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The Direct z-Transform

o z-transform of x(n) is defined as power series:

[ee)

X(2)= > x(n)z"

n=-—o0

where z is a complex variable
o For convenience
X(z) = Z{x(n)}
x(n) «— X(2)
@ Since z-transform is an infinite power series, it exists only for those
values of z for which this series converges

o Region of convergence (ROC) of X(z) is set of all values of z for
which X(z) attains a finite value
o Any time we cite a z-transform, we should also indicate its ROC

@ ROC of a finite-duration signal is entire z-plane except possibly points
z=0and/or z = 0
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The Direct z-Transform

@ Determine z-transforms of following finite-duration signals
e x(n) = {%,2,5,7,0, 1}
X(z) =142z 452247734275
ROC: entire z-plane except z =0
e x(n) = {1,2,?,7,0, 1}
X(z)=22+2z+5+7z71+ 273
ROC: entire z-plane except z =0 and z = c©
e x(n) =4d(n)
X(z) =1[i.e., 6(n) <= 1], ROC: entire z-plane
o x(n)=6d(n—k), k>0
X(z) =z [i.e,, 6(n— k) <> z7K], ROC: entire z-plane except z = 0
o x(n)=4d(n+ k), k>0
X(z) = z* [i.e., 6(n+ k) += z¥], ROC: entire z-plane except z = oo

’
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The Direct z-Transform

@ Determine z-transform of

x(n) = (3)"u(n)

e z-transform of x(n)

1 1 1
X(2)=1+3z7+(GPz 2 +(5) 2"+
o o
_ 1 n —n _ 1 —1\n
- Z 2 - 2(22 )
n=0 n=0

For |2z71| < 1 or |z| > §, X(z) converges to

1 1
X(z)= ——-——, ROC: -
@)= RG>




The Direct z-Transform

o Expressing complex variable z in polar form

z = rel?
where r = |z| and 0 = £z
X(z)= > x(n)r—"e o

e In ROC of X(z), |X(2)| < o0

X(@) =| 3 x()rneion Z x(m)r e = 3 [x()r
1

X@I< S e+ Y [0 Z|x( n)r"|+2 x(n)
n=—o00 n=0

If X(z) converges in some region of complex plane, both sums must be
finite in that region
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The Direct z-Transform

Figure 1. Region of convergence for X(z) and its corresponding causal and

anticausal components.
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The Direct z-Transform

@ Determine z-transform of

@ We have - -
X(z) = Za”z—" = Z(az_l)"
n=0 n=0

1

1——042_1, ROC: |Z| > |C¥|
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The Direct z-Transform

Example (continued)

Im(z)

x(n)

Re(z)

y
NI 7

Figure 2: The exponential signal x(n) = a"u(n) (a), and the ROC of its
z-transform (b).
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The Direct z-Transform

@ Determine z-transform of

n o O, n Z 0
x(n) = —-a"u(-n—-1) = { Can n< -1
@ We have .
X(@z)= > (—aMz"==> (a7'2)
n=—00 =1
where | = —n
-1
z 1
x(n) = —a"u(—n—1) +— X(z) = a2

1—a1lz 1—azl

ROC: |z| < |a




The Direct z-Transform

Example (continued)

Im(z)
x(n)

-3 -2-10 ol

'”HHHNH .

() (b)

Figure 3: Anticausal signal x(n) = —a"u(—n — 1) (a), and the ROC of its
z-transform (b).
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The Direct z-Transform

@ From two preceding examples

Z{a"u(n)} = Z{~a"u(~n— 1)} = T

o This implies that a closed-form expression for z-transform does not
uniquely specify the signal in time domain

o Ambiguity can be resolved if ROC is also specified

o A signal x(n) is uniquely determined by its z-transform X(z) and region
of convergence of X(z)

o ROC of a causal signal is exterior of a circle of some radius r

o ROC of an anticausal signal is interior of a circle of some radius ry
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The Direct z-Transform

@ Determine z-transform of
x(n) = a"u(n) + b"u(—n—1)

@ We have
[e’e) -1 (o) [e'e]
X(2)=) a"z"+ > bz"=) (az )"+ (b7'2)
n=0 n=—o00 n=0 1=1

First sum converges if |z| > |«, second sum converges if |z| < |b]
o If |b] < |a|, X(z) does not exist
o If |b| > |«
1 1 b—a

X = — =
(2) l—az! 1—bz! a+b—z—abz?

