Digital Signal Processing Discrete-Time Signals and Systems (2)

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic
amiri@mail.muni.cz
prenosil@fi.muni.cz

March, 2012

- Methods for analyzing behavior or response of a linear system to a given input
- First method: through difference equations (will not be discussed)
- Second method:
(1) Decompose input signal into a weighted sum of elementary signals

$$
x(n)=\sum_{k} c_{k} x_{k}(n)
$$

(2) Using linearity property of system, responses of system to elementary signals are added to obtain total response of system
Assuming system is relaxed

$$
\begin{gathered}
y_{k}(n) \equiv \tau\left[x_{k}(n)\right] \\
y(n)=\tau[x(n)]=\tau\left[\sum_{k} c_{k} x_{k}(n)\right]=\sum_{k} c_{k} \tau\left[x_{k}(n)\right]=\sum_{k} c_{k} y_{k}(n)
\end{gathered}
$$

- Resolution of input signals into a weighted sum of unit sample (impulse) sequences is mathematically convenient and general

Resolution of a Discrete-Time Signal into Impulses

- An arbitrary signal $x(n)$ is to be resolved into a sum of unit sample sequences
- We select elementary signals $x_{k}(n)$ to be

$$
x_{k}(n)=\delta(n-k)
$$

- If $x(n)$ and $\delta(n-k)$ are multiplied, result is another sequence that is zero everywhere except at $n=k$, where it is $x(k)$

$$
x(n) \delta(n-k)=x(k) \delta(n-k)
$$

- Consequently

$$
x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)
$$

Resolution of a Discrete-Time Signal into Impulses

Figure 1: Multiplication of a signal $x(n)$ with a shifted unit sample sequence.

Resolution of a Discrete-Time Signal into Impulses

Example

- Resolve following finite-duration sequence into a sum of weighted impulse sequences

$$
x(n)=\{2, \underset{\uparrow}{4}, 0,3\}
$$

- $x(n)$ is nonzero for $n=-1,0,2$

$$
x(n)=2 \delta(n+1)+4 \delta(n)+3 \delta(n-2)
$$

- The response $y(n, k)$ of any relaxed linear system to the input unit sample sequence at $n=k$ is denoted by $h(n, k)$

$$
y(n, k) \equiv h(n, k)=\tau[\delta(n-k)]
$$

- If impulse at input is scaled by c_{k}, response of system is

$$
c_{k} h(n, k)=x(k) h(n, k)
$$

- For input $x(n)$

$$
x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)
$$

response of system is following superposition summation

$$
\begin{gathered}
y(n)=\tau[x(n)]=\tau\left[\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)\right]=\sum_{k=-\infty}^{\infty} x(k) \tau[\delta(n-k)] \\
=\sum_{k=-\infty}^{\infty} x(k) h(n, k)
\end{gathered}
$$

- If response of LTI (Linear Time-Invariant) system to $\delta(n)$ is denoted as

$$
h(n) \equiv \tau[\delta(n)]
$$

then

$$
h(n-k)=\tau[\delta(n-k)]
$$

Consequently, response of system is

$$
\begin{equation*}
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \tag{1}
\end{equation*}
$$

- This formula is called a convolution sum
- Input $x(n)$ is convolved with impulse response $h(n)$ to yield output $y(n)$
- Suppose we wish to compute output of system at $n=n_{0}$

$$
y\left(n_{0}\right)=\sum_{k=-\infty}^{\infty} x(k) h\left(n_{0}-k\right)
$$

Process of computing convolution between $x(k)$ and $h(k)$:
(1) Folding. Fold $h(k)$ about $k=0$ to obtain $h(-k)$
(2) Shifting. Shift $h(-k)$ by n_{0} to right (left) if n_{0} is positive (negative) to obtain $h\left(n_{0}-k\right)$
(3) Multiplication. $v_{n_{0}}(k) \equiv x(k) h\left(n_{0}-k\right)$
(4) Summation. Sum all values of $v_{n_{0}}(k)$ to obtain output at $n=n_{0}$

