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The Direct z-Transform

z-transform of x(n) is defined as power series:

X (z) ≡
∞∑

n=−∞
x(n)z−n

where z is a complex variable

For convenience

X (z) ≡ Z{x(n)}
x(n)

z←→ X (z)

Since z-transform is an infinite power series, it exists only for those
values of z for which this series converges

Region of convergence (ROC) of X (z) is set of all values of z for
which X (z) attains a finite value
Any time we cite a z-transform, we should also indicate its ROC

ROC of a finite-duration signal is entire z-plane except possibly points
z = 0 and/or z =∞
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The Direct z-Transform

Example

Determine z-transforms of following finite-duration signals

x(n) = {1
↑
, 2, 5, 7, 0, 1}

X (z) = 1 + 2z−1 + 5z−2 + 7z−3 + z−5

ROC: entire z-plane except z = 0

x(n) = {1, 2, 5
↑
, 7, 0, 1}

X (z) = z2 + 2z + 5 + 7z−1 + z−3

ROC: entire z-plane except z = 0 and z =∞
x(n) = δ(n)
X (z) = 1 [i.e., δ(n)

z←→ 1], ROC: entire z-plane

x(n) = δ(n − k), k > 0
X (z) = z−k [i.e., δ(n− k)

z←→ z−k ], ROC: entire z-plane except z = 0

x(n) = δ(n + k), k > 0
X (z) = zk [i.e., δ(n + k)

z←→ zk ], ROC: entire z-plane except z =∞
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The Direct z-Transform

Example

Determine z-transform of

x(n) = (12)nu(n)

z-transform of x(n)

X (z) = 1 +
1

2
z−1 + (

1

2
)2z−2 + (

1

2
)nz−n + · · ·

=
∞∑
n=0

(
1

2
)nz−n =

∞∑
n=0

(
1

2
z−1)n

For |12z−1| < 1 or |z | > 1
2 , X (z) converges to

X (z) =
1

1− 1
2z−1

, ROC: |z | > 1

2
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The Direct z-Transform

Expressing complex variable z in polar form

z = re jθ

where r = |z | and θ = ]z

X (z) =
∞∑

n=−∞
x(n)r−ne−jθn

In ROC of X (z), |X (z)| <∞

|X (z)| =

∣∣∣∣∣
∞∑

n=−∞
x(n)r−ne−jθn

∣∣∣∣∣ ≤
∞∑

n=−∞
|x(n)r−ne−jθn| =

∞∑
n=−∞

|x(n)r−n|

|X (z)| ≤
−1∑

n=−∞
|x(n)r−n|+

∞∑
n=0

∣∣∣∣x(n)

rn

∣∣∣∣ ≤ ∞∑
n=1

|x(−n)rn|+
∞∑
n=0

∣∣∣∣x(n)

rn

∣∣∣∣
If X (z) converges in some region of complex plane, both sums must be
finite in that region
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The Direct z-Transform

Figure 1: Region of convergence for X (z) and its corresponding causal and
anticausal components.
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The Direct z-Transform

Example

Determine z-transform of

x(n) = αnu(n) =

{
αn, n ≥ 0
0, n < 0

We have

X (z) =
∞∑
n=0

αnz−n =
∞∑
n=0

(αz−1)n

x(n) = αnu(n)
z←→ X (z) =

1

1− αz−1
, ROC: |z | > |α|
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The Direct z-Transform

Example (continued)

Figure 2: The exponential signal x(n) = αnu(n) (a), and the ROC of its
z-transform (b).
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The Direct z-Transform

Example

Determine z-transform of

x(n) = −αnu(−n − 1) =

{
0, n ≥ 0
−αn, n ≤ −1

We have

X (z) =
−1∑

n=−∞
(−αn)z−n = −

∞∑
l=1

(α−1z)l

where l = −n

x(n) = −αnu(−n − 1)
z←→ X (z) = − α−1z

1− α−1z
=

1

1− αz−1

ROC: |z | < |α|
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The Direct z-Transform

