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Frequency Analysis of Continuous-Time Signals

o Frequency analysis of a signal is resolution of signal into its frequency
(sinusoidal) components
o For class of periodic signals, such a decomposition is called a Fourier
series
o For class of finite energy signals, the decomposition is called Fourier
transform
@ The term spectrum is used when referring to frequency content of a
signal
o Different signal waveforms have different spectra
o Thus spectrum provides an identity or a signature for a signal (no other
signal has the same spectrum)
@ Process of obtaining spectrum of a signal using basic mathematical
tools is frequency or spectral analysis
o In contrast, process of determining spectrum of a signal in practice,
based on actual measurements of signal, is called spectrum estimation
o In a practical problem, the signal is some information-bearing signal
which does not lend itself to an exact mathematical description
@ Recombination of sinusoidal components to reconstruct original signal

is a Fourier synthesis problem



The Fourier Series for Continuous-Time Periodic Signals

o Examples of periodic signals are square waves, rectangular waves,
triangular waves, sinusoids and complex exponentials
o Basic mathematical representation of periodic signals is Fourier series

o Fourier series is a linear weighted sum of harmonically related sinusoids
or complex exponentials

@ A linear combination of harmonically related complex exponentials of
form

o0

X(t): Z Ckej27TkF0t (1)

k=—0c0

is a periodic signal with fundamental period T, = 1/Fg
o This is called a Fourier series
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The Fourier Series for Continuous-Time Periodic Signals

o Given a periodic signal x(t) with period T, it can be represented by
Fourier series

o Fundamental frequency Fy is reciprocal of given period T,
o To determine expression for {cx}, first multiply both sides of (1) by

—jenFolt

e (! is an integer)

and then integrate both sides of resulting equation from ty to to + T,

t0+Tp . to+ Tp . e i
/ X(t)efj27rlF0tdt _ / 67127r/F0t Z Cx eJZﬂ'kFot dt

to to k=—00
o0 to+ T,
-y Ck/ 2 Folk=1)t gy )
k=—o00 to
o0 27 Fo(k—1)t 70t Tp
=2« L‘ZTF (k—l)} (3)
0 o

k=—o0

For k # 1, (3) yields zero
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The Fourier Series for Continuous-Time Periodic Signals

o If k =1, from equation (2)

to+Tp
/ dt =t
to

to+Tp )
/ x(t)e 2 Fotdt — ¢/ T,

Consequently

to
1 to+Tp ) 1 .
o= —/ x(t)e 2Pt g — —/ x(t)es2mFot g
Tp to Tp Tp

Table 1: Frequency analysis of continuous-time periodic signals

Synthesis equation x(t) = 3200 cyef2mhFot

Analysis equation ck = TL,, pr x(t)ej2mkFot gt
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The Fourier Series for Continuous-Time Periodic Signals

o Fourier coefficients ¢, are complex valued
o If periodic signal is real, ¢k and c_x are complex conjugates
i —j6
ck = |ck|€F — c_k = |ckle™I

Consequently, Fourier series may also be represented as

(o)
x(t)=c+2 Z |ck| cos(2mkFot + 6k)
k=1
where ¢y is real when x(t) is real
o Expanding cosine function in equation above

cos(2mkFot + 6x) = cos 2mkFot cos 8y — sin 2mkFyt sin O

o0
x(t) = a0+ Z(ak cos 2kFot — by sin 2mkFot)
k=1
where
ag = Q
ax = 2|cx| cos Oy

bk :2|ck|sin0k oo



Power Density Spectrum of Periodic Signals

o A periodic signal has infinite energy and a finite average power, given
as

1
Po=— [ |x(t)]*dt
X Tp -
00 ' 1 00 .
x(t)= Y Ckej27TkF0t_)Px:? x(t) Y cpemHotgt
k=—o00 P JTp k=—o00
o0
1 i
= Z cr ?p/T x(t)e 12’TkF°tdt]
k=—00 14
[oe)
= > laf
k=—00

The established relation is called Parseval’s relation for power signals

o0

pX:Tip /| x(OPd(0) = 3 laf

k=—o00
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Power Density Spectrum of Periodic Signals

@ Suppose x(t) consists of a single complex exponential

X(t) _ CkejZTrkFot

In this case, all Fourier series coefficients except cx are zero

o
Pe= > lal> — Pe=ladl?

k=—o00

o |ck|? represents power in kth harmonic component of signal
o Hence total average power in periodic signal is simply sum of average
powers in all harmonics




Power Density Spectrum of Periodic Signals

o Plotting |ck|? as a function of frequencies kFo, k = 0, 41,42, ...,
obtained diagram is called power density spectrum or power
spectrum of periodic signal x(t)

Power density spectrum | Icl?

