

To compute output at n = 0

y(n) =
∞∑

k=−∞
x(k)h(n − k) −→ y(0) =

∞∑
k=−∞

x(k)h(−k)

First fold h(k) - no shifting is required - then do multiplication

υ0(k) ≡ x(k)h(−k)

Finally, sum of all terms in product sequence yields

y(0) =
∑∞

k=−∞ υ0(k) = 4
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The Convolution Sum

Figure 2: Graphical computation of convolution.
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The Convolution Sum

Example (continued)

Response of system at n = 1

y(n) =
∞∑

k=−∞
x(k)h(n − k) −→ y(1) =

∞∑
k=−∞

x(k)h(1− k)

h(1− k) is h(−k) shifted to right by one unit
Product sequence

υ1(k) = x(k)h(1− k)

Sum of all values in product sequence

y(1) =
∑∞

k=−∞ υ1(k) = 8

By shifting h(−k) farther to right, multiplying and summing, we obtain

y(2) = 8, y(3) = 3, y(4) = −2, y(5) = −1

For n > 5, y(n) = 0 because product sequences contain all zeros
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The Convolution Sum

Example (continued)

To evaluate y(n) for n = −1

y(n) =
∞∑

k=−∞
x(k)h(n − k) −→ y(−1) =

∞∑
k=−∞

x(k)h(−1− k)

h(−1− k) is h(−k) shifted one unit to left
Product sequence

υ−1(k) = x(k)h(−1− k)

Sum of all values in product sequence

y(−1) =
∑∞

k=−∞ υ−1(k) = 1

Further shifts of h(−1− k) to left result in all-zero product sequence

y(n) = 0 for n ≤ −2

Entire response of system for −∞ < n <∞
y(n) = {. . . , 0, 0, 1, 4

↑
, 8, 8, 3,−2,−1, 0, 0, . . .}
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The Convolution Sum

Convolution operation is commutative
It is irrelevant which of two sequences is folded and shifted

y(n) =
∞∑

k=−∞

x(k)h(n − k)
m=n−k−−−−−→ y(n) =

∞∑
m=−∞

x(n −m)h(m)

replace m by k−−−−−−−−−−−→ y(n) =
∞∑

k=−∞

x(n − k)h(k) (2)

Product sequences in (1) and (2) are not identical
If

υn(k) = x(k)h(n − k)
ωn(k) = x(n − k)h(k)

then
υn(k) = ωn(n − k)

therefore

y(n) =
∞∑

k=−∞

υn(k) =
∞∑

k=−∞

ωn(n − k)

Both sequences contain same values in a different arrangement
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The Convolution Sum

Example

Determine output y(n) of a relaxed LTI system with impulse response

h(n) = anu(n), |a| < 1

when input is a unit step sequence: x(n) = u(n)

We use

y(n) =
∞∑

k=−∞
x(n − k)h(k)
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The Convolution Sum

Figure 3: Graphical computation of convolution example.
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The Convolution Sum

Example (continued)

We obtain outputs

y(0) = 1

y(1) = 1 + a

y(2) = 1 + a + a2

for n > 0

y(n) = 1 + a + a2 + . . .+ an =
1− an+1

1− a

For n < 0, product sequences consist of all zeros. Hence

y(n) = 0, n < 0

Since |a| < 1

y(∞) = lim
n→∞

y(n) =
1

1− a
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Properties of Convolution - Interconnection of LTI Systems

An asterisk is used to denote convolution operation

y(n) = x(n) ∗ h(n) ≡
∞∑

k=−∞
x(k)h(n − k)

y(n) = h(n) ∗ x(n) ≡
∞∑

k=−∞
h(k)x(n − k)

Identity and shifting properties

δ(n) is identity element for convolution

y(n) = x(n) ∗ δ(n) = x(n)

Shifting δ(n) by k, convolution sequence is also shifted by k

x(n) ∗ δ(n − k) = y(n − k) = x(n − k)
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Properties of Convolution - Interconnection of LTI Systems

Commutative law

x(n) ∗ h(n) = h(n) ∗ x(n)

Figure 4: Interpretation of the commutative property of convolution.

