Digital Signal Processing
 The z-Transform and Its Application to the Analysis of LTI Systems

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic
amiri@mail.muni.cz
prenosil@fi.muni.cz

March, 2012

- z-transform of $x(n)$ is defined as power series:

$$
X(z) \equiv \sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

where z is a complex variable

- For convenience

$$
\begin{gathered}
X(z) \equiv Z\{x(n)\} \\
x(n) \stackrel{z}{\longleftrightarrow X(z)}
\end{gathered}
$$

- Since z-transform is an infinite power series, it exists only for those values of z for which this series converges
- Region of convergence (ROC) of $X(z)$ is set of all values of z for which $X(z)$ attains a finite value
- Any time we cite a z-transform, we should also indicate its ROC
- ROC of a finite-duration signal is entire z-plane except possibly points $z=0$ and/or $z=\infty$

Example

- Determine z-transforms of following finite-duration signals
- $x(n)=\{1,2,5,7,0,1\}$
$X(z)=1+2 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5}$
ROC: entire z-plane except $z=0$
- $x(n)=\{1,2, \underset{\uparrow}{5}, 7,0,1\}$
$X(z)=z^{2}+2 z+5+7 z^{-1}+z^{-3}$
ROC: entire z-plane except $z=0$ and $z=\infty$
- $x(n)=\delta(n)$
$X(z)=1$ [i.e., $\delta(n) \stackrel{z}{\longleftrightarrow} 1$], ROC: entire z-plane
- $x(n)=\delta(n-k), k>0$
$X(z)=z^{-k}$ [i.e., $\delta(n-k) \stackrel{z}{\longleftrightarrow} z^{-k}$], ROC: entire z-plane except $z=0$
- $x(n)=\delta(n+k), k>0$
$X(z)=z^{k}$ [i.e., $\delta(n+k) \stackrel{z}{\longleftrightarrow} z^{k}$], ROC: entire z-plane except $z=\infty$

The Direct z-Transform

Example

- Determine z-transform of

$$
x(n)=\left(\frac{1}{2}\right)^{n} u(n)
$$

- z-transform of $x(n)$

$$
\begin{aligned}
X(z) & =1+\frac{1}{2} z^{-1}+\left(\frac{1}{2}\right)^{2} z^{-2}+\left(\frac{1}{2}\right)^{n} z^{-n}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}
\end{aligned}
$$

For $\left|\frac{1}{2} z^{-1}\right|<1$ or $|z|>\frac{1}{2}, X(z)$ converges to

$$
X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}, \quad \mathrm{ROC}:|z|>\frac{1}{2}
$$

- Expressing complex variable z in polar form

$$
z=r e^{j \theta}
$$

where $r=|z|$ and $\theta=\measuredangle z$

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j \theta n}
$$

- In ROC of $X(z),|X(z)|<\infty$

$$
\begin{aligned}
& |X(z)|=\left|\sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j \theta n}\right| \leq \sum_{n=-\infty}^{\infty}\left|x(n) r^{-n} e^{-j \theta n}\right|=\sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right| \\
& |X(z)| \leq \sum_{n=-\infty}^{-1}\left|x(n) r^{-n}\right|+\sum_{n=0}^{\infty}\left|\frac{x(n)}{r^{n}}\right| \leq \sum_{n=1}^{\infty}\left|x(-n) r^{n}\right|+\sum_{n=0}^{\infty}\left|\frac{x(n)}{r^{n}}\right|
\end{aligned}
$$

If $X(z)$ converges in some region of complex plane, both sums must be finite in that region

Figure 1: Region of convergence for $X(z)$ and its corresponding causal and anticausal components.

The Direct z-Transform

Example

- Determine z-transform of

$$
x(n)=\alpha^{n} u(n)= \begin{cases}\alpha^{n}, & n \geq 0 \\ 0, & n<0\end{cases}
$$

- We have

$$
\begin{gathered}
X(z)=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\alpha z^{-1}\right)^{n} \\
x(n)=\alpha^{n} u(n) \stackrel{z}{\longleftrightarrow} X(z)=\frac{1}{1-\alpha z^{-1}}, \quad \mathrm{ROC}:|z|>|\alpha|
\end{gathered}
$$

Example (continued)

Figure 2: The exponential signal $x(n)=\alpha^{n} u(n)$ (a), and the ROC of its z-transform (b).

The Direct z-Transform

Example

- Determine z-transform of

$$
x(n)=-\alpha^{n} u(-n-1)= \begin{cases}0, & n \geq 0 \\ -\alpha^{n}, & n \leq-1\end{cases}
$$

- We have

$$
X(z)=\sum_{n=-\infty}^{-1}\left(-\alpha^{n}\right) z^{-n}=-\sum_{l=1}^{\infty}\left(\alpha^{-1} z\right)^{\prime}
$$

where $I=-n$

$$
\begin{gathered}
x(n)=-\alpha^{n} u(-n-1) \stackrel{z}{\longleftrightarrow} X(z)=-\frac{\alpha^{-1} z}{1-\alpha^{-1} z}=\frac{1}{1-\alpha z^{-1}} \\
\text { ROC: }|z|<|\alpha|
\end{gathered}
$$

The Direct z-Transform

Example (continued)

Figure 3: Anticausal signal $x(n)=-\alpha^{n} u(-n-1)$ (a), and the ROC of its z-transform (b).

