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Techniques for the Analysis of Linear Systems

@ Methods for analyzing behavior or response of a linear system to a
given input
o First method: through difference equations (will not be discussed)
o Second method:

@ Decompose input signal into a weighted sum of elementary signals
x(n) = Z crexk(n)
K

@ Using linearity property of system, responses of system to elementary
signals are added to obtain total response of system
Assuming system is relaxed

yi(n) = 7lxi(n)]

y(n) =rlx(n)] =7 [Z Cka(n)] = arba(n] = cyi(n)

@ Resolution of input signals into a weighted sum of unit sample
(impulse) sequences is mathematically convenient and general
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Resolution of a Discrete-Time Signal into Impulses

@ An arbitrary signal x(n) is to be resolved into a sum of unit sample
sequences

o We select elementary signals xx(n) to be
xk(n) = 6(n— k)
o If x(n) and 6(n — k) are multiplied, result is another sequence that is
zero everywhere except at n = k, where it is x(k)
x(n)d(n— k) = x(k)o(n— k)

o Consequently
oo

x(n)= > x(k)é(n— k)

k=—o00

3/41



Resolution of a Discrete-Time Signal into Impulses
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Figure 1: Multiplication of a signal x(n) with a shifted unit sample sequence.
4/41



Resolution of a Discrete-Time Signal into Impulses

@ Resolve following finite-duration sequence into a sum of weighted
impulse sequences

x(n) = {2,1Tl, 0,3}

e x(n) is nonzero for n = —1,0,2
x(n) =20(n+ 1)+ 40(n) +36(n—2)
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The Convolution Sum

@ The response y(n, k) of any relaxed linear system to the input unit
sample sequence at n = k is denoted by h(n, k)
y(n, k) = h(n, k) = 7[d(n — k)]
o If impulse at input is scaled by ¢y, response of system is
ckh(n, k) = x(k)h(n, k)

e For input x(n)
oo

x(n)= Y x(k)o(n— k)

k=—o00

response of system is following superposition summation

y(n) =7lx(n)] =7 [ > x(k)a(n— k)] = > x(K)rl(n - k)]

k=—0oc0 k=—00

[e.o]

= Y x(k)h(n, k)

k=—00
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The Convolution Sum

o If response of LTI (Linear Time-Invariant) system to d(n) is denoted as
h(n) = 7[5(n)]
then
h(n — k) = 7[6(n — k)]
Consequently, response of system is

o0

y(n)= > x(k)h(n— k) (1)

k=—o00

o This formula is called a convolution sum
o Input x(n) is convolved with impulse response h(n) to yield output y(n)
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The Convolution Sum

@ Suppose we wish to compute output of system at n = ng

o0

y(no) = > x(k)h(no — k)

k=—o00

Process of computing convolution between x(k) and h(k):
@ Folding. Fold h(k) about k = 0 to obtain h(—k)
@ Shifting. Shift h(—k) by ng to right (left) if ng is positive (negative) to
obtain h(ng — k)
© Multiplication. v, (k) = x(k)h(ng — k)
@ Summation. Sum all values of v, (k) to obtain output at n = ng
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The Convolution Sum

@ Impulse response of an LTI system is
h(n) = {1,% 1,-1}

Determine response of system to input signal
) = 12 L

@ To compute output at n =10

(e} [e.e]

y(n)= Y x(k)h(n—k) — y(0) = > x(k)h(—k)

k=—00 k=—00

o First fold h(k) - no shifting is required - then do multiplication
vo(k) = x(k)h(—k)
e Finally, sum of all terms in product sequence yields
y(0) = 342 oo vo(k) = 4
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The Convolution Sum
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Figure 2: Graphical computation of convolution. ,
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The Convolution Sum

Example (continued)