—4F, =3Fy =2F, -F, 0 F, 2F, 3F, 4F, Frequency, F

Figure 1. Power density spectrum of a continuous-time periodic signal.

@ Since power in a periodic signal exists only at discrete values of
frequencies, the signal is said to have a line spectrum
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Power Density Spectrum of Periodic Signals

o Since Fourier series coefficients {cx} are complex valued, i.e
ck = |cklef®  where 0, = Lck
instead of plotting power density spectrum, we can plot magnitude
spectrum {|ck|} and phase spectrum {6} as a function of frequency
o If periodic signal is real valued, then
ek =cf — |eil? = [cf P = |l

o Power spectrum is an even function
o Magnitude spectrum is an even function
o Phase spectrum is an odd function
e Hence it is sufficient to specify spectrum for positive frequencies only
o Total average power
oo 1 oo
PX:c§+2;|ck|2: 5; (a2 + b7)

ap = Q
ay = 2|cx| cos by
bk = 2|ck|sin ek
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Power Density Spectrum of Periodic Signals

@ Determine Fourier series and power density spectrum of following
rectangular pulse train signal

x(1)
A
| 1 | |
_Tp — L 0 L Tp t
2 2

Figure 2: Continuous-time periodic train of rectangular pulses.

@ Since x(t) is an even signal, it is convenient to select integration
interval from —T,/2 to T,/2

T,/2 /2
= —/ x(t)e 2 kFotgr 5 o = —/ x(t)dt = i Ade = AT
T, /2 —7/2 P
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Power Density Spectrum of Periodic Signals

Example (continued)

@ ¢y represents average value (dc component) of x(t)
@ For k#0

1 /2

—jor T/2
o=t Ne—i2mkot gy _ A {ﬂ] /
Tp —r/2 Tp —j2mwkFy /2
A ejﬂ'kFoT _ e*jTl'kFoT
~ mFokT, Jj2
AT sintkFoT
= — k==+142,... 4
T, wkFor ’ Y (4)

(4) has the from (sin ¢)/¢, where ¢ = TkFoT
o ¢ takes on discrete values since Fy and 7 are fixed and k varies

o However, plot of (sin ¢)/¢ with ¢ as a continuous parameter is shown in
Fig. 3

V.
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Power Density Spectrum of Periodic Signals

Example (continued)

sin ¢
4
—Tn —6m -5t —4m 37 27 -7 |0 7 2n 3w 4m Sm 6w Tm ¢

0
Figure 3: The function (sin ¢)/¢.

@ Since x(t) is even, Fourier coefficients {c} are real
e Phase spectrum is either zero, when ¢, is positive, or ™ when ¢y is
negative
o Instead of plotting magnitude and phase spectra separately, we may plot
{ck} on a single graph

<
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Power Density Spectrum of Periodic Signals

Example (continued)

@ When T, is fixed and pulse width 7 is allowed to vary

o T,=0.25seconds — Fyp =1/T, =4 Hz
e Spacing between adjacent spectral lines is Fp = 4 Hz, independent of 7

gl {1” ’
I N -]‘Hl'l'

]- =027,
"} AN m N

< t=017,
el ,.'l‘lﬂﬂwwmﬂ‘m T[N Irn
ST T F
< T=0057,

core T T e
JITOTIOT® 0 "‘LLHLUJFL

Figure 4: Fourier coefficients of the rectangular pulse train when T, is
fixed and the pulse width 7 varies.
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Power Density Spectrum of Periodic Signals

Example (continued)

o If 7 is fixed and T, varies when T, > 7
o Spacing between adjacent spectral lines decreases as T, increases

N 7,210
R ] ‘H { HH]T e
L r TI- F
l" 7,=207
SN ot I, S
0 F

Figure 5: Fourier coefficients of a rectangular pulse train with fixed
pulse width 7 and varying period T,,.
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Power Density Spectrum of Periodic Signals

Example (continued)

AT sinmkFoT
Ck=——"— k=41,42,...
T, wkFor o
P
o If k # 0 and sin(rkFoT) = 0, then ¢, =0
e Harmonics with zero power occur at frequencies kFy such that
w(kFo)r = mm, m==+1,42, ...