Example (continued)

Figure 3: Anticausal signal x(n) = −αnu(−n − 1) (a), and the ROC of its
z-transform (b).
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The Direct z-Transform

From two preceding examples

Z{αnu(n)} = Z{−αnu(−n − 1)} =
1

1− αz−1

This implies that a closed-form expression for z-transform does not
uniquely specify the signal in time domain
Ambiguity can be resolved if ROC is also specified
A signal x(n) is uniquely determined by its z-transform X (z) and region
of convergence of X (z)
ROC of a causal signal is exterior of a circle of some radius r2
ROC of an anticausal signal is interior of a circle of some radius r1
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The Direct z-Transform

Example

Determine z-transform of

x(n) = αnu(n) + bnu(−n − 1)

We have

X (z) =
∞∑
n=0

αnz−n +
−1∑

n=−∞
bnz−n =

∞∑
n=0

(αz−1)n +
∞∑
l=1

(b−1z)l

First sum converges if |z | > |α|, second sum converges if |z | < |b|
If |b| < |α|, X (z) does not exist

If |b| > |α|

X (z) =
1

1− αz−1
− 1

1− bz−1
=

b − α
α + b − z − αbz−1

ROC: |α| < |z | < |b|
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The Direct z-Transform

Example (continued)

Figure 4: ROC for z-transform in the example.
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The Direct z-Transform

Table 1: Characteristic families of signals with their corresponding ROCs
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Properties of the z-Transform

Combining several z-transforms, ROC of overall transform is, at least,
intersection of ROCs of individual transforms

Linearity
If

x1(n)
z←→ X1(z)

and

x2(n)
z←→ X2(z)

then

x(n) = a1x1(n) + a2x2(n)
z←→ X (z) = a1X1(z) + a2X2(z)

for any constants a1 and a2
To find z-transform of a signal, express it as a sum of elementary signals
whose z-transforms are already known
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Properties of the z-Transform

Example

Determine z-transform and ROC of

x(n) = [3(2n)− 4(3n)]u(n)

Defining signals x1(n) and x2(n)

x1(n) = 2nu(n) and x2(n) = 3nu(n)
x(n) = 3x1(n)− 4x2(n)

According to linearity property

X (z) = 3X1(z)− 4X2(z)

Recall that

αnu(n)
z←→ 1

1−αz−1 , ROC: |z | > |α|
Setting α = 2 and α = 3

X1(z) = 1
1−2z−1 , ROC: |z | > 2 and X2(z) = 1

1−3z−1 , ROC: |z | > 3

Intersecting ROCs, overall transform is

X (z) = 3
1−2z−1 − 4

1−3z−1 , ROC: |z | > 3
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Properties of the z-Transform

Time shifting
If

x(n)
z←→ X (z)

then

x(n − k)
z←→ z−kX (z)

ROC of z−kX (z) is same as that of X (z) except for z = 0 if k > 0 and
z =∞ if k < 0

17 / 63



Properties of the z-Transform

Scaling in z-domain
If

x(n)
z←→ X (z), ROC: r1 < |z | < r2

then

anx(n)
z←→ X (a−1z), ROC: |a|r1 < |z | < |a|r2

for any constant a, real or complex
Proof

Z{anx(n)} =
∞∑

n=−∞
anx(n)z−n =

∞∑
n=−∞

x(n)(a−1z)−n = X (a−1z)

Since ROC of X (z) is r1 < |z | < r2, ROC of X (a−1z) is

r1 < |a−1z | < r2
or

|a|r1 < |z | < |a|r2
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Properties of the z-Transform

Time reversal
If

x(n)
z←→ X (z), ROC: r1 < |z | < r2

then

x(−n)
z←→ X (z−1), ROC: 1

r2
< |z | < 1

r1

Proof

Z{x(−n)} =
∞∑

n=−∞
x(−n)z−n =

∞∑
l=−∞

x(l)(z−1)−l = X (z−1)

where l = −n
ROC of X (z−1)

r1 < |z−1| < r2 or 1
r2
< |z | < 1

r1
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Properties of the z-Transform