- From two preceding examples

$$
Z\left\{\alpha^{n} u(n)\right\}=Z\left\{-\alpha^{n} u(-n-1)\right\}=\frac{1}{1-\alpha z^{-1}}
$$

- This implies that a closed-form expression for z-transform does not uniquely specify the signal in time domain
- Ambiguity can be resolved if ROC is also specified
- A signal $x(n)$ is uniquely determined by its z-transform $X(z)$ and region of convergence of $X(z)$
- ROC of a causal signal is exterior of a circle of some radius r_{2}
- ROC of an anticausal signal is interior of a circle of some radius r_{1}

The Direct z-Transform

Example

- Determine z-transform of

$$
x(n)=\alpha^{n} u(n)+b^{n} u(-n-1)
$$

- We have

$$
X(z)=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}+\sum_{n=-\infty}^{-1} b^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\alpha z^{-1}\right)^{n}+\sum_{l=1}^{\infty}\left(b^{-1} z\right)^{l}
$$

First sum converges if $|z|>|\alpha|$, second sum converges if $|z|<|b|$

- If $|b|<|\alpha|, X(z)$ does not exist
- If $|b|>|\alpha|$

$$
X(z)=\frac{1}{1-\alpha z^{-1}}-\frac{1}{1-b z^{-1}}=\frac{b-\alpha}{\alpha+b-z-\alpha b z^{-1}}
$$

ROC: $|\alpha|<|z|<|b|$

Example (continued)

Figure 4: ROC for z-transform in the example.

Table 1: Characteristic families of signals with their corresponding ROCs

Properties of the z-Transform

- Combining several z-transforms, ROC of overall transform is, at least, intersection of ROCs of individual transforms
- Linearity
- If

$$
x_{1}(n) \stackrel{z}{\longleftrightarrow} X_{1}(z)
$$

and

$$
x_{2}(n) \stackrel{z}{\longleftrightarrow} X_{2}(z)
$$

then

$$
x(n)=a_{1} x_{1}(n)+a_{2} x_{2}(n) \stackrel{z}{\longleftrightarrow} X(z)=a_{1} X_{1}(z)+a_{2} X_{2}(z)
$$

for any constants a_{1} and a_{2}

- To find z-transform of a signal, express it as a sum of elementary signals whose z-transforms are already known

Example

- Determine z-transform and ROC of

$$
x(n)=\left[3\left(2^{n}\right)-4\left(3^{n}\right)\right] u(n)
$$

- Defining signals $x_{1}(n)$ and $x_{2}(n)$

$$
\begin{gathered}
x_{1}(n)=2^{n} u(n) \quad \text { and } \quad x_{2}(n)=3^{n} u(n) \\
x(n)=3 x_{1}(n)-4 x_{2}(n)
\end{gathered}
$$

According to linearity property

$$
X(z)=3 X_{1}(z)-4 X_{2}(z)
$$

Recall that

$$
\alpha^{n} u(n) \stackrel{z}{\longleftrightarrow} \frac{1}{1-\alpha z^{-1}}, \quad \text { ROC: }|z|>|\alpha|
$$

Setting $\alpha=2$ and $\alpha=3$
$X_{1}(z)=\frac{1}{1-2 z^{-1}}, \quad \mathrm{ROC}:|z|>2$ and $\quad X_{2}(z)=\frac{1}{1-3 z^{-1}}, \quad \mathrm{ROC}:|z|>3$ Intersecting ROCs, overall transform is

$$
X(z)=\frac{3}{1-2 z^{-1}}-\frac{4}{1-3 z^{-1}}, \quad \text { ROC: }|z|>3
$$

- Time shifting
- If

$$
x(n) \stackrel{z}{\longleftrightarrow} X(z)
$$

then

$$
x(n-k) \stackrel{z}{\longleftrightarrow} z^{-k} X(z)
$$

- ROC of $z^{-k} X(z)$ is same as that of $X(z)$ except for $z=0$ if $k>0$ and $z=\infty$ if $k<0$
- Scaling in z-domain
- If

$$
x(n) \stackrel{z}{\longleftrightarrow} X(z), \quad \text { ROC: } r_{1}<|z|<r_{2}
$$

then

$$
a^{n} x(n) \stackrel{z}{\longleftrightarrow} X\left(a^{-1} z\right), \quad \text { ROC: }|a| r_{1}<|z|<|a| r_{2}
$$

for any constant a, real or complex

- Proof

$$
Z\left\{a^{n} x(n)\right\}=\sum_{n=-\infty}^{\infty} a^{n} x(n) z^{-n}=\sum_{n=-\infty}^{\infty} x(n)\left(a^{-1} z\right)^{-n}=X\left(a^{-1} z\right)
$$

Since ROC of $X(z)$ is $r_{1}<|z|<r_{2}$, ROC of $X\left(a^{-1} z\right)$ is

$$
r_{1}<\left|a^{-1} z\right|<r_{2}
$$

or

$$
|a| r_{1}<|z|<|a| r_{2}
$$

- Time reversal
- If

$$
x(n) \stackrel{z}{\longleftrightarrow} X(z), \quad \mathrm{ROC}: r_{1}<|z|<r_{2}
$$

then

$$
x(-n) \stackrel{z}{\longleftrightarrow} X\left(z^{-1}\right), \quad \text { ROC: } \frac{1}{r_{2}}<|z|<\frac{1}{r_{1}}
$$