ROC: |a| < |z| < |b]
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The Direct z-Transform

Example (continued)

Im(z)

V4 7

. §
\o u

V X(z) does not exist

Re(z)

ROC for X(z)
(b)

Figure 4: ROC for z-transform in the example.
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The Direct z-Transform

Table 1: Characteristic families of signals with their corresponding ROCs

Signal  ROC
Finite-Duration Signals

Causal
7
/ Entire z-planc
I :
Te exceptz=0
0 n 4
Anticausal
Z
T T Entirc z-planc
t exceptz=co
0 n 7,
Two-sided
7
Entire z-planc
?TI TTTQO exceptz=0
0 n 7, andi=w
Infinite-Duration Signals
Causal
7
TTTTV >
0 . 7
Anticausal
A T lel<ry
0 n
Two-sided
: mT[Tn.-»

0 n
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Properties of the z-Transform

o Combining several z-transforms, ROC of overall transform is, at least,
intersection of ROCs of individual transforms
o Linearity

o If
x1(n) <= Xi(z)
and
x2(n) <= Xo(z)
then

x(n) = 31X1(n) + 82X2(I’I) PN X(Z) = 31X1(Z) + 32X2(Z)
for any constants a; and a;
o To find z-transform of a signal, express it as a sum of elementary signals
whose z-transforms are already known
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Properties of the z-Transform

@ Determine z-transform and ROC of
x(n) = [3(2") — 4(3")]u(n)
o Defining signals x;(n) and x2(n)
x1(n) =2"u(n) and xz(n) =3"u(n)
x(n) = 3x1(n) — 4x2(n)
According to linearity property
X(z) =3X1(z) — 4X2(2)
Recall that
a"u(n) «= —L ., ROC: |z| > |qf
Setting « =2 and o = 3
Xi(z) = #f, ROC: |z] >2 and X»(z) = ﬁf, ROC: |z| >3
Intersecting ROCs, overall transform is

X(z) = 2 — 2=, ROC:|z| >3
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Properties of the z-Transform

o Time shifting
o If
x(n) <X X(2)
then
x(n— k) <% z7KX(2)
o ROC of z7%X(z) is same as that of X(z) except for z =0 if k > 0 and
z=o00if k<0
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Properties of the z-Transform

@ Scaling in z-domain
o If
x(n) «Z» X(z), ROC:n <|z|<n
then
a"x(n) +Z= X(a~'z), ROC:|aln < |z| < |a|r
for any constant a, real or complex
o Proof

oo oo

Z{a"x(n)} = Z a"x(n)z7" = Z x(n)(a7tz)™" = X(a'z)
n=-—o0 n=—o00
Since ROC of X(z) is < |z| < r2, ROC of X(a71z) is
n<lalzl<n
or
lajrn < |z| < |a|r
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Properties of the z-Transform

o Time reversal

o If
x(n) <2 X(z), ROC:n < |z| < nr
then
x(—n) <= X(z71), ROC: i<z <+
o Proof
Z{x(=n)}= > x(=mz"= > x((zH) ' =X(z)
n=—o0 I=—o00
where | = —n

ROC of X(z71)

n<l|z7l<rn or r12<|z|<r—11
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Properties of the z-Transform

o Differentiation in z-domain

o If
x(n) <X X(2)
then
nx(n) <> —z%ﬁz)
o Proof -
X(z) = Z x(n)z™"
differentiating both sides
dX(z) - -1 e —n
T X A = Y (ol

= —z71Z{nx(n)}

o Both transforms have same ROC
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Properties of the z-Transform

o Convolution of two sequences
o If
x1(n) <= Xi(z)
x2(n) (i) Xz(Z)
then
x(n) = x1(n) * xo(n) <= X(2) = Xi(2)Xa(2)
ROC of X(z) is, at least, intersection of that for X1(z) and X(z)
o Proof: convolution of x;(n) and xz(n)

o

x(n) = Z x1(k)xa(n — k)

k=—o0

z-transform of x(n)