@ Power density spectrum for rectangular pulse train

2
2 (%) ’ k=0
|ck|® = {2, 2
(%) (%’1) o k=41,42, ...
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Fourier Transform for Continuous-Time Aperiodic Signals

@ Periodic signals possess line spectra with equidistant lines
o Line spacing is equal to fundamental frequency
o Fundamental period provides number of lines per unit of frequency (line
density), as shown in Fig. 5
@ Allowing period to increase without limit, line spacing tends toward
zero
o When period becomes infinite, signal becomes aperiodic and its
spectrum becomes continuous
o Spectrum of an aperiodic signal is envelope of line spectrum in
corresponding periodic signal obtained by repeating the aperiodic signal
with some period T,
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Fourier Transform for Continuous-Time Aperiodic Signals

o Consider an aperiodic signal x(t) with finite duration
o We can create a periodic signal x,(t) with period T,

(1) = fim_x(2)

/F\t)\
L 1

-T2 0 7,2 1

(@)

Aﬁ)\
T,,/z T,,/z

—T /2

(b)

Figure 6: (a) Aperiodic signal x(t) and (b) periodic signal x,(t)
constructed by repeating x(t) with a period T,.
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Fourier Transform for Continuous-Time Aperiodic Signals

@ Fourier series representation of x,(t)

oo

: 1
Xp(t) = Z Cke’27TkF0t, Fo = ?
k=—o0 p
where -
— _/ —J27rkthdt
T, /2

Since x,(t) = x(t) for —T,/2 <t < T,/2 and x(t) =0 for |t| > T,/2

1 > .
C = —/ x(t)e_ﬂ”k’:"tdt
TP —0o0

Defining a function X(F), called Fourier transform of x(t)

X(F) = /00 x(t)e 2 Ftdt

1 k
Ck = ?X(kFo) or Tka = X(kFo) =X <?>
P P

Fourier coefficients are samples of X(F) taken at multiples of Fy and scaled
by Fo (multiplied by 1/T,)
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Fourier Transform for Continuous-Time Aperiodic Signals

o If we substitute for ¢, in Fourier series representation of x,(t)

= . 1
Xp(t) = Z Ckel27rkF0t’ Fo = ?
k=—o0 P

k

Tock = X(kFo) = X | —

Tp

we obtain
 [— k\
xp(t) = — Z X (?> oi2mkFot
— P

Defining AF = TL,,

xp(t) = Y X(kAF)PmAFAF
k=—o0
. _ o j2mk AFt
T:@oox,,(t)_x(t)_AmokZ X(kAF)é AF

oo
AFodh, x(t) = / X(F)e”*™f*dF  (inverse Fourier transform)
kAF—F e 05



Fourier Transform for Continuous-Time Aperiodic Signals

Table 2: Frequency analysis of continuous-time aperiodic signals

Synthesis equation (inverse transform) | x(t) = [0 X(F)e/*"FtdF

Analysis equation (direct transform) X(F)= [ x(t)e /" Ftdt

[e. o]

@ Above Fourier transform pair can be expressed in terms of Q = 27 F
o Since dF = dQ /27

x(t) = % / 7 X(Q)ed0

—00
oo

X(Q) = / x(t)e ¥ dt

—0o0
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Energy Density Spectrum of Aperiodic Signals

o Let x(t) be any finite energy signal with Fourier transform X(F)

E. = /OO |x(t)[dt

—00

= /oo x(t)x*(t)dt

—00

= /_ z x(t)dt [ /_ Z X*(F)e_szrFtdF]
- /_Z X*(F)dF [/: x(t)e—fz’f”dt]

oo

- / X(F)dF

—0o0

o Parseval’s relation for aperiodic, finite energy signals
E. = / Ix(t)[2dt = / | X(F)|2dF
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Energy Density Spectrum of Aperiodic Signals

@ Spectrum X(F) of a signal is complex valued
X(F) = X (PP
where | X(F)| is magnitude spectrum and ©(F) is phase spectrum
O(F) = £X(F)
o Energy density spectrum of x(t)
Sx(F) = [X(F)P?

o S.«(F) is real and nonnegative, and does not contain any phase
information

o It is impossible to reconstruct signal given S (F)

o If signal x(t) is real, then
(X(=F) = [X(F)|
AX(—F) = —4X(F)
o Energy density spectrum of a real signal has even symmetry
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Energy Density Spectrum of Aperiodic Signals

@ Determine Fourier transform and energy density spectrum of

_ At <T/2
X(t)—{o, It| > /2

Figure 7: Rectangular pulse.

@ This signal is aperiodic

(o) . /2 . : £
X(F) = / x(t)e 2 Ftdt -5 X(F) = / Ae—JZ”Ffdt:ATS'"Z a

— 0 —7/2 T
24 /




Energy Density Spectrum of Aperiodic Signals

Example (continued)

@ X(F) is real and hence can be depicted using only one diagram

X(F)
At

_z\/_l_ 0 1_\/3 F
T T T T

Figure 8: Fourier transform of rectangular pulse.