The Convolution Sum

Example

- Impulse response of an LTI system is

$$
h(n)=\{1, \underset{\uparrow}{2}, 1,-1\}
$$

Determine response of system to input signal

$$
x(n)=\left\{\frac{1}{\uparrow}, 2,3,1\right\}
$$

- To compute output at $n=0$

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \longrightarrow y(0)=\sum_{k=-\infty}^{\infty} x(k) h(-k)
$$

- First fold $h(k)$ - no shifting is required - then do multiplication

$$
v_{0}(k) \equiv x(k) h(-k)
$$

- Finally, sum of all terms in product sequence yields

$$
y(0)=\sum_{k=-\infty}^{\infty} v_{0}(k)=4
$$

The Convolution Sum

Figure 2: Graphical computation of convolution.

The Convolution Sum

Example (continued)

- Response of system at $n=1$

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \longrightarrow y(1)=\sum_{k=-\infty}^{\infty} x(k) h(1-k)
$$

- $h(1-k)$ is $h(-k)$ shifted to right by one unit
- Product sequence

$$
v_{1}(k)=x(k) h(1-k)
$$

- Sum of all values in product sequence

$$
y(1)=\sum_{k=-\infty}^{\infty} v_{1}(k)=8
$$

- By shifting $h(-k)$ farther to right, multiplying and summing, we obtain

$$
y(2)=8, y(3)=3, y(4)=-2, y(5)=-1
$$

- For $n>5, y(n)=0$ because product sequences contain all zeros

The Convolution Sum

Example (continued)

- To evaluate $y(n)$ for $n=-1$

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \longrightarrow y(-1)=\sum_{k=-\infty}^{\infty} x(k) h(-1-k)
$$

- $h(-1-k)$ is $h(-k)$ shifted one unit to left
- Product sequence

$$
v_{-1}(k)=x(k) h(-1-k)
$$

- Sum of all values in product sequence

$$
y(-1)=\sum_{k=-\infty}^{\infty} v_{-1}(k)=1
$$

- Further shifts of $h(-1-k)$ to left result in all-zero product sequence

$$
y(n)=0 \text { for } n \leq-2
$$

- Entire response of system for $-\infty<n<\infty$

$$
y(n)=\{\ldots, 0,0,1, \underset{\uparrow}{4}, 8,8,3,-2,-1,0,0, \ldots\}
$$

- Convolution operation is commutative
- It is irrelevant which of two sequences is folded and shifted

$$
\begin{align*}
y(n)= & \sum_{k=-\infty}^{\infty} x(k) h(n-k) \xrightarrow{m=n-k} y(n)=\sum_{m=-\infty}^{\infty} x(n-m) h(m) \\
& \xrightarrow{\text { replace } m \text { by } k} y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k) \tag{2}
\end{align*}
$$

- Product sequences in (1) and (2) are not identical
- If

$$
\begin{aligned}
& v_{n}(k)=x(k) h(n-k) \\
& \omega_{n}(k)=x(n-k) h(k)
\end{aligned}
$$

then

$$
v_{n}(k)=\omega_{n}(n-k)
$$

therefore

$$
y(n)=\sum_{k=-\infty}^{\infty} v_{n}(k)=\sum_{k=-\infty}^{\infty} \omega_{n}(n-k)
$$

- Both sequences contain same values in a different arrangement

The Convolution Sum

Example

- Determine output $y(n)$ of a relaxed LTI system with impulse response

$$
h(n)=a^{n} u(n),|a|<1
$$

when input is a unit step sequence: $x(n)=u(n)$

- We use

$$
y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)
$$

Figure 3: Graphical computation of convolution example.