- Proof

$$
Z\{x(-n)\}=\sum_{n=-\infty}^{\infty} x(-n) z^{-n}=\sum_{l=-\infty}^{\infty} x(I)\left(z^{-1}\right)^{-I}=X\left(z^{-1}\right)
$$

where $I=-n$ ROC of $X\left(z^{-1}\right)$

$$
r_{1}<\left|z^{-1}\right|<r_{2} \quad \text { or } \quad \frac{1}{r_{2}}<|z|<\frac{1}{r_{1}}
$$

- Differentiation in z-domain
- If

$$
x(n) \stackrel{z}{\longleftrightarrow} X(z)
$$

then

$$
n x(n) \stackrel{z}{\longleftrightarrow}-z \frac{d X(z)}{d z}
$$

- Proof

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

differentiating both sides

$$
\begin{aligned}
\frac{d X(z)}{d z} & =\sum_{n=-\infty}^{\infty} x(n)(-n) z^{-n-1}=-z^{-1} \sum_{n=-\infty}^{\infty}[n x(n)] z^{-n} \\
& =-z^{-1} Z\{n x(n)\}
\end{aligned}
$$

- Both transforms have same ROC

- Convolution of two sequences

- If

$$
\begin{aligned}
& x_{1}(n) \stackrel{z}{\longleftrightarrow} X_{1}(z) \\
& x_{2}(n) \stackrel{z}{\longleftrightarrow} X_{2}(z)
\end{aligned}
$$

then

$$
x(n)=x_{1}(n) * x_{2}(n) \stackrel{z}{\longleftrightarrow} X(z)=X_{1}(z) X_{2}(z)
$$

ROC of $X(z)$ is, at least, intersection of that for $X_{1}(z)$ and $X_{2}(z)$

- Proof: convolution of $x_{1}(n)$ and $x_{2}(n)$

$$
x(n)=\sum_{k=-\infty}^{\infty} x_{1}(k) x_{2}(n-k)
$$

z-transform of $x(n)$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x(n) z^{-n}=\sum_{n=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty} x_{1}(k) x_{2}(n-k)\right] z^{-n} \\
& =\sum_{k=-\infty}^{\infty} x_{1}(k)\left[\sum_{n=-\infty}^{\infty} x_{2}(n-k) z^{-n}\right]=X_{2}(z) \sum_{k=-\infty}^{\infty} x_{1}(k) z^{-k} \\
& =X_{2}(z) X_{1}(z)
\end{aligned}
$$

Example

- Compute convolution $x(n)$ of signals

$$
x_{1}(n)=\left\{\frac{1}{\uparrow},-2,1\right\} \quad \text { and } \quad x_{2}(n)= \begin{cases}1, & 0 \leq n \leq 5 \\ 0, & \text { elsewhere }\end{cases}
$$

- z-transforms of these signals

$$
\begin{aligned}
& X_{1}(z)=1-2 z^{-1}+z^{-2} \\
& X_{2}(z)=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}
\end{aligned}
$$

- Convolution of two signals is equal to multiplication of their transforms

$$
X(z)=X_{1}(z) X_{2}(z)=1-z^{-1}-z^{-6}+z^{-7}
$$

Hence

$$
x(n)=\{1,-1,0,0,0,0,-1,1\}
$$

Properties of the z-Transform

- Convolution property is one of most powerful properties of z-transform
- It converts convolution of two signals (time domain) to multiplication of their transforms
- Computation of convolution of two signals using z-transform
(1) Compute z-transforms of signals to be convolved

$$
\begin{aligned}
& X_{1}(z)=Z\left\{x_{1}(n)\right\} \\
& X_{2}(z)=Z\left\{x_{2}(n)\right\}
\end{aligned}
$$

(2) Multiply the two z-transforms

$$
X(z)=X_{1}(z) X_{2}(z)
$$

(3) Find inverse z-transform of $X(z)$

$$
x(n)=Z^{-1}\{X(z)\}
$$

- Correlation of two sequences
- If

$$
\begin{aligned}
& x_{1}(n) \stackrel{z}{\longleftrightarrow} X_{1}(z) \\
& x_{2}(n) \stackrel{z}{\longleftrightarrow} X_{2}(z)
\end{aligned}
$$

then

$$
r_{x_{1} x_{2}}(I)=\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}(n-I) \stackrel{z}{\longleftrightarrow} R_{x_{1} x_{2}}(z)=X_{1}(z) X_{2}\left(z^{-1}\right)
$$

- Proof

$$
r_{x_{1} x_{2}}(I)=x_{1}(I) * x_{2}(-I)
$$

Using convolution and time-reversal properties

$$
R_{x_{1} x_{2}}(z)=Z\left\{x_{1}(I)\right\} Z\left\{x_{2}(-I)\right\}=X_{1}(z) X_{2}\left(z^{-1}\right)
$$

ROC of $R_{x_{1} x_{2}}(z)$ is at least intersection of that for $X_{1}(z)$ and $X_{2}\left(z^{-1}\right)$