X(z) = Z x(n)z™" = Z [ Z Xl(k)Xz(n—k)‘| z "

n=—oc n=—o00 Lk=—o0
= Z x1(k) l Z xo(n—k)z7"| = X(2) Z xi(k)z*
k=—00 n=—o00 k=—o0

= X2(Z)X1(Z)
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Properties of the z-Transform

e Compute convolution x(n) of signals

I, 0<n<5
xi(n) = {%,—2’1} s el = { 0, elsewhere

@ z-transforms of these signals

Xi(z)=1-2z"1 4272
Xo(z) =14z 42242342442

@ Convolution of two signals is equal to multiplication of their transforms
X(z)=X1(2)X2(z2) =1 -zt =2z 04277
Hence
x(n) = {%, -1,0,0,0,0,—1,1}
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Properties of the z-Transform

o Convolution property is one of most powerful properties of z-transform

o It converts convolution of two signals (time domain) to multiplication of
their transforms

o Computation of convolution of two signals using z-transform
© Compute z-transforms of signals to be convolved
Xi(z) = Z{xa(n)}
Xa(z) = Z{xo(n)}
@ Multiply the two z-transforms
X(z) = X1(2)X2(2)
© Find inverse z-transform of X(z)
x(n) = Z74{X(2)}
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Properties of the z-Transform

o Correlation of two sequences

o If
x1(n) < X1(z)
xa(n) <2 Xo(z)
then
rao() = D xa(nx(n—1) < Ryy(2) = Xu(2)Xa(z )
o Proof

Fae (1) = xa () * x(=1)
Using convolution and time-reversal properties

Rax(2) = Z{a(N}Z{x(=1)} = Xu(2)X2(z7)
ROC of Ry,x,(2) is at least intersection of that for Xi(z) and Xp(z71)
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Properties of the z-Transform

@ The initial value theorem
o If x(n) is causal (x(n) =0 for n < 0), then

x(0) = lim X(z)

Z—00
o Proof: since x(n) is causal
o0
Zx n)z=" = x(0) + x(1)z7* + x(2)z72 +
n=0

as z — 00,z " — 0 and hence X(z) = x(0)
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Properties of the z-Transform

Table 2: Some common z-transform pairs

Signal, x(n) z-Transform, X(z) ROC

d(n) 1 All z

u(n) == 21> 1
a"u(n) Tar T 2| > |a|
na"u(n) % 2| > |a|
—a"u(—n—1) T 2| <
—na"u(—n—1) % |z <al
(coswon)u(n) et 2> 1
(sinwon)u(n) 1—2zz:11c2i:a%0+z*2 |2l > 1
(a" coswon)u(n) 1_231;312;:53;‘_”32272 2| > |a
(a" sinwon)u(n) az__ sinwg 2| > |a|

1—2az— 1 coswg+a’z—?2
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Rational z-Transforms

@ An important family of z-transforms are those for which X(z) is a
rational function

o X(z) is a ratio of two polynomials in z=! (or z)
o Some important issues of rational z-transforms are discussed here
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Poles and Zeros

o Zeros of a z-transform X(z) are values of z for which X(z) =0
o Poles of a z-transform are values of z for which X(z) =
o If X(z) is a rational function (and if ap # 0 and by # 0)

B(z) bo+biz 4t byz M SV bz

X(z) = = =
(2) A(z)  a+arizl+--+ayz N ZLVZO azk
_ boz -M M+(b1/bo)ZM 1—|— +bM/b0
- aoz—N N 4+ (al/ao)zN 1. 4 aN/ao
_bo_min(z—2)(z—2)- (Z — zm)
 ap (z=p1)(z—p2)---(z—pn)
— GNM Hk 1(z — )
Hk 1(zZ = pk)
X(z) has M finite zeros at z = 7,22, ..., Zm

N finite poles at z = p1, po, ..., PN
[N — M| zeros if N > M or polesif N< Matz=0
X(z) has exactly same number of poles as zeros
28/63



Poles and Zeros

@ Determine pole-zero plot for signal
x(n) =a"u(n), a>0

@ From Table 2

1 z
X(z) = P ROC: |z| > a

X(z) has one zero at z; = 0 and one pole at p; = a

1Im(z)

Figure 5: Pole-zero plot for the causal exponential signal x(n) = a"u(n).
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Poles and Zeros