Associative law

[x(n) ∗ h1(n)] ∗ h2(n) = x(n) ∗ [h1(n) ∗ h2(n)]

Figure 5: Implications of the associative (a) and the associative and
commutative (b) properties of convolution.
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Properties of Convolution - Interconnection of LTI Systems

Example

Determine impulse response for cascade of two LTI systems having
impulse responses

h1(n) = (12)nu(n) and h2(n) = (14)nu(n)

Convolve h1(n) and h2(n)

h(n) =
∑∞

k=−∞ h1(k)h2(n − k)

υn(k) = h1(k)h2(n − k) = (
1

2
)ku(k)(

1

4
)n−ku(n − k)

υn(k) is nonzero for k ≥ 0 and n − k ≥ 0 (or n ≥ k ≥ 0)

h(n) =
n∑

k=0

(
1

2
)k(

1

4
)n−k = (

1

4
)n

n∑
k=0

2k

= (
1

4
)n(2n+1 − 1) = (

1

2
)n[2− (

1

2
)n], n ≥ 0

For n < 0 −→ υn(k) = 0 for all k −→ h(n) = 0, n < 0
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Properties of Convolution - Interconnection of LTI Systems

Distributive law

x(n) ∗ [h1(n) + h2(n)] = x(n) ∗ h1(n) + x(n) ∗ h2(n)

Figure 6: Interpretation of the distributive property of convolution: two LTI
systems connected in parallel can be replaced by a single system with
h(n) = h1(n) + h2(n).
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Causal Linear Time-Invariant Systems

For an LTI system, causality can be translated to a condition on
impulse response

Consider an LTI system at time n = n0

y(n0) =
∞∑

k=−∞
h(k)x(n0−k) =

∞∑
k=0

h(k)x(n0−k)+
−1∑

k=−∞
h(k)x(n0−k)

First sum: present and past inputs (x(n) for n ≤ n0)
Second sum: future inputs (x(n) for n > n0)

If output at n = n0 is to depend only on present and past inputs, then

h(n) = 0, n < 0

An LTI system is causal iff its h(n) = 0 for negative values of n. Thus

y(n) =
∞∑
k=0

h(k)x(n − k) =
n∑

k=−∞
x(k)h(n − k)
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Causal Linear Time-Invariant Systems

A sequence that is zero for n < 0 is called a causal sequence
If nonzero for n < 0 and n > 0, it is called a noncausal sequence

If input to a causal LTI system is a causal sequence

y(n) =
n∑

k=0

h(k)x(n − k) =
n∑

k=0

x(k)h(n − k)

Example

Determine unit step response of LTI system with impulse response

h(n) = anu(n), |a| < 1

Both input signal (unit step) and system are causal

y(n) =
n∑

k=0

h(k)x(n − k) =
n∑

k=0

ak =
1− an+1

1− a

y(n) = 0 for n < 0
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Stability of Linear Time-Invariant Systems

Taking absolute value of both sides of convolution formula, we obtain

|y(n)| =

∣∣∣∣∣
∞∑

k=−∞
h(k)x(n − k)

∣∣∣∣∣ ≤
∞∑

k=−∞
|h(k)||x(n − k)|

If input is bounded, there exists a finite number Mx such that
|x(n)| ≤ Mx

|y(n)| ≤ Mx

∞∑
k=−∞

|h(k)|

Output is bounded if

Sh ≡
∞∑

k=−∞

|h(k)| <∞

An LTI system is stable if its impulse response is absolutely summable
This condition implies that h(n) goes to zero as n approaches infinity
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Stability of Linear Time-Invariant Systems

Suppose |x(n)| < Mx for n < n0 and x(n) = 0 for n ≥ n0

y(n0 + N) =
N−1∑

k=−∞
h(k)x(n0 + N − k) +

∞∑
k=N

h(k)x(n0 + N − k)

First sum is zero since x(n) = 0 for n ≥ n0

|y(n0 + N)| =

∣∣∣∣∣
∞∑

k=N

h(k)x(n0 + N − k)

∣∣∣∣∣ ≤
∞∑

k=N

|h(k)||x(n0 + N − k)|

≤ Mx

∞∑
k=N

|h(k)|

lim
N→∞

∞∑
k=N

|h(k)| = 0 −→ lim
N→∞

|y(n0 + N)| = 0

In a stable system, any finite duration input produces a transient output
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Stability of Linear Time-Invariant Systems

Example

Determine range of values of parameter a for which LTI system with
h(n) = anu(n) is stable

System is causal

Sh ≡
∞∑

k=−∞
|h(k)| −→

∞∑
k=0

|ak | =
∞∑
k=0

|a|k = 1 + |a|+ |a|2 + · · ·

Geometric series converges to

∞∑
k=0

|a|k =
1

1− |a|

provided that |a| < 1. Therefore, system is stable if |a| < 1
Otherwise, it diverges and becomes unstable
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Stability of Linear Time-Invariant Systems