@ Response of system at n =1

(e.e] (e.e]

y(n)= Y x(k)h(n—k) — y(1) = > x(k)h(1 - k)

k=—o00 k=—o00

o h(1— k) is h(—k) shifted to right by one unit
e Product sequence
v1(k) = x(k)h(1 — k)
e Sum of all values in product sequence
y(1) =3 (k) =8
@ By shifting h(—k) farther to right, multiplying and summing, we obtain
y(2)=8,y(3)=3, y(4) = -2, y(5) = -1

@ For n > 5, y(n) = 0 because product sequences contain all zeros
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The Convolution Sum

Example (continued)

e To evaluate y(n) for n = —1
y(n)= Y x(k)h(n—k) — y(=1) = > x(k)h(=1 k)
k=—00 k=—o00

o h(—1— k) is h(—k) shifted one unit to left
e Product sequence

v_1(k) = x(k)h(—1 — k)
e Sum of all values in product sequence
y(=1) =32 va(k) =1
o Further shifts of h(—1 — k) to left result in all-zero product sequence
y(n)=0 forn< -2
@ Entire response of system for —co < n < oo
y(n) = {...,0,0,1,?,8,8,3,—2,—1,0,0,...}
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The Convolution Sum

o Convolution operation is commutative
o It is irrelevant which of two sequences is folded and shifted

o0 oo

y(n) = > x(k)h(n— k) == y(n) = 3" x(n— m)h(m)
k=—00 m=—00
replace MY K yimy= > x(n— K)h(k) (2)
k=—o0
o Product sequences in (1) and (2) are not identical
o If
vp(k) = x(k)h(n — k)
wn(K) = x(n — k)h(K)
then
vn(k) = wa(n — k)
therefore - -
y(n)= > va(k) = D waln—k)
k=—o0 k=—o0

o Both sequences contain same values in a different arrangement
13/41



The Convolution Sum

@ Determine output y(n) of a relaxed LTI system with impulse response
h(n) = a"u(n), |a| <1
when input is a unit step sequence: x(n) = u(n)

o We use
o

y(n)= > x(n—k)h(k)

k=—00
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The Convolution Sum
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Figure 3: Graphical computation of convolution example. s



The Convolution Sum

Example (continued)

@ We obtain outputs

y(0)=1
y(1)=1+a
y(2)=1+a+2a°
forn>0
1 __an+1
1 e
@ For n < 0, product sequences consist of all zeros. Hence
y(n)=0, n<O0

y(n)=14+a+a*+...+a"=

@ Since |a| <1
. 1
y(o0) = lim y(n) =
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Properties of Convolution - Interconnection of LTI Systems

@ An asterisk is used to denote convolution operation

o0

y(n) = x(n) x h(n) = Z x(k)h(n — k)

k=—oc0

y(n) = h(n) xx(n Eth)xn—

k=—0oc0

o ldentity and shifting properties
o d(n) is identity element for convolution
y(n) = x(n) % 3(n) = x(n)
o Shifting 6(n) by k, convolution sequence is also shifted by k
x(n)x6(n—k)=y(n—k)=x(n—k)
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Properties of Convolution - Interconnection of LTI Systems

o Commutative law
x(n) = h(n) = h(n) * x(n)
x(n) y(n) h(n)

¥(n)

— ) <> ——— ) ——

Figure 4: Interpretation of the commutative property of convolution.

o Associative law
[x(n) = h1(n)] * ha(n) = x(n) = [h1(n) * h2(n)]

x(n)

x(n) h(n) =

| | | i }ﬂl > —
| | | hy(n) # ho(n)

(a)

y(n)

x(n) y(n) x(n) y(n)
—»‘ hy(n) | I ha(n) } <> —— hm }——{ hy(n) }—»

(b)

Figure 5: Implications of the associative (a) and the associative and

commutative (b) properties of convolution.
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Properties of Convolution - Interconnection of LTI Systems