- The initial value theorem
- If $x(n)$ is causal $(x(n)=0$ for $n<0)$, then

$$
x(0)=\lim _{z \rightarrow \infty} X(z)
$$

- Proof: since $x(n)$ is causal

$$
X(z)=\sum_{n=0}^{\infty} x(n) z^{-n}=x(0)+x(1) z^{-1}+x(2) z^{-2}+\cdots
$$

as $z \rightarrow \infty, z^{-n} \rightarrow 0$ and hence $X(z)=x(0)$

Table 2: Some common z-transform pairs

Signal, $x(n)$	z-Transform, $X(z)$	ROC
$\delta(n)$	1	All z
$u(n)$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$a^{n} u(n)$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$n a^{n} u(n)$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-a^{n} u(-n-1)$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$-n a^{n} u(-n-1)$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\left(\cos \omega_{0} n\right) u(n)$	$\frac{1-z^{-1} \cos \omega_{0}}{1-2 z^{-1} \cos \omega_{0}+z^{-2}}$	$\|z\|>1$
$\left(\sin \omega_{0} n\right) u(n)$	$\frac{z^{-1} \sin \omega_{0}}{1-2 z^{-1} \cos \omega_{0}+z^{-2}}$	$\|z\|>1$
$\left(a^{n} \cos \omega_{0} n\right) u(n)$	$\frac{1-a z^{-1} \cos \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}}$	$\|z\|>\|a\|$
$\left(a^{n} \sin \omega_{0} n\right) u(n)$	$\frac{a z^{-1} \sin \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}}$	$\|z\|>\|a\|$

Rational z-Transforms

- An important family of z-transforms are those for which $X(z)$ is a rational function
- $X(z)$ is a ratio of two polynomials in z^{-1} (or z)
- Some important issues of rational z-transforms are discussed here

Poles and Zeros

- Zeros of a z-transform $X(z)$ are values of z for which $X(z)=0$
- Poles of a z-transform are values of z for which $X(z)=\infty$
- If $X(z)$ is a rational function (and if $a_{0} \neq 0$ and $b_{0} \neq 0$)

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \\
& =\frac{b_{0} z^{-M}}{a_{0} z^{-N}} \frac{z^{M}+\left(b_{1} / b_{0}\right) z^{M-1}+\cdots+b_{M} / b_{0}}{z^{N}+\left(a_{1} / a_{0}\right) z^{N-1}+\cdots+a_{N} / a_{0}} \\
& =\frac{b_{0}}{a_{0}} z^{-M+N} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)} \\
& =G z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
\end{aligned}
$$

- $X(z)$ has M finite zeros at $z=z_{1}, z_{2}, \ldots, z_{M}$
- N finite poles at $z=p_{1}, p_{2}, \ldots, p_{N}$
- $|N-M|$ zeros if $N>M$ or poles if $N<M$ at $z=0$
- $X(z)$ has exactly same number of poles as zeros

Poles and Zeros

Example

- Determine pole-zero plot for signal

$$
x(n)=a^{n} u(n), \quad a>0
$$

- From Table 2

$$
X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad \mathrm{ROC}:|z|>a
$$

$X(z)$ has one zero at $z_{1}=0$ and one pole at $p_{1}=a$

Figure 5: Pole-zero plot for the causal exponential signal $x(n)=a^{n} u(n)$.

Poles and Zeros

Example

- Determine pole-zero plot for signal

$$
x(n)= \begin{cases}a^{n}, & 0 \leq n \leq M-1 \\ 0, & \text { elsewhere }\end{cases}
$$

where $a>0$

- z-transform of $x(n)$

$$
X(z)=\sum_{n=0}^{M-1} a^{n} z^{-n}=\sum_{n=0}^{M-1}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{M}}{1-a z^{-1}}=\frac{z^{M}-a^{M}}{z^{M-1}(z-a)}
$$

Since $a>0, z^{M}=a^{M}$ has M roots at

$$
z_{k}=a e^{j 2 \pi k / M}, \quad k=0,1, \ldots, M-1
$$

Poles and Zeros

Example (continued)

- Zero $z_{0}=a$ cancels pole at $z=a$. Thus

$$
X(z)=\frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M-1}\right)}{z^{M-1}}
$$

which has $M-1$ zeros and $M-1$ poles

Figure 6: Pole-zero pattern for the finite-duration signal $x(n)=a^{n}$, $0 \leq n \leq M-1(a>0)$, for $M=8$.

Poles and Zeros

Example

- Determine z-transform and signal corresponding to following pole-zero plot

Figure 7: Pole-zero pattern.

Poles and Zeros

Example (continued)

- We use

$$
X(z)=G z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
$$

There are two zeros $(M=2)$ at $z_{1}=0, z_{2}=r \cos \omega_{0}$ There are two poles $(N=2)$ at $p_{1}=r e^{j \omega_{0}}, p_{2}=r e^{-j \omega_{0}}$

$$
\begin{aligned}
X(z) & =G \frac{\left(z-z_{1}\right)\left(z-z_{2}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right)}=G \frac{z\left(z-r \cos \omega_{0}\right)}{\left(z-r e^{j \omega_{0}}\right)\left(z-r e^{-j \omega_{0}}\right)} \\
& =G \frac{1-r z^{-1} \cos \omega_{0}}{1-2 r z^{-1} \cos \omega_{0}+r^{2} z^{-2}}, \quad \mathrm{ROC}:|z|>r
\end{aligned}
$$

From Table 2 we find that

$$
x(n)=G\left(r^{n} \cos \omega_{0} n\right) u(n)
$$

Poles and Zeros

- z-transform $X(z)$ is a complex function of complex variable z
- $|X(z)|$ is a real and positive function of z
- Since z represents a point in complex plane, $|X(z)|$ is a surface
- z-transform

$$
X(z)=\frac{z^{-1}-z^{-2}}{1-1.2732 z^{-1}+0.81 z^{-2}}
$$

has one zero at $z_{1}=1$ and two poles at $p_{1}, p_{2}=0.9 e^{ \pm j \pi / 4}$

Figure 8: Graph of $|X(z)|$ for the above z-transform.