@ Determine pole-zero plot for signal

) = a", 0<n<M-1
| 0, elsewhere

where a > 0

e z-transform of x(n)

M M _ oM

M—-1 o i (az
x<z)=ZOaz Z<az )" = ST Mz )

Since a > 0, zM = aM has M roots at

ze = ae?™k M k=0,1,.... M—1
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Poles and Zeros

Example (continued)

@ Zero zy = a cancels pole at z = a. Thus

x(o)= 22z 2

which has M — 1 zeros and M — 1 poles

Tm(z)

\g\ /Q/ Re(®

Figure 6: Pole-zero pattern for the finite-duration signal x(n) = a”,
0<n<M-1(a>0),for M=8.
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Poles and Zeros

Example

@ Determine z-transform and signal corresponding to following pole-zero
plot

Re(z)

Figure 7: Pole-zero pattern.
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Poles and Zeros

Example (continued)

o We use y
X(z) = GzN-M HI/:I:1(Z — )
[Tx=1(z — px)
There are two zeros (M = 2) at z; = 0,122 = rcoswp
There are two poles (N = 2) at p; = re/*°, pp = re™/“0

X(z) = G(z_zl)(z_z2) _ z(z — rcoswp)

(Z - pl)(z - PZ) N (Z — rej‘*’O)(z = re—J'Wo)
1 — rz~ 1 coswy

=G ROC:
1—2rzlcoswy + r2z—2’ |z| > r

From Table 2 we find that

x(n) = G(r" coswon)u(n)
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Poles and Zeros

o z-transform X(z) is a complex function of complex variable z
@ |X(2)| is a real and positive function of z

@ Since z represents a point in complex plane,
@ z-transform

X(z)| is a surface

z7l— 772

X(2)

T 11273221 408122

has one zero at z; = 1 and two poles at p1, p» = 0.9¢
= 1|X(z)|

+jm/4

Figure 8: Graph of | X(z)| for the above z-transform.
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Pole Location & Time-Domain Behavior for Causal Signals

o Characteristic behavior of causal signals depends on whether poles of
transform are contained in region

° z| <1
o or|z| >1
e or on circle |z| =1
o Circle |z| =1 is called unit circle
o If a real signal has a z-transform with one pole, this pole has to be real
e The only such signal is the real exponential

1

x(n) = a"u(n) += X(z) = [pupe——

ROC: |z| > |4

having one zero at z; = 0 and one pole at p; = a on real axis

35/63



Pole Location & Time-Domain Behavior for Causal Signals
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Figure 9: Time-domain behavior of a single-real-pole causal signal as a function
of the location of the pole with respect to the unit circle.
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Pole Location & Time-Domain Behavior for Causal Signals

@ A causal real signal with a double real pole has the form

az_1

x(n) = na"u(n) < X(z) = m,

ROC: |z| > |a|

o In contrast to single-pole signal, a double real pole on unit circle results
in an unbounded signal
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Pole Loc

ation & Time-Domain Behavior for Causal Signals
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Figure 10:

Time-domain behavior of causal signals corresponding to a double
(m = 2) real pole, as a function of the pole location.




Pole Location & Time-Domain Behavior for Causal Signals

o Configuration of poles as a pair of complex-conjugates results in an
exponentially weighted sinusoidal signal

1—az lcoswy

z
x(n) = (8" coswon)u(n) «+— X(z) = 1 22z Tcosoy | 2222

ROC: |z| > |a|

az "1 sinwp

x(n) = (a"sinwon)u(n) <<= X(z) =

1 —2az lcoswy + a?z—2
ROC: |z| > |a|

o Distance r of poles from origin determines envelope of sinusoidal signal
o Angle wp with real positive axis determines relative frequency
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Pole Location & Time-Domain Behavior for Causal Signals

z-plane

2plane

plane

Figure 11: A pair of complex-conjugate poles corresponds to causal signals with

oscillatory behavior.
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Pole Location & Time-Domain Behavior for Causal Signals

z-plane

»

Figure 12: Causal signal corresponding to a double pair of complex-conjugate
poles on the unit circle.