@ Determine impulse response for cascade of two LTI systems having
impulse responses

hi(n) = (3)"u(n) and ha(n) = (3)"u(n)
)

e Convolve hi(n) and ha(n
() = S5 ha(K)ha(n — K)
on(k) = h(K)ha(n — K) = ()*u(R) ()™ ¥uln — )

e v,(k) is nonzero for k >0 and n— k >0 (or n > k > 0)

h(n) = Z()( Z2k

k=0

= (3@ 1) =) R~ (3)] 120

o For n <0 — wp(k) =0forall k — h(n) =0, n< 0




Properties of Convolution - Interconnection of LTI Systems

o Distributive law
x(n) * [h1(n) + ha(n)] = x(n) * hi(n) + x(n) * ha(n)

hy(n)

x(n) y(n) x(n) h(n) = y(n)

< — hmahm

hy(n)

Figure 6: Interpretation of the distributive property of convolution: two LTI

systems connected in parallel can be replaced by a single system with
h(n) = hi(n) + ho(n).
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Causal Linear Time-Invariant Systems

o For an LTI system, causality can be translated to a condition on
impulse response
@ Consider an LTI system at time n = ng

y(no) = Zh(k (no—k) =" h(k)x(no—k)+ Zh x(no— k)
k=0

k=—o00 k=—o00

o First sum: present and past inputs (x(n) for n < ng)
o Second sum: future inputs (x(n) for n > ng)

o If output at n = ng is to depend only on present and past inputs, then
h(n)=0, n<O0
o An LTI system is causal iff its h(n) = O for negative values of n. Thus

oo n

y(n) = 3" h(k)x(n— k) = 3 x(k)h(n— k)

k=0 k=—o00
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Causal Linear Time-Invariant Systems

@ A sequence that is zero for n < 0 is called a causal sequence
o If nonzero for n < 0 and n > 0, it is called a noncausal sequence

@ If input to a causal LTI system is a causal sequence

Zh J(n— k)= 3 x(k)h(n— K)

k=0

Example

@ Determine unit step response of LTI system with impulse response
h(n) = a"u(n), |a| <1

@ Both input signal (unit step) and system are causal

y(n) = h(k)x(n— k) = Za -
k=0

o y(n)=0forn<0
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Stability of Linear Time-Invariant Systems

o Taking absolute value of both sides of convolution formula, we obtain

oo

> Ih(k)lIx(n— k)|

k=—0oc0

Z h(k)x(n — k)| <

k=—00

ly(n)| =

o If input is bounded, there exists a finite number M, such that
Ix(n)] < M

y(n)| < My Y |h(k)

k=—o0

Output is bounded if

Sy = i (k)| < oo

k=—o00

An LTI system is stable if its impulse response is absolutely summable
o This condition implies that h(n) goes to zero as n approaches infinity
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Stability of Linear Time-Invariant Systems

@ Suppose [x(n)| < My for n < ng and x(n) =0 for n > ng

N—-1
y(no+N)= > h(k)x(no+ N — k+Zh(k)xno+N k)
k=—o00 k=N

o First sum is zero since x(n) = 0 for n > ng

y(no + N)| = | h(k)x(no + N — k) Z (K)||x(no + N — k)|
k=N k=N
< MY |h(K)|
k=N
nggoglh(k)I =0— lim |y(no+N)| =0

o In a stable system, any finite duration input produces a transient output
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Stability of Linear Time-Invariant Systems

@ Determine range of values of parameter a for which LTI system with
h(n) = a"u(n) is stable

@ System is causal

Z |A( k)l—>Zlak|—2|alk=1+la!+lalz+

k=—o00 k=0

Geometric series converges to

o
1
D lal =

provided that |a| < 1. Therefore, system is stable if |a] < 1
Otherwise, it diverges and becomes unstable
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Stability of Linear Time-Invariant Systems