Example

Determine range of a and b for which following LTI system is stable

h(n) =

{
an, n ≥ 0
bn, n < 0

System is noncausal

∞∑
n=−∞

|h(n)| =
∞∑
n=0

|a|n +
−1∑

n=−∞
|b|n

−1∑
n=−∞

|b|n =
∞∑
n=1

1

|b|n
=

1

|b|

(
1 +

1

|b|
+

1

|b|2
+ · · ·

)
=

1/|b|
1− 1/|b|

where 1/|b| < 1
System is stable if |a| < 1 and |b| > 1
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Systems with Finite & Infinite-Duration Impulse Response

We can subdivide LTI systems into two types
1 Those having a finite-duration impulse response (FIR)
2 Those having an infinite-duration impulse response (IIR)

For causal FIR systems

h(n) = 0, n < 0 and n ≥ M

y(n) =
M−1∑
k=0

h(k)x(n − k)

FIR system acts as a window that views only most recent M input
samples in forming output
Thus, FIR system has a finite memory of length-M samples

For causal IIR systems

y(n) =
∞∑
k=0

h(k)x(n − k)

IIR system has an infinite memory
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Correlation of Discrete-Time Signals

Correlation closely resembles convolution

But objective in computing correlation between two signals is to
measure the degree to which they are similar
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Crosscorrelation and Autocorrelation Sequences

For two real signal sequences x(n) and y(n) each having finite energy

Crosscorrelation of x(n) and y(n) is a sequence rxy (l)

rxy (l) =
∞∑

n=−∞
x(n)y(n − l) =

∞∑
n=−∞

x(n + l)y(n), l = 0,±1,±2, . . .

Index l is (time) shift (or lag) parameter
Reversing roles of x(n) and y(n)

ryx(l) =
∞∑

n=−∞
y(n)x(n − l) =

∞∑
n=−∞

y(n + l)x(n), l = 0,±1,±2, . . .

rxy (l) = ryx(−l)

ryx(l) is folded version of rxy (l), where folding is about l = 0
Hence, ryx(l) provides exactly same info as rxy (l), with respect to
similarity of x(n) to y(n)
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Crosscorrelation and Autocorrelation Sequences

Example

Determine crosscorrelation sequence rxy (l) of sequences

x(n) = {. . . , 0, 0, 2,−1, 3, 7, 1
↑
, 2,−3, 0, 0, . . .}

y(n) = {. . . , 0, 0, 1,−1, 2,−2, 4
↑
, 1,−2, 5, 0, 0, . . .}

For l = 0

rxy (l) =
∞∑

n=−∞
x(n)y(n − l)

l=0−−→ rxy (0) =
∞∑

n=−∞
x(n)y(n)

υ0(n) = x(n)y(n) = {. . . , 0, 2, 1, 6,−14, 4
↑
, 2, 6, 0, . . .} −→ rxy (0) = 7

For l > 0 (l < 0), shift y(n) to right (left) relative to x(n) by l units,
compute υl(n) = x(n)y(n − l), and sum over all values of υl(n)

rxy (l) = {10,−9, 19, 36,−14, 33, 0, 7
↑
, 13,−18, 16,−7, 5,−3}
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Crosscorrelation and Autocorrelation Sequences

Except for folding operation in convolution, computations of
crosscorrelation and convolution are similar

rxy (l) = x(l) ∗ y(−l)

In special case where y(n) = x(n), we have autocorrelation of x(n)

rxx(l) =
∞∑

n=−∞
x(n)x(n − l) =

∞∑
n=−∞

x(n + l)x(n)

If x(n) and y(n) are causal sequences of length N

rxy (l) =

N−|k|−1∑
n=i

x(n)y(n − l)

rxx(l) =

N−|k|−1∑
n=i

x(n)x(n − l)

where i = l , k = 0 for l ≥ 0, and i = 0, k = l for l < 0
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Properties of Autocorrelation & Crosscorrelation Sequences

Assume x(n) and y(n) with finite energy and their linear combination

ax(n) + by(n − l)

Energy in this signal

∞∑
n=−∞

[ax(n) + by(n − l)]2 = a2
∞∑

n=−∞
x2(n) + b2

∞∑
n=−∞

y2(n − l)

+ 2ab
∞∑

n=−∞
x(n)y(n − l)

= a2rxx(0) + b2ryy (0) + 2abrxy (l)

rxx(0) = Ex = energy of x(n)
ryy (0) = Ey = energy of y(n)
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Properties of Autocorrelation & Crosscorrelation Sequences

It is obvious

a2rxx(0) + b2ryy (0) + 2abrxy (l) ≥ 0

Assuming b 6= 0

rxx(0)
(
a
b

)2
+ 2rxy (l)