Example (continued)

- We obtain outputs

$$
\begin{aligned}
& y(0)=1 \\
& y(1)=1+a \\
& y(2)=1+a+a^{2}
\end{aligned}
$$

for $n>0$

$$
y(n)=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a}
$$

- For $n<0$, product sequences consist of all zeros. Hence

$$
y(n)=0, \quad n<0
$$

- Since $|a|<1$

$$
y(\infty)=\lim _{n \rightarrow \infty} y(n)=\frac{1}{1-a}
$$

- An asterisk is used to denote convolution operation

$$
\begin{aligned}
& y(n)=x(n) * h(n) \equiv \sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& y(n)=h(n) * x(n) \equiv \sum_{k=-\infty}^{\infty} h(k) x(n-k)
\end{aligned}
$$

- Identity and shifting properties
- $\delta(n)$ is identity element for convolution

$$
y(n)=x(n) * \delta(n)=x(n)
$$

- Shifting $\delta(n)$ by k, convolution sequence is also shifted by k

$$
x(n) * \delta(n-k)=y(n-k)=x(n-k)
$$

- Commutative law

$$
x(n) * h(n)=h(n) * x(n)
$$

Figure 4: Interpretation of the commutative property of convolution.

- Associative law

$$
\left[x(n) * h_{1}(n)\right] * h_{2}(n)=x(n) *\left[h_{1}(n) * h_{2}(n)\right]
$$

(a)

(b)

Figure 5: Implications of the associative (a) and the associative and commutative (b) properties of convolution.

Example

- Determine impulse response for cascade of two LTI systems having impulse responses

$$
h_{1}(n)=\left(\frac{1}{2}\right)^{n} u(n) \quad \text { and } \quad h_{2}(n)=\left(\frac{1}{4}\right)^{n} u(n)
$$

- Convolve $h_{1}(n)$ and $h_{2}(n)$

$$
\begin{gathered}
h(n)=\sum_{k=-\infty}^{\infty} h_{1}(k) h_{2}(n-k) \\
v_{n}(k)=h_{1}(k) h_{2}(n-k)=\left(\frac{1}{2}\right)^{k} u(k)\left(\frac{1}{4}\right)^{n-k} u(n-k)
\end{gathered}
$$

- $v_{n}(k)$ is nonzero for $k \geq 0$ and $n-k \geq 0$ (or $\left.n \geq k \geq 0\right)$

$$
\begin{aligned}
h(n) & =\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{4}\right)^{n-k}=\left(\frac{1}{4}\right)^{n} \sum_{k=0}^{n} 2^{k} \\
& =\left(\frac{1}{4}\right)^{n}\left(2^{n+1}-1\right)=\left(\frac{1}{2}\right)^{n}\left[2-\left(\frac{1}{2}\right)^{n}\right], n \geq 0
\end{aligned}
$$

- For $n<0 \longrightarrow v_{n}(k)=0$ for all $k \longrightarrow h(n)=0, n<0$
- Distributive law

$$
x(n) *\left[h_{1}(n)+h_{2}(n)\right]=x(n) * h_{1}(n)+x(n) * h_{2}(n)
$$

Figure 6: Interpretation of the distributive property of convolution: two LTI systems connected in parallel can be replaced by a single system with $h(n)=h_{1}(n)+h_{2}(n)$.

- For an LTI system, causality can be translated to a condition on impulse response
- Consider an LTI system at time $n=n_{0}$

$$
y\left(n_{0}\right)=\sum_{k=-\infty}^{\infty} h(k) x\left(n_{0}-k\right)=\sum_{k=0}^{\infty} h(k) x\left(n_{0}-k\right)+\sum_{k=-\infty}^{-1} h(k) x\left(n_{0}-k\right)
$$