@ Determine range of a and b for which following LTI system is stable

o ={ 30 "Z0

n<0

@ System is noncausal

S =Y la 3 bl

n=—o00 n=0 n=—0o0

. I SRR N L
Z"" Z|b| |b|<+|bl+|b|2+ ) 1-1/]b]

n=—0o0

where 1/]b| < 1
System is stable if |a] < 1 and |b| > 1
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Systems with Finite & Infinite-Duration Impulse Response

@ We can subdivide LTI systems into two types
@ Those having a finite-duration impulse response (FIR)
@ Those having an infinite-duration impulse response (IIR)
@ For causal FIR systems

h(n)=0, n<Oand n>M
M—

._\

h(k)x(n — k)
k=0
o FIR system acts as a window that views only most recent M input

samples in forming output
o Thus, FIR system has a finite memory of length-M samples

@ For causal IIR systems
= h(k)x(n - k)
k=0

o IIR system has an infinite memory
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Correlation of Discrete-Time Signals

o Correlation closely resembles convolution

o But objective in computing correlation between two signals is to
measure the degree to which they are similar
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Crosscorrelation and Autocorrelation Sequences

o For two real signal sequences x(n) and y(n) each having finite energy
o Crosscorrelation of x(n) and y(n) is a sequence r,y (/)

oo o0

ry(l) = Z x(my(n—1)= Z x(n+Ny(n), [1=0,£1,42,...

n=—0o0 n=—0o0

Index [ is (time) shift (or lag) parameter
Reversing roles of x(n) and y(n)

o o

re() =Y y(mx(n—=1)= > y(n+Nx(n), [=0+1,+2,...
ry (1) = rp(=1)

ryx(!) is folded version of r,,(/), where folding is about / =0
Hence, ryx(/) provides exactly same info as ry,(/), with respect to
similarity of x(n) to y(n)
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Crosscorrelation and Autocorrelation Sequences

@ Determine crosscorrelation sequence ryy (/) of sequences
X(n) = {"'a070727_1a3a77%’27_3a0a07~ }

y(n)={..,0,0,1,-1,2,-2,4,1,-2.5,0,0,.. }

@ For /=0

o0 o0

ry() = D x(n)y(n—1) =% rg,(0) = Y x(n)y(n)

n=—o0 n=—o0
vo(n) = x(n)y(n) ={...,0,2,1,6, —14,?,2,6,07 o} —ry(0)=7

e For / >0 (/ < 0), shift y(n) to right (left) relative to x(n) by / units,
compute v;(n) = x(n)y(n — 1), and sum over all values of v;(n)

(1) = {10,-9,19,36,~14,33,0,7,13, 18,16, 7,5, -3}
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Crosscorrelation and Autocorrelation Sequences

o Except for folding operation in convolution, computations of
crosscorrelation and convolution are similar

ry (1) = x(1) x y(=1)
o In special case where y(n) = x(n), we have autocorrelation of x(n)

[e.9] oo

re()= > x(mx(n—1)= > x(n+x(n)

n=—o00 n=—o0
o If x(n) and y(n) are causal sequences of length N

N—|k|-1

ry() =Y x(ny(n—1)

n=i
N—|k|—1

re() =Y x(n)x(n—1)

n=i

where i =/, k=0for/>0,and i =0, k=1/for [/ <0
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Properties of Autocorrelation & Crosscorrelation Sequences

@ Assume x(n) and y(n) with finite energy and their linear combination
ax(n) + by(n—1)
Energy in this signal

o0

> [ax(n) + by(n - N> = & Z x%(n) + b? Z yi(n—1)
+ 2ab Z (my(n—1)
= rxx(og + b%r,, (0) + 2abryy (1)
o hx(0) = Ex = energy of x(n)
o r,(0) = E, = energy of y(n)
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Properties of Autocorrelation & Crosscorrelation Sequences

o It is obvious

2% (0) + b2ry, (0) + 2abry, (1) > 0

Assuming b # 0
a 2 a
re(0) (3)° +2ny (1) (3) + ry(0) 2 0
Since this quadratic is nonnegative, its discriminant is nonpositive
4[rg, (1) — rx(0 )fyy( <0