@ In summary
o Causal real signals with simple real poles or simple complex-conjugate
pairs of poles, inside or on unit circle, are always bounded in amplitude
o A signal with a pole, or a complex-conjugate pair of poles, near origin
decays more rapidly than one near (but inside) unit circle
@ Thus, time behavior of a signal depends strongly on location of its poles
relative to unit circle
o Zeros also affect behavior of a signal but not as strongly as poles
o E.g., for sinusoidal signals, presence and location of zeros affects only
their phase 63



Inversion of the z-Transform

@ There are three methods for evaluation of inverse z-transform
@ Direct evaluation by contour integration
@ Expansion into a series of terms, in variables z and z~!
© Partial-fraction expansion and table lookup

o Inverse z-transform by contour integration

x(n) = L fc X(2)z"tdz

2mj

o Integral is a contour integral over a closed path C
o C encloses origin and lies within ROC of X(z)

Im(z)

Figure 13: Contour C.
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The Inverse z-Transform by Power Series Expansion

e Given X(z) with its ROC, expand it into a power series of form

X(z) = Z cpz™"

n=—oo

o By uniqueness of z-transform, x(n) = ¢, for all n
o When X(z) is rational, expansion can be performed by long division
o Long division method becomes tedious when n is large
o Although this method provides a direct evaluation of x(n), a closed-form
solution is not possible
o Hence this method is used only for determining values of first few
samples of signal
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The Inverse z-Transform by Power Series Expansion

@ Determine inverse z-transform of

1
1-15z714+0.5z72

X(z) =

@ When ROC: |z| > 1
@ When ROC: |z| < 0.5
e ROC: |z] > 1
Since ROC is exterior of a circle, x(n) is a causal signal. Thus we seek
negative powers of z by dividing numerator of X(z) by its denominator

1 3 7 15 31
X(z) = =14+ 2,71 b D ST
(2) 1_ _1+1_2 +2Z —|—4 +8 +16 +
37 15 31
:1———— ..
(=502 58
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The Inverse z-Transform by Power Series Expansion

Example (continued)

e ROC: |z| <05
Since ROC is interior of a circle, x(n) is anticausal. To obtain positive
powers of z, write the two polynomials in reverse order and then divide

272 4+ 62° + 14z* +302° + 622° + - - -
%z‘z - %z" +1 )1

1-3z+27°
3z —272
37 -9z2+62°
77> —67°
72> —212° + 14z*
1523 — 1424
152° — 4524 +302°

317% - 307°

1
_ 3,1, 1_—
1-35z27"+ 52

x(n) ={---62,30,14,6,2,0, ?}

X(z) =

2 =272+ 623+ 147* +302° + 6225 + - ..

75703



The Inverse z-Transform by Partial-Fraction Expansion

@ In table lookup method, express X(z) as a linear combination
X(z) = aa Xi(z) + apXo(2) + - - - + ax Xk(2)
o Xi(z),...,Xk(z) are expressions with inverse transforms
xy(n),...,xk(n) available in a table of z-transform pairs
o Using linearity property
x(n) = arx1(n) + aoxa(n) + - - - + akxk(n)

o If X(z) is a rational function

B(z) by+biz 4+ byz M

X = =
(2) A(z) a+aizt+---+ayz N

dividing both numerator and denominator by ag

B(z)  bo+ bzl 4+ 4 byz M
Az)  l1+az7l+.--+ayz N

X(z) =

o This form of rational function is called proper if ay =20 and M < N
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The Inverse z-Transform by Partial-Fraction Expansion

@ An improper rational function (M > N) can always be written as sum
of a polynomial and a proper rational function

@ Express improper rational function

R e s

B =113 —1+1—2

in terms of a polynomial and a proper function

@ Terms z=2 and z73 should be eliminated from numerator
Do long division with the two polynomials written in reverse order
Stop division when order of remainder becomes z~!
1_-1
52
5,-1 41,2
1+3z " +52

X(z)=1+2z"1+
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The Inverse z-Transform by Partial-Fraction Expansion

@ Any improper rational function (M > N) can be expressed as

M-N) | Bi(2)

B
X(z) = # f— C0+Clz_1+"'+CM—NZ_(

() A(z)

o Inverse z-transform of the polynomial can easily be found by inspection
o We focus our attention on inversion of proper rational transforms