Differentiation in z-domain
If

x(n)
z←→ X (z)

then

nx(n)
z←→ −z dX (z)

dz

Proof

X (z) =
∞∑

n=−∞
x(n)z−n

differentiating both sides

dX (z)

dz
=

∞∑
n=−∞

x(n)(−n)z−n−1 = −z−1
∞∑

n=−∞
[nx(n)]z−n

= −z−1Z{nx(n)}

Both transforms have same ROC
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Properties of the z-Transform

Convolution of two sequences
If

x1(n)
z←→ X1(z)

x2(n)
z←→ X2(z)

then
x(n) = x1(n) ∗ x2(n)

z←→ X (z) = X1(z)X2(z)
ROC of X (z) is, at least, intersection of that for X1(z) and X2(z)
Proof: convolution of x1(n) and x2(n)

x(n) =
∞∑

k=−∞

x1(k)x2(n − k)

z-transform of x(n)

X (z) =
∞∑

n=−∞
x(n)z−n =

∞∑
n=−∞

[ ∞∑
k=−∞

x1(k)x2(n − k)

]
z−n

=
∞∑

k=−∞

x1(k)

[ ∞∑
n=−∞

x2(n − k)z−n

]
= X2(z)

∞∑
k=−∞

x1(k)z−k

= X2(z)X1(z)
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Properties of the z-Transform

Example

Compute convolution x(n) of signals

x1(n) = {1
↑
,−2, 1} and x2(n) =

{
1, 0 ≤ n ≤ 5
0, elsewhere

z-transforms of these signals

X1(z) = 1− 2z−1 + z−2

X2(z) = 1 + z−1 + z−2 + z−3 + z−4 + z−5

Convolution of two signals is equal to multiplication of their transforms

X (z) = X1(z)X2(z) = 1− z−1 − z−6 + z−7

Hence

x(n) = {1
↑
,−1, 0, 0, 0, 0,−1, 1}
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Properties of the z-Transform

Convolution property is one of most powerful properties of z-transform

It converts convolution of two signals (time domain) to multiplication of
their transforms

Computation of convolution of two signals using z-transform
1 Compute z-transforms of signals to be convolved

X1(z) = Z{x1(n)}
X2(z) = Z{x2(n)}

2 Multiply the two z-transforms

X (z) = X1(z)X2(z)

3 Find inverse z-transform of X (z)

x(n) = Z−1{X (z)}
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Properties of the z-Transform

Correlation of two sequences
If

x1(n)
z←→ X1(z)

x2(n)
z←→ X2(z)

then

rx1x2(l) =
∞∑

n=−∞
x1(n)x2(n − l)

z←→ Rx1x2(z) = X1(z)X2(z−1)

Proof

rx1x2(l) = x1(l) ∗ x2(−l)

Using convolution and time-reversal properties

Rx1x2(z) = Z{x1(l)}Z{x2(−l)} = X1(z)X2(z−1)

ROC of Rx1x2(z) is at least intersection of that for X1(z) and X2(z−1)
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Properties of the z-Transform

The initial value theorem
If x(n) is causal (x(n) = 0 for n < 0), then

x(0) = lim
z→∞

X (z)

Proof: since x(n) is causal

X (z) =
∞∑
n=0

x(n)z−n = x(0) + x(1)z−1 + x(2)z−2 + · · ·

as z →∞, z−n → 0 and hence X (z) = x(0)
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Properties of the z-Transform

Table 2: Some common z-transform pairs

Signal, x(n) z-Transform, X (z) ROC

δ(n) 1 All z

u(n) 1
1−z−1 |z | > 1

anu(n) 1
1−az−1 |z | > |a|

nanu(n) az−1

(1−az−1)2
|z | > |a|

−anu(−n − 1) 1
1−az−1 |z | < |a|

−nanu(−n − 1) az−1

(1−az−1)2
|z | < |a|

(cosω0n)u(n) 1−z−1 cosω0
1−2z−1 cosω0+z−2 |z | > 1

(sinω0n)u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

(an cosω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

(an sinω0n)u(n) az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|
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Rational z-Transforms