- First sum: present and past inputs $\left(x(n)\right.$ for $\left.n \leq n_{0}\right)$
- Second sum: future inputs ($x(n)$ for $n>n_{0}$)
- If output at $n=n_{0}$ is to depend only on present and past inputs, then

$$
h(n)=0, \quad n<0
$$

- An LTI system is causal iff its $h(n)=0$ for negative values of n. Thus

$$
y(n)=\sum_{k=0}^{\infty} h(k) x(n-k)=\sum_{k=-\infty}^{n} x(k) h(n-k)
$$

- A sequence that is zero for $n<0$ is called a causal sequence
- If nonzero for $n<0$ and $n>0$, it is called a noncausal sequence
- If input to a causal LTI system is a causal sequence

$$
y(n)=\sum_{k=0}^{n} h(k) x(n-k)=\sum_{k=0}^{n} x(k) h(n-k)
$$

Example

- Determine unit step response of LTI system with impulse response

$$
h(n)=a^{n} u(n), \quad|a|<1
$$

- Both input signal (unit step) and system are causal

$$
y(n)=\sum_{k=0}^{n} h(k) x(n-k)=\sum_{k=0}^{n} a^{k}=\frac{1-a^{n+1}}{1-a}
$$

- $y(n)=0$ for $n<0$
- Taking absolute value of both sides of convolution formula, we obtain

$$
|y(n)|=\left|\sum_{k=-\infty}^{\infty} h(k) x(n-k)\right| \leq \sum_{k=-\infty}^{\infty}|h(k)||x(n-k)|
$$

- If input is bounded, there exists a finite number M_{x} such that $|x(n)| \leq M_{x}$

$$
|y(n)| \leq M_{x} \sum_{k=-\infty}^{\infty}|h(k)|
$$

- Output is bounded if

$$
S_{h} \equiv \sum_{k=-\infty}^{\infty}|h(k)|<\infty
$$

- An LTI system is stable if its impulse response is absolutely summable
- This condition implies that $h(n)$ goes to zero as n approaches infinity
- Suppose $|x(n)|<M_{x}$ for $n<n_{0}$ and $x(n)=0$ for $n \geq n_{0}$

$$
y\left(n_{0}+N\right)=\sum_{k=-\infty}^{N-1} h(k) x\left(n_{0}+N-k\right)+\sum_{k=N}^{\infty} h(k) x\left(n_{0}+N-k\right)
$$

- First sum is zero since $x(n)=0$ for $n \geq n_{0}$

$$
\begin{gathered}
\left|y\left(n_{0}+N\right)\right|=\left|\sum_{k=N}^{\infty} h(k) x\left(n_{0}+N-k\right)\right| \leq \sum_{k=N}^{\infty}|h(k)|\left|x\left(n_{0}+N-k\right)\right| \\
\leq M_{x} \sum_{k=N}^{\infty}|h(k)| \\
\lim _{N \rightarrow \infty} \sum_{k=N}^{\infty}|h(k)|=0 \longrightarrow \lim _{N \rightarrow \infty}\left|y\left(n_{0}+N\right)\right|=0
\end{gathered}
$$

- In a stable system, any finite duration input produces a transient output

Example

- Determine range of values of parameter a for which LTI system with $h(n)=a^{n} u(n)$ is stable
- System is causal

$$
S_{h} \equiv \sum_{k=-\infty}^{\infty}|h(k)| \longrightarrow \sum_{k=0}^{\infty}\left|a^{k}\right|=\sum_{k=0}^{\infty}|a|^{k}=1+|a|+|a|^{2}+\cdots
$$

Geometric series converges to

$$
\sum_{k=0}^{\infty}|a|^{k}=\frac{1}{1-|a|}
$$

provided that $|a|<1$. Therefore, system is stable if $|a|<1$
Otherwise, it diverges and becomes unstable