@ Perform a partial fraction expansion of proper rational function
@ Invert each of the terms

4863



The Inverse z-Transform by Partial-Fraction Expansion

o Let X(z) be a proper rational function (ay # 0 and M < N)
B bo + biz7t + -+ byz M
X(z) = (Z): o+ D01z "+ -+ byz
A(z) 1+az7 4+ +ayz N

Eliminating negative powers of z

bOZN + blzN_l + -+ szN—M
X(z) =
N+ aizN-1 ... +ay
Since N > M, the function

X(2) . bozN=1 4+ byzN=2 4 ... 4 pyzN-M-1
z ZN 4 azN-1 4+ ... 4 ay
is also proper

o To perform a partial-fraction expansion, this function should be
expressed as a sum of simple fractions

o First factor denominator polynomial into factors that contain poles
P1, P2, -5 PN of X(Z)
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The Inverse z-Transform by Partial-Fraction Expansion

o Distinct poles

o Suppose poles p1, po, ..., py are all different. We seek expansion
X(Z) - Al A2 + AN
z zZ—p1 Z—p2 Z— PN
To determine coefficients A1, A, ..., Ay, multiply both sides by each of
terms (z — px),k =1,2,..., N, and evaluate resulting expressions at
corresponding pole positions, p1, p2, - .., pn
z— p)X(z z— px)A z— px)A
(z=pIX(@) _(z=pdA o, (2 pdAn
z zZ—p1 Z— PN
— pr)X
ao= FoPIX@) s N
z
Z=Pk

50 /63



The Inverse z-Transform by Partial-Fraction Expansion

@ Determine partial-fraction expansion of

il 4k z="

)= 1—z7140.5z2

@ Eliminate negative powers by multiplying by z?

X(z)  z+1 N _1+.1 and 1 1
z  2Z_zto05 PPT273 =5 =5
pe, X(2) _ z+1 _ M " Az

z (z=p)(z=p2) z—p1 z—p

_z+1

z=p zZ— P2

A (2= PX(E)

1
_ e r. -
1 el 2

=p 21tJ27271J3

A _ (Z=p)X(2) z+1 1-j3+1 L, 3
2:— = — f— - - = — —_
2 e Pl T3 202

@ Complex-conjugate poles result in complex-conjugate coefficients



The Inverse z-Transform by Partial-Fraction Expansion

o Multiple-order poles

o If X(z) has a pole of multiplicity m (there is factor (z — px)™ in
denominator), partial-fraction expansion must contain the terms

A1k Aoy Amk
+ + [ + [ —
z—pc  (z—p)? (z=p)"

Coefficients {Ay} can be evaluated through differentiation
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The Inverse z-Transform by Partial-Fraction Expansion

@ Determine partial-fraction expansion of

1

X&) =Ty

@ Expressing in terms of positive powers of z

X(z) z?

z  (z+1)(z—-1)2

X(z) has a simple pole at p; = —1 and a double pole at pp = p3 =1

X(Z) o Z2 . A1 4 A2 4 A3
z  (z+1D)(z-12 z+4+1 z-1 (z-1)2
o EHDXE)| 1
z =1 4




The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

_(2-1X(2)

V4

A3

z=1
@ To obtain A;

(Z - 132X(Z) _ (22111)2/41 + (Z — 1)A2 + A3

Differentiating both sides and evaluating at z = 1, Ay is obtained
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The Inverse z-Transform by Partial-Fraction Expansion

@ Having performed partial-fraction expansion, final step in inversion is
as follows

o If poles are distinct

X A A A

(z): L + 2 + N

z  z-p z—p z—pn

X(2) = A At Ayt
2= N —pz? 21— ppz 1 Nl—p,\,z*1

x(n) = Z7Y{X(z)} is obtained by inverting each term and taking the
corresponding linear combination
o From table 2