An important family of z-transforms are those for which X (z) is a
rational function

X (z) is a ratio of two polynomials in z−1 (or z)
Some important issues of rational z-transforms are discussed here
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Poles and Zeros

Zeros of a z-transform X (z) are values of z for which X (z) = 0
Poles of a z-transform are values of z for which X (z) =∞
If X (z) is a rational function (and if a0 6= 0 and b0 6= 0)

X (z) =
B(z)

A(z)
=

b0 + b1z−1 + · · ·+ bMz−M

a0 + a1z−1 + · · ·+ aNz−N
=

∑M
k=0 bkz−k∑N
k=0 akz−k

=
b0z−M

a0z−N
zM + (b1/b0)zM−1 + · · ·+ bM/b0

zN + (a1/a0)zN−1 + · · ·+ aN/a0

=
b0

a0
z−M+N (z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)

= GzN−M
∏M

k=1(z − zk)∏N
k=1(z − pk)

X (z) has M finite zeros at z = z1, z2, . . . , zM
N finite poles at z = p1, p2, . . . , pN

|N −M| zeros if N > M or poles if N < M at z = 0
X (z) has exactly same number of poles as zeros
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Poles and Zeros

Example

Determine pole-zero plot for signal

x(n) = anu(n), a > 0

From Table 2

X (z) =
1

1− az−1
=

z

z − a
, ROC: |z | > a

X (z) has one zero at z1 = 0 and one pole at p1 = a

Figure 5: Pole-zero plot for the causal exponential signal x(n) = anu(n).
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Poles and Zeros

Example

Determine pole-zero plot for signal

x(n) =

{
an, 0 ≤ n ≤ M − 1
0, elsewhere

where a > 0

z-transform of x(n)

X (z) =
M−1∑
n=0

anz−n =
M−1∑
n=0

(az−1)n =
1− (az−1)M

1− az−1
=

zM − aM

zM−1(z − a)

Since a > 0, zM = aM has M roots at

zk = ae j2πk/M , k = 0, 1, . . . ,M − 1
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Poles and Zeros

Example (continued)

Zero z0 = a cancels pole at z = a. Thus

X (z) =
(z − z1)(z − z2) · · · (z − zM−1)

zM−1

which has M − 1 zeros and M − 1 poles

Figure 6: Pole-zero pattern for the finite-duration signal x(n) = an,
0 ≤ n ≤ M − 1 (a > 0), for M = 8.
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Poles and Zeros

Example

Determine z-transform and signal corresponding to following pole-zero
plot

Figure 7: Pole-zero pattern.
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Poles and Zeros

Example (continued)

We use

X (z) = GzN−M
∏M

k=1(z − zk)∏N
k=1(z − pk)

There are two zeros (M = 2) at z1 = 0, z2 = r cosω0

There are two poles (N = 2) at p1 = re jω0 , p2 = re−jω0

X (z) = G
(z − z1)(z − z2)

(z − p1)(z − p2)
= G

z(z − r cosω0)

(z − re jω0)(z − re−jω0)

= G
1− rz−1 cosω0

1− 2rz−1 cosω0 + r2z−2
, ROC: |z | > r

From Table 2 we find that

x(n) = G (rn cosω0n)u(n)
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Poles and Zeros

z-transform X (z) is a complex function of complex variable z
|X (z)| is a real and positive function of z
Since z represents a point in complex plane, |X (z)| is a surface
z-transform

X (z) =
z−1 − z−2

1− 1.2732z−1 + 0.81z−2

has one zero at z1 = 1 and two poles at p1, p2 = 0.9e±jπ/4

Figure 8: Graph of |X (z)| for the above z-transform.
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Pole Location & Time-Domain Behavior for Causal Signals