Pole Location \& Time-Domain Behavior for Causal Signals

- Characteristic behavior of causal signals depends on whether poles of transform are contained in region
- $|z|<1$
- or $|z|>1$
- or on circle $|z|=1$
- Circle $|z|=1$ is called unit circle
- If a real signal has a z-transform with one pole, this pole has to be real
- The only such signal is the real exponential

$$
x(n)=a^{n} u(n) \stackrel{z}{\longleftrightarrow} X(z)=\frac{1}{1-a z^{-1}}, \quad \mathrm{ROC}:|z|>|a|
$$

having one zero at $z_{1}=0$ and one pole at $p_{1}=a$ on real axis

Figure 9: Time-domain behavior of a single-real-pole causal signal as a function of the location of the pole with respect to the unit circle.

- A causal real signal with a double real pole has the form

$$
x(n)=n a^{n} u(n) \stackrel{z}{\longleftrightarrow} X(z)=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad \text { ROC: }|z|>|a|
$$

- In contrast to single-pole signal, a double real pole on unit circle results in an unbounded signal

Figure 10: Time-domain behavior of causal signals corresponding to a double $(m=2)$ real pole, as a function of the pole location.

Pole Location \& Time-Domain Behavior for Causal Signals

- Configuration of poles as a pair of complex-conjugates results in an exponentially weighted sinusoidal signal

$$
\begin{aligned}
& x(n)=\left(a^{n} \cos \omega_{0} n\right) u(n) \stackrel{z}{\longleftrightarrow} X(z)=\frac{1-a z^{-1} \cos \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}} \\
& \text { ROC: }|z|>|a| \\
& x(n)=\left(a^{n} \sin \omega_{0} n\right) u(n) \stackrel{z}{\longleftrightarrow} X(z)=\frac{a z^{-1} \sin \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}} \\
& \text { ROC: }|z|>|a|
\end{aligned}
$$

- Distance r of poles from origin determines envelope of sinusoidal signal
- Angle ω_{0} with real positive axis determines relative frequency

Figure 11: A pair of complex-conjugate poles corresponds to causal signals with oscillatory behavior.

Figure 12: Causal signal corresponding to a double pair of complex-conjugate poles on the unit circle.

- In summary
- Causal real signals with simple real poles or simple complex-conjugate pairs of poles, inside or on unit circle, are always bounded in amplitude
- A signal with a pole, or a complex-conjugate pair of poles, near origin decays more rapidly than one near (but inside) unit circle
- Thus, time behavior of a signal depends strongly on location of its poles relative to unit circle
- Zeros also affect behavior of a signal but not as strongly as poles
- E.g., for sinusoidal signals, presence and location of zeros affects only their phase

Inversion of the z-Transform

- There are three methods for evaluation of inverse z-transform
(1) Direct evaluation by contour integration
(2) Expansion into a series of terms, in variables z and z^{-1}
(3) Partial-fraction expansion and table lookup
- Inverse z-transform by contour integration

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

- Integral is a contour integral over a closed path C
- C encloses origin and lies within ROC of $X(z)$

Figure 13: Contour C.

- Given $X(z)$ with its ROC, expand it into a power series of form

$$
X(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{-n}
$$

- By uniqueness of z-transform, $x(n)=c_{n}$ for all n
- When $X(z)$ is rational, expansion can be performed by long division
- Long division method becomes tedious when n is large
- Although this method provides a direct evaluation of $x(n)$, a closed-form solution is not possible
- Hence this method is used only for determining values of first few samples of signal

Example

- Determine inverse z-transform of

$$
X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

(1) When ROC: $|z|>1$
(2) When ROC: $|z|<0.5$

- ROC: $|z|>1$

Since ROC is exterior of a circle, $x(n)$ is a causal signal. Thus we seek negative powers of z by dividing numerator of $X(z)$ by its denominator

$$
\begin{aligned}
X(z)=\frac{1}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}} & =1+\frac{3}{2} z^{-1}+\frac{7}{4} z^{-2}+\frac{15}{8} z^{-3}+\frac{31}{16} z^{-4}+\cdots \\
x(n) & =\left\{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \ldots\right\}
\end{aligned}
$$

Example (continued)

- ROC: $|z|<0.5$

Since ROC is interior of a circle, $x(n)$ is anticausal. To obtain positive powers of z, write the two polynomials in reverse order and then divide

$$
\begin{gathered}
\left.\frac{1}{2} z^{-2}-\frac{3}{2} z^{-1}+1\right)^{\frac{2 z^{2}+6 z^{3}+14 z^{4}+30 z^{5}+62 z^{6}+\cdots}{\frac{1-3 z+2 z^{2}}{3 z-2 z^{2}}} \begin{array}{c}
\frac{3 z-9 z^{2}+6 z^{3}}{7 z^{2}-6 z^{3}} \\
\frac{7 z^{2}-21 z^{3}+14 z^{4}}{15 z^{3}-14 z^{4}} \\
\frac{15 z^{3}-45 z^{4}+30 z^{5}}{31 z^{4}-30 z^{5}}
\end{array}} \\
X(z)=\frac{1}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}}=2 z^{2}+6 z^{3}+14 z^{4}+30 z^{5}+62 z^{6}+\cdots \\
x(n)=\{\cdots 62,30,14,6,2,0,0\}
\end{gathered}
$$