Example

- Determine range of a and b for which following LTI system is stable

$$
h(n)= \begin{cases}a^{n}, & n \geq 0 \\ b^{n}, & n<0\end{cases}
$$

- System is noncausal

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty}|h(n)|=\sum_{n=0}^{\infty}|a|^{n}+\sum_{n=-\infty}^{-1}|b|^{n} \\
\sum_{n=-\infty}^{-1}|b|^{n}=\sum_{n=1}^{\infty} \frac{1}{|b|^{n}}=\frac{1}{|b|}\left(1+\frac{1}{|b|}+\frac{1}{|b|^{2}}+\cdots\right)=\frac{1 /|b|}{1-1 /|b|}
\end{gathered}
$$

where $1 /|b|<1$
System is stable if $|a|<1$ and $|b|>1$

- We can subdivide LTI systems into two types
(1) Those having a finite-duration impulse response (FIR)
(2) Those having an infinite-duration impulse response (IIR)
- For causal FIR systems

$$
\begin{gathered}
h(n)=0, \quad n<0 \text { and } n \geq M \\
y(n)=\sum_{k=0}^{M-1} h(k) x(n-k)
\end{gathered}
$$

- FIR system acts as a window that views only most recent M input samples in forming output
- Thus, FIR system has a finite memory of length- M samples
- For causal IIR systems

$$
y(n)=\sum_{k=0}^{\infty} h(k) x(n-k)
$$

- IIR system has an infinite memory

Correlation of Discrete-Time Signals

- Correlation closely resembles convolution
- But objective in computing correlation between two signals is to measure the degree to which they are similar
- For two real signal sequences $x(n)$ and $y(n)$ each having finite energy
- Crosscorrelation of $x(n)$ and $y(n)$ is a sequence $r_{x y}(I)$

$$
r_{x y}(I)=\sum_{n=-\infty}^{\infty} x(n) y(n-I)=\sum_{n=-\infty}^{\infty} x(n+I) y(n), \quad I=0, \pm 1, \pm 2, \ldots
$$

- Index $/$ is (time) shift (or lag) parameter
- Reversing roles of $x(n)$ and $y(n)$

$$
\begin{gathered}
r_{y x}(I)=\sum_{n=-\infty}^{\infty} y(n) x(n-I)=\sum_{n=-\infty}^{\infty} y(n+I) x(n), \quad I=0, \pm 1, \pm 2, \ldots \\
r_{x y}(I)=r_{y x}(-I)
\end{gathered}
$$

- $r_{y x}(I)$ is folded version of $r_{x y}(I)$, where folding is about $I=0$
- Hence, $r_{y x}(I)$ provides exactly same info as $r_{x y}(I)$, with respect to similarity of $x(n)$ to $y(n)$

Example

- Determine crosscorrelation sequence $r_{x y}(I)$ of sequences

$$
\begin{aligned}
& x(n)=\{\ldots, 0,0,2,-1,3,7, \underset{\uparrow}{1}, 2,-3,0,0, \ldots\} \\
& y(n)=\{\ldots, 0,0,1,-1,2,-2, \underset{\uparrow}{4}, 1,-2,5,0,0, \ldots\}
\end{aligned}
$$

- For $I=0$

$$
r_{x y}(I)=\sum_{n=-\infty}^{\infty} x(n) y(n-I) \xrightarrow{l=0} r_{x y}(0)=\sum_{n=-\infty}^{\infty} x(n) y(n)
$$

$$
v_{0}(n)=x(n) y(n)=\{\ldots, 0,2,1,6,-14, \underset{\uparrow}{4}, 2,6,0, \ldots\} \longrightarrow r_{x y}(0)=7
$$

- For $I>0(I<0)$, shift $y(n)$ to right (left) relative to $x(n)$ by I units, compute $v_{l}(n)=x(n) y(n-l)$, and sum over all values of $v_{l}(n)$

$$
r_{x y}(I)=\left\{10,-9,19,36,-14,33,0,7_{\uparrow}, 13,-18,16,-7,5,-3\right\}
$$

- Except for folding operation in convolution, computations of crosscorrelation and convolution are similar

$$
r_{x y}(I)=x(I) * y(-I)
$$

- In special case where $y(n)=x(n)$, we have autocorrelation of $x(n)$

$$
r_{x x}(I)=\sum_{n=-\infty}^{\infty} x(n) x(n-l)=\sum_{n=-\infty}^{\infty} x(n+l) x(n)
$$