Characteristic behavior of causal signals depends on whether poles of
transform are contained in region

|z | < 1
or |z | > 1
or on circle |z | = 1

Circle |z | = 1 is called unit circle

If a real signal has a z-transform with one pole, this pole has to be real

The only such signal is the real exponential

x(n) = anu(n)
z←→ X (z) =

1

1− az−1
, ROC: |z | > |a|

having one zero at z1 = 0 and one pole at p1 = a on real axis
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Pole Location & Time-Domain Behavior for Causal Signals

Figure 9: Time-domain behavior of a single-real-pole causal signal as a function
of the location of the pole with respect to the unit circle.
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Pole Location & Time-Domain Behavior for Causal Signals

A causal real signal with a double real pole has the form

x(n) = nanu(n)
z←→ X (z) =

az−1

(1− az−1)2
, ROC: |z | > |a|

In contrast to single-pole signal, a double real pole on unit circle results
in an unbounded signal
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Pole Location & Time-Domain Behavior for Causal Signals

Figure 10: Time-domain behavior of causal signals corresponding to a double
(m = 2) real pole, as a function of the pole location.
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Pole Location & Time-Domain Behavior for Causal Signals

Configuration of poles as a pair of complex-conjugates results in an
exponentially weighted sinusoidal signal

x(n) = (an cosω0n)u(n)
z←→ X (z) =

1− az−1 cosω0

1− 2az−1 cosω0 + a2z−2

ROC: |z | > |a|

x(n) = (an sinω0n)u(n)
z←→ X (z) =

az−1 sinω0

1− 2az−1 cosω0 + a2z−2

ROC: |z | > |a|

Distance r of poles from origin determines envelope of sinusoidal signal
Angle ω0 with real positive axis determines relative frequency
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Pole Location & Time-Domain Behavior for Causal Signals

Figure 11: A pair of complex-conjugate poles corresponds to causal signals with
oscillatory behavior. 40 / 63



Pole Location & Time-Domain Behavior for Causal Signals

Figure 12: Causal signal corresponding to a double pair of complex-conjugate
poles on the unit circle.

In summary
Causal real signals with simple real poles or simple complex-conjugate
pairs of poles, inside or on unit circle, are always bounded in amplitude
A signal with a pole, or a complex-conjugate pair of poles, near origin
decays more rapidly than one near (but inside) unit circle

Thus, time behavior of a signal depends strongly on location of its poles
relative to unit circle

Zeros also affect behavior of a signal but not as strongly as poles
E.g., for sinusoidal signals, presence and location of zeros affects only
their phase
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Inversion of the z-Transform

There are three methods for evaluation of inverse z-transform
1 Direct evaluation by contour integration
2 Expansion into a series of terms, in variables z and z−1

3 Partial-fraction expansion and table lookup

Inverse z-transform by contour integration

x(n) =
1

2πj

∮
C

X (z)zn−1dz

Integral is a contour integral over a closed path C
C encloses origin and lies within ROC of X (z)

Figure 13: Contour C . 42 / 63



The Inverse z-Transform by Power Series Expansion

Given X (z) with its ROC, expand it into a power series of form

X (z) =
∞∑

n=−∞
cnz−n

By uniqueness of z-transform, x(n) = cn for all n
When X (z) is rational, expansion can be performed by long division

Long division method becomes tedious when n is large
Although this method provides a direct evaluation of x(n), a closed-form
solution is not possible
Hence this method is used only for determining values of first few
samples of signal

43 / 63



The Inverse z-Transform by Power Series Expansion

Example

Determine inverse z-transform of

X (z) =
1

1− 1.5z−1 + 0.5z−2

1 When ROC: |z | > 1
2 When ROC: |z | < 0.5

ROC: |z | > 1
Since ROC is exterior of a circle, x(n) is a causal signal. Thus we seek
negative powers of z by dividing numerator of X (z) by its denominator

X (z) =
1

1− 3
2z−1 + 1

2z−2
= 1 +

3

2
z−1 +

7

4
z−2 +

15

8
z−3 +

31

16
z−4 + · · ·

x(n) = {1
↑
,

3

2
,

7

4
,

15

8
,

31

16
, . . .}
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The Inverse z-Transform by Power Series Expansion