7-1 1 _ [ (p)"u(n), if ROC:|z| > |pk| (causal)
1— pez~t —(pk)"u(—n—1), if ROC:|z| < |pk| (anticausal)

o If x(n) is causal, ROC is |z| > pmax, where

Pmax = max{|p1, |p2l, ..., [pnl}
In this case all terms in X(z) result in causal signal components

x(n) = (A1py + Aapy + - + Anppy)u(n)
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The Inverse z-Transform by Partial-Fraction Expansion

o If all poles are distinct but some of them are complex, and if signal
x(n) is real, complex terms can be reduced into real components
o If pjis a pole, its complex conjugate p7 is also a pole
o If x(n) is real, the polynomials in X(z) have real coefficients
o If a polynomial has real coefficients, its roots are either real or occur in
complex-conjugate pairs
o Their corresponding coefficients in partial-fraction expansion are also
complex-conjugates
Contribution of two complex-conjugate poles is
xi(n) = [Au(pe)” + A¢(pi)")]u(n)
Expressing A; and p; in polar form
Ap = |Ale™  and  py = el
which gives
xi(n) = |Ak|,£[ei(6kn+ak) + e~ (Bentan)] ()
or  xk(n) = 2|Ak|rf cos(Bin + ay)u(n)
Thus

Ak A*
-1 K _
z (1 — prz~1 * 1-— p;z—1> = 2|Ax|ri cos(Bin + cu)u(n)

if ROC is |z| > |pk| = rk
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The Inverse z-Transform by Partial-Fraction Expansion

@ In case of multiple poles, either real or complex, inverse transform of
terms of the form A/(z — px)" is required

o In case of a double pole, from table 2

z! {pz—_l} = np"u(n)

(1—pz71)?

provided that ROC is |z| > |p|
o In case of poles with higher multiplicity, multiple differentiation is used
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The Inverse z-Transform by Partial-Fraction Expansion

@ Determine inverse z-transform of

1
X —
(&) =T 5,15 05.2

Q IfROC: |z| > 1
@ If ROC: |z| < 0.5
© IfROC: 05 < |z| <1

o Partial-fraction expansion for X(z)

2
z m=1 X(2) z A A
X(z) = _ _

(2) z2—-15z+05 p=05 =z (z—1)(z—05) z-1 - z—05
al EmX@

Z z=1
A, — (z —0.5)X(2) _ 4

2 z=0.5

v
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The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

2 1

X(@) =17~ 105

@ When ROC is |z| > 1, x(n) is causal and both terms in X(z) are causal
T— ezt < (px)"u(n)
x(n) =2(1)"u(n) — (0.5)"u(n) = (2 — 0.5")u(n)

@ When ROC is |z| < 0.5, x(n) is anticausal and both terms in X(z) are

anticausal 1
z n

— N — —n—1

T ¢ (P (-0~ 1)

x(n) = [2 + (0.5)"|u(—n — 1)
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The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

@ When ROC is 0.5 < |z| < 1 (ring), signal x(n) is two-sided
One of the terms corresponds to a causal signal and the other to an
anticausal signal
Since the ROC is overlapping of |z| > 0.5 and |z| < 1, pole po = 0.5
provides causal part and pole p; = 1 anticausal

x(n) = —=2(1)"u(—n—1) — (0.5)"u(n)
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The Inverse z-Transform by Partial-Fraction Expansion

@ Determine causal signal x(n) whose z-transform is

_ il 4k z=1
T 1—z1405z2

X(2)

@ We have already obtained partial-fraction expansion as

Aq Ar
i -
1—piz71 1—poz1

.1 3 11
X(Z): —>A1:A2:—— andp1:p2:§+J§

D]

For a pair of complex-conjugate poles (Ax = |Ax|e/* and pyx = rcefPr)

Ak Ax
zt k — 2lA,|r"
(l—pkz—l + 1—pZz—1> |Ak|r cos(Bikn + a)u(n)

A; = (V10/2)e ™55 and p; = (1/v2)e/™/*
x(n) = V10(1/V/2)" cos(mn/4 — 71.565°)u(n)
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The Inverse z-Transform by Partial-Fraction Expansion

@ Determine causal signal x(n) having z-transform

1

X&) =i na—1p

@ We have already obtained partial-fraction expansion as

1 3 1 1 z1

1
41421 SE— +§(1—z—1)2

X(z) =

For causal signals

1—;PZ_1 PN (p)"u(n) and a _pzp;—l)z PN np"u(n)
1. 3 1 1 gy, 3.0
x(n) = 7(=1)"u(n) + Zu(n) + Snu(n) = [Z(_l) tat 5] u(n)

o
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