Iny (N < v/ rx(0)r (0) = \/EXE,

When y(n) = x(n)

[rc()] < re(0) = Ex
This means max value of autocorrelation of a signal is at zero lag
o By scaling signals, shape of crosscorrelation sequence does not change
o Only amplitudes of crosscorrelation sequence are scaled accordingly
o Since scaling is unimportant, auto and crosscorrelation sequences are
normalized to range from -1 to 1, in practice

procl) = rr:(((l)))

ry (1)
rx(0) 1y, (0)

and  py (1) =
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Properties of Autocorrelation & Crosscorrelation Sequences

@ As shown before

With y(n) = x(n)
(1) = ro(—1)

o Hence autocorrelation is an even function
o It suffices to compute r(/) for I >0
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Properties of Autocorrelation & Crosscorrelation Sequences

e Compute autocorrelation of x(n) = a"u(n), 0<a<1
o lf />0
o0 o0 [ee] 1
re(l) =Y x(mx(n—1) =) "a"a""'=a") ()" = — al
n=/ n=/ n=/
If /<0
o0 o0 1
- _ — = —1 2\n _ —1
rec(]) ;x(n)x(n )=a ;(a ) =122
Bedll) = L al, —co</i<oo
XX 1 — 23 9
1 normalized (1) I
o (0) = > () = —= =3a", —co< /<00
(©) 1 —a? autocorrelation ") 5 (0)




Properties of Autocorrelation & Crosscorrelation Sequences

Figure 7: Computation of the autocorrelation of the signal x(n) = a",0 < a < 1.
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Correlation of Periodic Sequences

o If x(n) and y(n) are power signals

1 M
roy (1) Mllnoo oM+ 1 Z x(n)y(n—1)
n=—M
M
re(l) = ,\/IllnmJ M1 Z x(n)x(n—1)
=—M

1 N—-1

o) = = 3" x(my(n—1)
n=0
N—-1

recll) = % x(n)x(n— 1)
n=0
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Correlation of Periodic Sequences

o Correlation can be used to identify periodicities in an observed physical
signal which may be corrupted by random interference
y(n) = x(n) +w(n)
o x(n) is a periodic sequence of unknown period N

o w(n) is an additive random interference
o Suppose we observe M samples of y(n)

0<n<M-1, M>>N, y(n)=0forn<0and n> M

M—1 M—1
1

D) = 7 2 ({0 = 1) = 5 S )+ (= 1)+ — 1)
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Correlation of Periodic Sequences

@ r(/) will contain large peaks at / =0, N,2N, and so on
o (/) and ryx(!) will be small since x(n) and w(n) are unrelated

@ ruw(/) will contain a peak at / = 0, but because of its random
characteristics will decay rapidly toward zero

o Consequently, only ry (/) will have large peaks for / > 0, so we can
detect presence of periodic signal x(n) and identify its period
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Input-Output Correlation Sequences

o x(n) with known r, (/) is applied to an LTI system with h(n) producing

y(n) = h(n) xx(n) = 373 _ h(k)x(n— k)
o Crosscorrelation between output and input signal

1) = y (1) # x(=1) = (1) * [x(1) * x(~D)]
= h(/) * r (1)
Replacing / by —/
Iy (1) = h(=1) * r (1)
@ Autocorrelation of output signal
ryy (1) = y(I) s y(=1) = [h(1) = x(D)] = [A(=1) * x(=1)] =
[A(1) = h(=D)] = [x(1) * x(=1)] = ran(1) * r (1)
o rpu(l) exists if system is stable. Stability insures that system does not

change type (energy or power) of input signal
o |/ =0 provides energy (or power) of output in terms of autocorrelations

ryy(0) = 22k oo rn(K)rc(K)
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