Example (continued)

ROC: |z | < 0.5
Since ROC is interior of a circle, x(n) is anticausal. To obtain positive
powers of z , write the two polynomials in reverse order and then divide

X (z) =
1

1− 3
2z−1 + 1

2z−2
= 2z2 + 6z3 + 14z4 + 30z5 + 62z6 + · · ·

x(n) = {· · · 62, 30, 14, 6, 2, 0, 0
↑
}
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The Inverse z-Transform by Partial-Fraction Expansion

In table lookup method, express X (z) as a linear combination

X (z) = α1X1(z) + α2X2(z) + · · ·+ αKXK (z)

X1(z), . . . ,XK (z) are expressions with inverse transforms
x1(n), . . . , xK (n) available in a table of z-transform pairs
Using linearity property

x(n) = α1x1(n) + α2x2(n) + · · ·+ αKxK (n)

If X (z) is a rational function

X (z) =
B(z)

A(z)
=

b0 + b1z−1 + · · ·+ bMz−M

a0 + a1z−1 + · · ·+ aNz−N

dividing both numerator and denominator by a0

X (z) =
B(z)

A(z)
=

b0 + b1z−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

This form of rational function is called proper if aN 6= 0 and M < N
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The Inverse z-Transform by Partial-Fraction Expansion

An improper rational function (M ≥ N) can always be written as sum
of a polynomial and a proper rational function

Example

Express improper rational function

X (z) =
1 + 3z−1 + 11

6 z−2 + 1
3z−3

1 + 5
6z−1 + 1

6z−2

in terms of a polynomial and a proper function

Terms z−2 and z−3 should be eliminated from numerator
Do long division with the two polynomials written in reverse order
Stop division when order of remainder becomes z−1

X (z) = 1 + 2z−1 +
1
6z−1

1 + 5
6z−1 + 1

6z−2
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The Inverse z-Transform by Partial-Fraction Expansion

Any improper rational function (M ≥ N) can be expressed as

X (z) =
B(z)

A(z)
= c0 + c1z−1 + · · ·+ cM−Nz−(M−N) +

B1(z)

A(z)

Inverse z-transform of the polynomial can easily be found by inspection
We focus our attention on inversion of proper rational transforms

1 Perform a partial fraction expansion of proper rational function
2 Invert each of the terms
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The Inverse z-Transform by Partial-Fraction Expansion

Let X (z) be a proper rational function (aN 6= 0 and M < N)

X (z) =
B(z)

A(z)
=

b0 + b1z−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

Eliminating negative powers of z

X (z) =
b0zN + b1zN−1 + · · ·+ bMzN−M

zN + a1zN−1 + · · ·+ aN

Since N > M, the function

X (z)

z
=

b0zN−1 + b1zN−2 + · · ·+ bMzN−M−1

zN + a1zN−1 + · · ·+ aN

is also proper
To perform a partial-fraction expansion, this function should be
expressed as a sum of simple fractions
First factor denominator polynomial into factors that contain poles
p1, p2, . . . , pN of X (z)
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The Inverse z-Transform by Partial-Fraction Expansion

Distinct poles
Suppose poles p1, p2, . . . , pN are all different. We seek expansion

X (z)

z
=

A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN

To determine coefficients A1,A2, . . . ,AN , multiply both sides by each of
terms (z − pk), k = 1, 2, . . . ,N, and evaluate resulting expressions at
corresponding pole positions, p1, p2, . . . , pN

(z − pk)X (z)

z
=

(z − pk)A1

z − p1
+ · · ·+ Ak + · · ·+ (z − pk)AN

z − pN

Ak =
(z − pk)X (z)

z

∣∣∣∣
z=pk

, k = 1, 2, . . . ,N
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The Inverse z-Transform by Partial-Fraction Expansion