- In table lookup method, express $X(z)$ as a linear combination

$$
X(z)=\alpha_{1} X_{1}(z)+\alpha_{2} X_{2}(z)+\cdots+\alpha_{K} X_{K}(z)
$$

- $X_{1}(z), \ldots, X_{K}(z)$ are expressions with inverse transforms $x_{1}(n), \ldots, x_{K}(n)$ available in a table of z-transform pairs
- Using linearity property

$$
x(n)=\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n)+\cdots+\alpha_{K} x_{K}(n)
$$

- If $X(z)$ is a rational function

$$
X(z)=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

dividing both numerator and denominator by a_{0}

$$
X(z)=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

- This form of rational function is called proper if $a_{N} \neq 0$ and $M<N$
- An improper rational function $(M \geq N)$ can always be written as sum of a polynomial and a proper rational function

Example

- Express improper rational function

$$
X(z)=\frac{1+3 z^{-1}+\frac{11}{6} z^{-2}+\frac{1}{3} z^{-3}}{1+\frac{5}{6} z^{-1}+\frac{1}{6} z^{-2}}
$$

in terms of a polynomial and a proper function

- Terms z^{-2} and z^{-3} should be eliminated from numerator Do long division with the two polynomials written in reverse order Stop division when order of remainder becomes z^{-1}

$$
X(z)=1+2 z^{-1}+\frac{\frac{1}{6} z^{-1}}{1+\frac{5}{6} z^{-1}+\frac{1}{6} z^{-2}}
$$

- Any improper rational function $(M \geq N)$ can be expressed as

$$
X(z)=\frac{B(z)}{A(z)}=c_{0}+c_{1} z^{-1}+\cdots+c_{M-N} z^{-(M-N)}+\frac{B_{1}(z)}{A(z)}
$$

- Inverse z-transform of the polynomial can easily be found by inspection
- We focus our attention on inversion of proper rational transforms
(1) Perform a partial fraction expansion of proper rational function
(2) Invert each of the terms
- Let $X(z)$ be a proper rational function $\left(a_{N} \neq 0\right.$ and $\left.M<N\right)$

$$
X(z)=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

Eliminating negative powers of z

$$
X(z)=\frac{b_{0} z^{N}+b_{1} z^{N-1}+\cdots+b_{M} z^{N-M}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
$$

Since $N>M$, the function

$$
\frac{X(z)}{z}=\frac{b_{0} z^{N-1}+b_{1} z^{N-2}+\cdots+b_{M} z^{N-M-1}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
$$

is also proper

- To perform a partial-fraction expansion, this function should be expressed as a sum of simple fractions
- First factor denominator polynomial into factors that contain poles $p_{1}, p_{2}, \ldots, p_{N}$ of $X(z)$

- Distinct poles

- Suppose poles $p_{1}, p_{2}, \ldots, p_{N}$ are all different. We seek expansion

$$
\frac{X(z)}{z}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}}
$$

To determine coefficients $A_{1}, A_{2}, \ldots, A_{N}$, multiply both sides by each of terms $\left(z-p_{k}\right), k=1,2, \ldots, N$, and evaluate resulting expressions at corresponding pole positions, $p_{1}, p_{2}, \ldots, p_{N}$

$$
\begin{gathered}
\frac{\left(z-p_{k}\right) X(z)}{z}=\frac{\left(z-p_{k}\right) A_{1}}{z-p_{1}}+\cdots+A_{k}+\cdots+\frac{\left(z-p_{k}\right) A_{N}}{z-p_{N}} \\
A_{k}=\left.\frac{\left(z-p_{k}\right) X(z)}{z}\right|_{z=p_{k}}, \quad k=1,2, \ldots, N
\end{gathered}
$$

Example

- Determine partial-fraction expansion of

$$
X(z)=\frac{1+z^{-1}}{1-z^{-1}+0.5 z^{-2}}
$$

- Eliminate negative powers by multiplying by z^{2}

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{z+1}{z^{2}-z+0.5} \longrightarrow p_{1}=\frac{1}{2}+j \frac{1}{2} \text { and } p_{2}=\frac{1}{2}-j \frac{1}{2} \\
\xrightarrow{p_{1} \neq p_{2}} \frac{X(z)}{z}=\frac{z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}} \\
A_{1}=\left.\frac{\left(z-p_{1}\right) X(z)}{z}\right|_{z=p_{1}}=\left.\frac{z+1}{z-p_{2}}\right|_{z=p_{1}}=\frac{\frac{1}{2}+j \frac{1}{2}+1}{\frac{1}{2}+j \frac{1}{2}-\frac{1}{2}+j \frac{1}{2}}=\frac{1}{2}-j \frac{3}{2} \\
A_{2}=\left.\frac{\left(z-p_{2}\right) X(z)}{z}\right|_{z=p_{2}}=\left.\frac{z+1}{z-p_{1}}\right|_{z=p_{2}}=\frac{\frac{1}{2}-j \frac{1}{2}+1}{\frac{1}{2}-j \frac{1}{2}-\frac{1}{2}-j \frac{1}{2}}=\frac{1}{2}+j \frac{3}{2}
\end{gathered}
$$