- If $x(n)$ and $y(n)$ are causal sequences of length N

$$
\begin{aligned}
& r_{x y}(I)=\sum_{n=i}^{N-|k|-1} x(n) y(n-l) \\
& r_{x x}(I)=\sum_{n=i}^{N-|k|-1} x(n) x(n-l)
\end{aligned}
$$

where $i=l, k=0$ for $l \geq 0$, and $i=0, k=l$ for $l<0$

- Assume $x(n)$ and $y(n)$ with finite energy and their linear combination

$$
a x(n)+b y(n-l)
$$

Energy in this signal

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}[a x(n)+b y(n-l)]^{2}= & a^{2} \sum_{n=-\infty}^{\infty} x^{2}(n)+b^{2} \sum_{n=-\infty}^{\infty} y^{2}(n-l) \\
& +2 a b \sum_{n=-\infty}^{\infty} x(n) y(n-l) \\
& =a^{2} r_{x x}(0)+b^{2} r_{y y}(0)+2 a b r_{x y}(l)
\end{aligned}
$$

- $r_{x x}(0)=E_{x}=$ energy of $x(n)$
- $r_{y y}(0)=E_{y}=$ energy of $y(n)$
- It is obvious

$$
a^{2} r_{x x}(0)+b^{2} r_{y y}(0)+2 a b r_{x y}(I) \geq 0
$$

Assuming $b \neq 0$

$$
r_{x x}(0)\left(\frac{a}{b}\right)^{2}+2 r_{x y}(I)\left(\frac{a}{b}\right)+r_{y y}(0) \geq 0
$$

Since this quadratic is nonnegative, its discriminant is nonpositive

$$
\begin{gathered}
4\left[r_{x y}^{2}(I)-r_{x x}(0) r_{y y}(0)\right] \leq 0 \\
\left|r_{x y}(I)\right| \leq \sqrt{r_{x x}(0) r_{y y}(0)}=\sqrt{E_{x} E_{y}}
\end{gathered}
$$

When $y(n)=x(n)$

$$
\left|r_{x x}(I)\right| \leq r_{x x}(0)=E_{x}
$$

This means max value of autocorrelation of a signal is at zero lag

- By scaling signals, shape of crosscorrelation sequence does not change
- Only amplitudes of crosscorrelation sequence are scaled accordingly
- Since scaling is unimportant, auto and crosscorrelation sequences are normalized to range from - 1 to 1 , in practice

$$
\rho_{x x}(I)=\frac{r_{x x}(I)}{r_{x x}(0)} \quad \text { and } \quad \rho_{x y}(I)=\frac{r_{x y}(I)}{\sqrt{r_{x x}(0) r_{y y}(0)}}
$$

- As shown before

$$
r_{x y}(I)=r_{y x}(-I)
$$

With $y(n)=x(n)$

$$
r_{x x}(I)=r_{x x}(-I)
$$

- Hence autocorrelation is an even function
- It suffices to compute $r_{x x}(I)$ for $I \geq 0$

Example

- Compute autocorrelation of $x(n)=a^{n} u(n), \quad 0<a<1$
- If $I \geq 0$

$$
r_{x x}(I)=\sum_{n=1}^{\infty} x(n) x(n-I)=\sum_{n=1}^{\infty} a^{n} a^{n-I}=a^{-l} \sum_{n=1}^{\infty}\left(a^{2}\right)^{n}=\frac{1}{1-a^{2}} a^{\prime}
$$

If $I<0$

$$
\begin{gathered}
r_{x x}(I)=\sum_{n=0}^{\infty} x(n) x(n-I)=a^{-I} \sum_{n=0}^{\infty}\left(a^{2}\right)^{n}=\frac{1}{1-a^{2}} a^{-I} \\
r_{x x}(I)=\frac{1}{1-a^{2}} a^{|I|}, \quad-\infty<I<\infty \\
r_{x x}(0)=\frac{1}{1-a^{2}} \xrightarrow[\text { autocorrelation }]{\text { normalized }} \rho_{x x}(I)=\frac{r_{x x}(I)}{r_{x x}(0)}=a^{|| |},-\infty<I<\infty
\end{gathered}
$$

Figure 7: Computation of the autocorrelation of the signal $x(n)=a^{n}, 0<a<1$.