Example

Determine partial-fraction expansion of

X (z) =
1 + z−1

1− z−1 + 0.5z−2

Eliminate negative powers by multiplying by z2

X (z)

z
=

z + 1

z2 − z + 0.5
−→ p1 =

1

2
+ j

1

2
and p2 =

1

2
− j

1

2

p1 6=p2−−−→ X (z)

z
=

z + 1

(z − p1)(z − p2)
=

A1

z − p1
+

A2

z − p2

A1 =
(z − p1)X (z)

z

∣∣∣∣
z=p1

=
z + 1

z − p2

∣∣∣∣
z=p1

=
1
2 + j 12 + 1

1
2 + j 12 −

1
2 + j 12

=
1

2
− j

3

2

A2 =
(z − p2)X (z)

z

∣∣∣∣
z=p2

=
z + 1

z − p1

∣∣∣∣
z=p2

=
1
2 − j 12 + 1

1
2 − j 12 −

1
2 − j 12

=
1

2
+ j

3

2
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The Inverse z-Transform by Partial-Fraction Expansion

Multiple-order poles
If X (z) has a pole of multiplicity m (there is factor (z − pk)m in
denominator), partial-fraction expansion must contain the terms

A1k

z − pk
+

A2k

(z − pk)2
+ · · ·+ Amk

(z − pk)m

Coefficients {Aik} can be evaluated through differentiation
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The Inverse z-Transform by Partial-Fraction Expansion

Example

Determine partial-fraction expansion of

X (z) =
1

(1 + z−1)(1− z−1)2

Expressing in terms of positive powers of z

X (z)

z
=

z2

(z + 1)(z − 1)2

X (z) has a simple pole at p1 = −1 and a double pole at p2 = p3 = 1

X (z)

z
=

z2

(z + 1)(z − 1)2
=

A1

z + 1
+

A2

z − 1
+

A3

(z − 1)2

A1 =
(z + 1)X (z)

z

∣∣∣∣
z=−1

=
1

4
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The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

A3 =
(z − 1)2X (z)

z

∣∣∣∣
z=1

=
1

2

To obtain A2

(z − 1)2X (z)

z
=

(z − 1)2

z + 1
A1 + (z − 1)A2 + A3

Differentiating both sides and evaluating at z = 1, A2 is obtained

A2 =
d

dz

[
(z − 1)2X (z)

z

]
z=1

=
3

4
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The Inverse z-Transform by Partial-Fraction Expansion

Having performed partial-fraction expansion, final step in inversion is
as follows

If poles are distinct

X (z)

z
=

A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN

X (z) = A1
1

1− p1z−1
+ A2

1

1− p2z−1
+ · · ·+ AN

1

1− pNz−1

x(n) = Z−1{X (z)} is obtained by inverting each term and taking the
corresponding linear combination
From table 2

Z−1
{

1

1− pkz−1

}
=

{
(pk)nu(n), if ROC:|z | > |pk | (causal)
−(pk)nu(−n − 1), if ROC:|z | < |pk | (anticausal)

If x(n) is causal, ROC is |z | > pmax , where
pmax = max{|p1|, |p2|, . . . , |pN |}

In this case all terms in X (z) result in causal signal components

x(n) = (A1pn
1 + A2pn

2 + · · ·+ ANpn
N)u(n)

55 / 63



The Inverse z-Transform by Partial-Fraction Expansion

If all poles are distinct but some of them are complex, and if signal
x(n) is real, complex terms can be reduced into real components

If pj is a pole, its complex conjugate p∗j is also a pole
If x(n) is real, the polynomials in X (z) have real coefficients
If a polynomial has real coefficients, its roots are either real or occur in
complex-conjugate pairs

Their corresponding coefficients in partial-fraction expansion are also
complex-conjugates

Contribution of two complex-conjugate poles is
xk(n) = [Ak(pk)n + A∗k(p∗k )n)]u(n)