- Complex-conjugate poles result in complex-conjugate coefficients
- Multiple-order poles
- If $X(z)$ has a pole of multiplicity m (there is factor $\left(z-p_{k}\right)^{m}$ in denominator), partial-fraction expansion must contain the terms

$$
\frac{A_{1 k}}{z-p_{k}}+\frac{A_{2 k}}{\left(z-p_{k}\right)^{2}}+\cdots+\frac{A_{m k}}{\left(z-p_{k}\right)^{m}}
$$

Coefficients $\left\{A_{i k}\right\}$ can be evaluated through differentiation

Example

- Determine partial-fraction expansion of

$$
X(z)=\frac{1}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}}
$$

- Expressing in terms of positive powers of z

$$
\frac{X(z)}{z}=\frac{z^{2}}{(z+1)(z-1)^{2}}
$$

$X(z)$ has a simple pole at $p_{1}=-1$ and a double pole at $p_{2}=p_{3}=1$

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{z^{2}}{(z+1)(z-1)^{2}}=\frac{A_{1}}{z+1}+\frac{A_{2}}{z-1}+\frac{A_{3}}{(z-1)^{2}} \\
A_{1}=\left.\frac{(z+1) X(z)}{z}\right|_{z=-1}=\frac{1}{4}
\end{gathered}
$$

Example (continued)

$$
A_{3}=\left.\frac{(z-1)^{2} X(z)}{z}\right|_{z=1}=\frac{1}{2}
$$

- To obtain A_{2}

$$
\frac{(z-1)^{2} X(z)}{z}=\frac{(z-1)^{2}}{z+1} A_{1}+(z-1) A_{2}+A_{3}
$$

Differentiating both sides and evaluating at $z=1, A_{2}$ is obtained

$$
A_{2}=\frac{d}{d z}\left[\frac{(z-1)^{2} X(z)}{z}\right]_{z=1}=\frac{3}{4}
$$

- Having performed partial-fraction expansion, final step in inversion is as follows
- If poles are distinct

$$
\begin{aligned}
\frac{X(z)}{z} & =\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}} \\
X(z) & =A_{1} \frac{1}{1-p_{1} z^{-1}}+A_{2} \frac{1}{1-p_{2} z^{-1}}+\cdots+A_{N} \frac{1}{1-p_{N} z^{-1}}
\end{aligned}
$$

$x(n)=Z^{-1}\{X(z)\}$ is obtained by inverting each term and taking the corresponding linear combination

- From table 2

$$
Z^{-1}\left\{\frac{1}{1-p_{k} z^{-1}}\right\}= \begin{cases}\left(p_{k}\right)^{n} u(n), & \text { if ROC: }|z|>\left|p_{k}\right| \text { (causal) } \\ -\left(p_{k}\right)^{n} u(-n-1), & \text { if ROC: }|z|<\left|p_{k}\right| \text { (anticausal) }\end{cases}
$$

- If $x(n)$ is causal, ROC is $|z|>p_{\max }$, where

$$
p_{\max }=\max \left\{\left|p_{1}\right|,\left|p_{2}\right|, \ldots,\left|p_{N}\right|\right\}
$$

In this case all terms in $X(z)$ result in causal signal components

$$
x(n)=\left(A_{1} p_{1}^{n}+A_{2} p_{2}^{n}+\cdots+A_{N} p_{N}^{n}\right) u(n)
$$

- If all poles are distinct but some of them are complex, and if signal $x(n)$ is real, complex terms can be reduced into real components
- If p_{j} is a pole, its complex conjugate p_{j}^{*} is also a pole
- If $x(n)$ is real, the polynomials in $X(z)$ have real coefficients
- If a polynomial has real coefficients, its roots are either real or occur in complex-conjugate pairs
- Their corresponding coefficients in partial-fraction expansion are also complex-conjugates
Contribution of two complex-conjugate poles is

$$
\left.x_{k}(n)=\left[A_{k}\left(p_{k}\right)^{n}+A_{k}^{*}\left(p_{k}^{*}\right)^{n}\right)\right] u(n)
$$

Expressing A_{j} and p_{j} in polar form

$$
A_{k}=\left|A_{k}\right| e^{j \alpha_{k}} \quad \text { and } \quad p_{k}=r_{k} e^{j \beta_{k}}
$$

which gives

$$
\begin{aligned}
& x_{k}(n)=\left|A_{k}\right| r_{k}^{n}\left[e^{j\left(\beta_{k} n+\alpha_{k}\right)}+e^{-j\left(\beta_{k} n+\alpha_{k}\right)}\right] u(n) \\
& \text { or } \quad x_{k}(n)=2\left|A_{k}\right| r_{k}^{n} \cos \left(\beta_{k} n+\alpha_{k}\right) u(n)
\end{aligned}
$$