- If $x(n)$ and $y(n)$ are power signals

$$
\begin{aligned}
& r_{x y}(I)=\lim _{M \rightarrow \infty} \frac{1}{2 M+1} \sum_{n=-M}^{M} x(n) y(n-l) \\
& r_{x x}(I)=\lim _{M \rightarrow \infty} \frac{1}{2 M+1} \sum_{n=-M}^{M} x(n) x(n-l)
\end{aligned}
$$

- If $x(n)$ and $y(n)$ are two periodic sequences, each with period N

$$
\begin{aligned}
& r_{x y}(I)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) y(n-l) \\
& r_{x x}(l)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-l)
\end{aligned}
$$

- Correlation can be used to identify periodicities in an observed physical signal which may be corrupted by random interference

$$
y(n)=x(n)+\omega(n)
$$

- $x(n)$ is a periodic sequence of unknown period N
- $\omega(n)$ is an additive random interference
- Suppose we observe M samples of $y(n)$

$$
0 \leq n \leq M-1, M \gg N, y(n)=0 \text { for } n<0 \text { and } n \geq M
$$

$$
\begin{aligned}
r_{y y}(I)= & \frac{1}{M} \sum_{n=0}^{M-1} y(n) y(n-l)=\frac{1}{M} \sum_{n=0}^{M-1}[x(n)+\omega(n)][x(n-l)+\omega(n-l)] \\
= & \frac{1}{M} \sum_{n=0}^{M-1} x(n) x(n-l)+\frac{1}{M} \sum_{n=0}^{M-1}[x(n) \omega(n-I)+\omega(n) x(n-l)] \\
& +\frac{1}{M} \sum_{n=0}^{M-1} \omega(n) \omega(n-l)=r_{x x}(I)+r_{x \omega}(I)+r_{\omega x}(I)+r_{\omega \omega}(I)
\end{aligned}
$$

- $r_{x x}(I)$ will contain large peaks at $I=0, N, 2 N$, and so on
- $r_{x \omega}(I)$ and $r_{\omega x}(I)$ will be small since $x(n)$ and $\omega(n)$ are unrelated
- $r_{\omega \omega}(I)$ will contain a peak at $I=0$, but because of its random characteristics will decay rapidly toward zero
- Consequently, only $r_{x x}(I)$ will have large peaks for $I>0$, so we can detect presence of periodic signal $x(n)$ and identify its period
- $x(n)$ with known $r_{x x}(I)$ is applied to an LTI system with $h(n)$ producing

$$
y(n)=h(n) * x(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
$$

- Crosscorrelation between output and input signal

$$
\begin{aligned}
r_{y x}(I) & =y(I) * x(-I)=h(I) *[x(I) * x(-I)] \\
& =h(I) * r_{x x}(I)
\end{aligned}
$$

Replacing / by - /

$$
r_{x y}(I)=h(-I) * r_{x x}(I)
$$

- Autocorrelation of output signal

$$
\begin{gathered}
r_{y y}(I)=y(I) * y(-I)=[h(I) * x(I)] *[h(-I) * x(-I)]= \\
{[h(I) * h(-I)] *[x(I) * x(-I)]=r_{h h}(I) * r_{x x}(I)}
\end{gathered}
$$

- $r_{h h}(I)$ exists if system is stable. Stability insures that system does not change type (energy or power) of input signal
- $I=0$ provides energy (or power) of output in terms of autocorrelations

$$
r_{y y}(0)=\sum_{k=-\infty}^{\infty} r_{h h}(k) r_{x x}(k)
$$

John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Prentice Hall, 2006.