Expressing Aj and pj in polar form
Ak = |Ak |e jαk and pk = rke jβk

which gives
xk(n) = |Ak |rnk [e j(βkn+αk ) + e−j(βkn+αk )]u(n)

or xk(n) = 2|Ak |rnk cos(βkn + αk)u(n)
Thus

Z−1
(

Ak

1− pkz−1
+

A∗k
1− p∗k z−1

)
= 2|Ak |rnk cos(βkn + αk)u(n)

if ROC is |z | > |pk | = rk
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The Inverse z-Transform by Partial-Fraction Expansion

In case of multiple poles, either real or complex, inverse transform of
terms of the form A/(z − pk)n is required

In case of a double pole, from table 2

Z−1
{

pz−1

(1− pz−1)2

}
= npnu(n)

provided that ROC is |z | > |p|
In case of poles with higher multiplicity, multiple differentiation is used
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The Inverse z-Transform by Partial-Fraction Expansion

Example

Determine inverse z-transform of

X (z) =
1

1− 1.5z−1 + 0.5z−2

1 If ROC: |z | > 1
2 If ROC: |z | < 0.5
3 If ROC: 0.5 < |z | < 1

Partial-fraction expansion for X (z)

X (z) =
z2

z2 − 1.5z + 0.5

p1=1−−−−→
p2=0.5

X (z)

z
=

z

(z − 1)(z − 0.5)
=

A1

z − 1
+

A2

z − 0.5

A1 =
(z − 1)X (z)

z

∣∣∣∣
z=1

= 2

A2 =
(z − 0.5)X (z)

z

∣∣∣∣
z=0.5

= −1
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The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

X (z) =
2

1− z−1
− 1

1− 0.5z−1

When ROC is |z | > 1, x(n) is causal and both terms in X (z) are causal

1

1− pkz−1
z←→ (pk)nu(n)

x(n) = 2(1)nu(n)− (0.5)nu(n) = (2− 0.5n)u(n)

When ROC is |z | < 0.5, x(n) is anticausal and both terms in X (z) are
anticausal

1

1− pkz−1
z←→ −(pk)nu(−n − 1)

x(n) = [−2 + (0.5)n]u(−n − 1)
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The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

When ROC is 0.5 < |z | < 1 (ring), signal x(n) is two-sided
One of the terms corresponds to a causal signal and the other to an
anticausal signal
Since the ROC is overlapping of |z | > 0.5 and |z | < 1, pole p2 = 0.5
provides causal part and pole p1 = 1 anticausal

x(n) = −2(1)nu(−n − 1)− (0.5)nu(n)
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The Inverse z-Transform by Partial-Fraction Expansion

Example

Determine causal signal x(n) whose z-transform is

X (z) =
1 + z−1

1− z−1 + 0.5z−2

We have already obtained partial-fraction expansion as

X (z) =
A1

1− p1z−1
+

A2

1− p2z−1
−→ A1 = A∗2 =

1

2
−j

3

2
and p1 = p∗2 =

1

2
+j

1

2

For a pair of complex-conjugate poles (Ak = |Ak |e jαk and pk = rke jβk )

Z−1
(

Ak

1− pkz−1
+

A∗k
1− p∗k z−1

)
= 2|Ak |rnk cos(βkn + αk)u(n)

A1 = (
√

10/2)e−j71.565 and p1 = (1/
√

2)e jπ/4

x(n) =
√

10(1/
√

2)n cos(πn/4− 71.565◦)u(n)
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The Inverse z-Transform by Partial-Fraction Expansion

Example

Determine causal signal x(n) having z-transform

X (z) =
1

(1 + z−1)(1− z−1)2

We have already obtained partial-fraction expansion as

X (z) =
1

4

1

1 + z−1
+

3

4

1

1− z−1
+

1

2

z−1

(1− z−1)2

For causal signals

1

1− pz−1
z←→ (p)nu(n) and

pz−1

(1− pz−1)2
z←→ npnu(n)

x(n) =
1

4
(−1)nu(n) +

3

4
u(n) +

1

2
nu(n) =

[
1

4
(−1)n +

3

4
+

n

2

]
u(n)
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