(
a
b

)
+ ryy (0) ≥ 0

Since this quadratic is nonnegative, its discriminant is nonpositive

4[r2xy (l)− rxx(0)ryy (0)] ≤ 0

|rxy (l)| ≤
√

rxx(0)ryy (0) =
√

ExEy

When y(n) = x(n)

|rxx(l)| ≤ rxx(0) = Ex

This means max value of autocorrelation of a signal is at zero lag
By scaling signals, shape of crosscorrelation sequence does not change

Only amplitudes of crosscorrelation sequence are scaled accordingly
Since scaling is unimportant, auto and crosscorrelation sequences are
normalized to range from -1 to 1, in practice

ρxx(l) =
rxx(l)

rxx(0)
and ρxy (l) =

rxy (l)√
rxx(0)ryy (0)
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Properties of Autocorrelation & Crosscorrelation Sequences

As shown before

rxy (l) = ryx(−l)

With y(n) = x(n)

rxx(l) = rxx(−l)

Hence autocorrelation is an even function
It suffices to compute rxx(l) for l ≥ 0
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Properties of Autocorrelation & Crosscorrelation Sequences

Example

Compute autocorrelation of x(n) = anu(n), 0 < a < 1

If l ≥ 0

rxx(l) =
∞∑
n=l

x(n)x(n − l) =
∞∑
n=l

anan−l = a−l
∞∑
n=l

(a2)n =
1

1− a2
al

If l < 0

rxx(l) =
∞∑
n=0

x(n)x(n − l) = a−l
∞∑
n=0

(a2)n =
1

1− a2
a−l

rxx(l) =
1

1− a2
a|l |, −∞ < l <∞

rxx(0) =
1

1− a2
normalized−−−−−−−−−−−→

autocorrelation
ρxx(l) =

rxx(l)

rxx(0)
= a|l |, −∞ < l <∞
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Properties of Autocorrelation & Crosscorrelation Sequences

Figure 7: Computation of the autocorrelation of the signal x(n) = an, 0 < a < 1.
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Correlation of Periodic Sequences

If x(n) and y(n) are power signals

rxy (l) = lim
M→∞

1

2M + 1

M∑
n=−M

x(n)y(n − l)

rxx(l) = lim
M→∞

1

2M + 1

M∑
n=−M

x(n)x(n − l)

If x(n) and y(n) are two periodic sequences, each with period N

rxy (l) =
1

N

N−1∑
n=0

x(n)y(n − l)

rxx(l) =
1

N

N−1∑
n=0

x(n)x(n − l)
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Correlation of Periodic Sequences

Correlation can be used to identify periodicities in an observed physical
signal which may be corrupted by random interference

y(n) = x(n) + ω(n)

x(n) is a periodic sequence of unknown period N
ω(n) is an additive random interference
Suppose we observe M samples of y(n)

0 ≤ n ≤ M − 1, M >> N, y(n) = 0 for n < 0 and n ≥ M

ryy (l) =
1

M

M−1∑
n=0

y(n)y(n − l) =
1

M

M−1∑
n=0

[x(n) + ω(n)][x(n − l) + ω(n − l)]

=
1

M

M−1∑
n=0

x(n)x(n − l) +
1

M

M−1∑
n=0

[x(n)ω(n − l) + ω(n)x(n − l)]

+
1

M

M−1∑
n=0

ω(n)ω(n − l) = rxx(l) + rxω(l) + rωx(l) + rωω(l)
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Correlation of Periodic Sequences

rxx(l) will contain large peaks at l = 0,N, 2N, and so on

rxω(l) and rωx(l) will be small since x(n) and ω(n) are unrelated

rωω(l) will contain a peak at l = 0, but because of its random
characteristics will decay rapidly toward zero

Consequently, only rxx(l) will have large peaks for l > 0, so we can
detect presence of periodic signal x(n) and identify its period
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Input-Output Correlation Sequences

x(n) with known rxx(l) is applied to an LTI system with h(n) producing

y(n) = h(n) ∗ x(n) =
∑∞

k=−∞ h(k)x(n − k)

Crosscorrelation between output and input signal

ryx(l) = y(l) ∗ x(−l) = h(l) ∗ [x(l) ∗ x(−l)]

= h(l) ∗ rxx(l)

Replacing l by −l

rxy (l) = h(−l) ∗ rxx(l)

Autocorrelation of output signal

ryy (l) = y(l) ∗ y(−l) = [h(l) ∗ x(l)] ∗ [h(−l) ∗ x(−l)] =
[h(l) ∗ h(−l)] ∗ [x(l) ∗ x(−l)] = rhh(l) ∗ rxx(l)

rhh(l) exists if system is stable. Stability insures that system does not
change type (energy or power) of input signal
l = 0 provides energy (or power) of output in terms of autocorrelations

ryy (0) =
∑∞

k=−∞ rhh(k)rxx(k)
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