Thus

$$
Z^{-1}\left(\frac{A_{k}}{1-p_{k} z^{-1}}+\frac{A_{k}^{*}}{1-p_{k}^{*} z^{-1}}\right)=2\left|A_{k}\right| r_{k}^{n} \cos \left(\beta_{k} n+\alpha_{k}\right) u(n)
$$

if ROC is $|z|>\left|p_{k}\right|=r_{k}$

- In case of multiple poles, either real or complex, inverse transform of terms of the form $A /\left(z-p_{k}\right)^{n}$ is required
- In case of a double pole, from table 2

$$
Z^{-1}\left\{\frac{p z^{-1}}{\left(1-p z^{-1}\right)^{2}}\right\}=n p^{n} u(n)
$$

provided that ROC is $|z|>|p|$

- In case of poles with higher multiplicity, multiple differentiation is used

Example

- Determine inverse z-transform of

$$
X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

(1) If ROC: $|z|>1$
(2) If ROC: $|z|<0.5$
(3) If ROC: $0.5<|z|<1$

- Partial-fraction expansion for $X(z)$

$$
\begin{aligned}
X(z) & =\frac{z^{2}}{z^{2}-1.5 z+0.5} \xrightarrow[p_{2}=0.5]{p_{1}=1} \frac{X(z)}{z}=\frac{z}{(z-1)(z-0.5)}=\frac{A_{1}}{z-1}+\frac{A_{2}}{z-0.5} \\
A_{1} & =\left.\frac{(z-1) X(z)}{z}\right|_{z=1}=2 \\
A_{2} & =\left.\frac{(z-0.5) X(z)}{z}\right|_{z=0.5}=-1
\end{aligned}
$$

The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

$$
X(z)=\frac{2}{1-z^{-1}}-\frac{1}{1-0.5 z^{-1}}
$$

- When ROC is $|z|>1, x(n)$ is causal and both terms in $X(z)$ are causal

$$
\begin{gathered}
\frac{1}{1-p_{k} z^{-1}} \stackrel{z}{\longleftrightarrow}\left(p_{k}\right)^{n} u(n) \\
x(n)=2(1)^{n} u(n)-(0.5)^{n} u(n)=\left(2-0.5^{n}\right) u(n)
\end{gathered}
$$

- When ROC is $|z|<0.5, x(n)$ is anticausal and both terms in $X(z)$ are anticausal

$$
\begin{gathered}
\frac{1}{1-p_{k} z^{-1}} \stackrel{z}{\longleftrightarrow}-\left(p_{k}\right)^{n} u(-n-1) \\
x(n)=\left[-2+(0.5)^{n}\right] u(-n-1)
\end{gathered}
$$

The Inverse z-Transform by Partial-Fraction Expansion

Example (continued)

- When ROC is $0.5<|z|<1$ (ring), signal $x(n)$ is two-sided

One of the terms corresponds to a causal signal and the other to an anticausal signal
Since the ROC is overlapping of $|z|>0.5$ and $|z|<1$, pole $p_{2}=0.5$ provides causal part and pole $p_{1}=1$ anticausal

$$
x(n)=-2(1)^{n} u(-n-1)-(0.5)^{n} u(n)
$$

Example

- Determine causal signal $x(n)$ whose z-transform is

$$
X(z)=\frac{1+z^{-1}}{1-z^{-1}+0.5 z^{-2}}
$$

- We have already obtained partial-fraction expansion as

$$
X(z)=\frac{A_{1}}{1-p_{1} z^{-1}}+\frac{A_{2}}{1-p_{2} z^{-1}} \longrightarrow A_{1}=A_{2}^{*}=\frac{1}{2}-j \frac{3}{2} \text { and } p_{1}=p_{2}^{*}=\frac{1}{2}+j \frac{1}{2}
$$

For a pair of complex-conjugate poles $\left(A_{k}=\left|A_{k}\right| e^{j \alpha_{k}}\right.$ and $\left.p_{k}=r_{k} \mathrm{e}^{j \beta_{k}}\right)$

$$
\begin{gathered}
z^{-1}\left(\frac{A_{k}}{1-p_{k} z^{-1}}+\frac{A_{k}^{*}}{1-p_{k}^{*} z^{-1}}\right)=2\left|A_{k}\right| r_{k}^{n} \cos \left(\beta_{k} n+\alpha_{k}\right) u(n) \\
A_{1}=(\sqrt{10} / 2) e^{-j 71.565} \text { and } p_{1}=(1 / \sqrt{2}) e^{j \pi / 4} \\
x(n)=\sqrt{10}(1 / \sqrt{2})^{n} \cos \left(\pi n / 4-71.565^{\circ}\right) u(n)
\end{gathered}
$$

Example

- Determine causal signal $x(n)$ having z-transform

$$
X(z)=\frac{1}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}}
$$

- We have already obtained partial-fraction expansion as

$$
X(z)=\frac{1}{4} \frac{1}{1+z^{-1}}+\frac{3}{4} \frac{1}{1-z^{-1}}+\frac{1}{2} \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
$$

For causal signals

$$
\begin{gathered}
\frac{1}{1-p z^{-1}} \stackrel{z}{\longleftrightarrow}(p)^{n} u(n) \quad \text { and } \quad \frac{p z^{-1}}{\left(1-p z^{-1}\right)^{2}} \stackrel{z}{\longleftrightarrow} n p^{n} u(n) \\
x(n)=\frac{1}{4}(-1)^{n} u(n)+\frac{3}{4} u(n)+\frac{1}{2} n u(n)=\left[\frac{1}{4}(-1)^{n}+\frac{3}{4}+\frac{n}{2}\right] u(n)
\end{gathered}
$$

John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Prentice Hall, 2006.