@ Zero crossings of X(F) occur at multiples of 1/7
e Width of main lobe, which contains most of signal energy, is 2/7

o As 7 decreases (increases), main lobe becomes broader (narrower) and
more energy is moved to higher (lower) frequencies
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Energy Density Spectrum of Aperiodic Signals

Example (continued)

) X(F)
A
’7—‘ At
0T ' 1 0 T F
2 2 T T
) X(F)
A At
SN \ AN
_z 0 I ‘ Mo N~ F
2 2 L
T T
Ac| X
x(1)
A
0 z ' v UEofU 7 F
2 2 11
Tt
Figure 9: Fourier transform of a rectangular pulse for various width values
20




Energy Density Spectrum of Aperiodic Signals

Example (continued)

@ As shown in Fig. 9, as signal pulse is expanded (compressed) in time,
its transform is compressed (expanded) in frequency

@ Energy density spectrum of rectangular pulse

S (F) = (A7)? (sin 7TF7—>2

nFT
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Frequency Analysis of Discrete-Time Signals

o Fourier series representation of a continuous-time periodic signal can
consist of an infinite number of frequency components
o Frequency spacing between two successive harmonically related
frequencies is 1/ T, (T, is fundamental period)

@ Since frequency range for continuous-time signals extends from —oo to
00, it is possible to have signals that contain an infinite number of
frequency components

o In contrast, frequency range for discrete-time signals is unique over
interval (—m,7) or (0,27)

o A discrete-time signal of fundamental period N can consist of

frequency components separated by 27 /N radians or f = 1/N cycles
o Consequently, Fourier series representation of discrete-time periodic
signal contains at most N frequency components
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The Fourier Series for Discrete-Time Periodic Signals

o Given a periodic sequence x(n) with period N (i.e., x(n) = x(n+ N)
for all n), Fourier series representation for x(n) consists of N
harmonically related exponential functions

ef2mkn/N | —0,1,...,N—1

and is expressed as
N-1
X(n) _ Z Ckej27'rkn/N (5)
k=0

where {c,} are coefficients in series representation
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The Fourier Series for Discrete-Time Periodic Signals

o Multiplying both sides of (5) by e #27/"/N and summing from n = 0 to
n=N-1

N-1 ] N—-1N-1 ]
X(n)efj27rln/N — Z Z Ckej27r(kfl)n/N (6)
n=0 n=0 k=0

"fejzw(k_,)n/,\,_ N, k—1=0,+N,~+2N,...
1 0, otherwise

Right-hand side of (6) reduces to Nc¢; and hence

1 N—
B x(n)e /N 1 =01,... ,N—1
n:O

._\
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The Fourier Series for Discrete-Time Periodic Signals

Table 3: Frequency analysis of discrete-time periodic signals

Synthesis equation x(n) = Zﬁ’z—ol ¢ el2mkn/N

( )e—j27rkn/N

Analysis equation =5 SN1x

@ The synthesis equation above is often called discrete-time Fourier
series (DTFS)
@ From Analysis equation above, which holds for every value of k, we

have
N-1 N—1
Ck _ l Z X(n)e—j27r(k+N)n/N — l X(n)e—jZTrkn/N —c
+N N N k
n=0 n=0

o Spectrum of a signal x(n), which is periodic with period N, is a periodic
sequence with period N
o Any N consecutive samples of signal or its spectrum provide a complete

description of signal in time or frequency domains
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The Fourier Series for Discrete-Time Periodic Signals

@ Determine spectrum of signal
x(n) = cosv/27n
@ Since wp = V21 — fu =1/1/2
e fy is not a rational number — signal is not periodic — signal cannot
be expanded in a Fourier series

o Nevertheless, signal possesses a spectrum consisting of single frequency
component at w = wg = \/§7r
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The Fourier Series for Discrete-Time Periodic Signals

@ Determine spectrum of signal

x(n) = cosmn/3

o fo= % — x(n) is periodic with fundamental period N = 6
] N1 . 15 '
%=1 Z(:) x(n)e i2mkn/N _y o — c nzz;)x(,,)e—mkn/e, k=01,....5
2
x(n) = cos%7 = cos%n = e’z’”’/6 2 e~J27mn/6

Comparing x(n) with synthesis equation, x(n) =

26 5 =1 > g =
—_]27!’!1/6 (k _ _1) N e—_/27rn/6 ej27r(5 6)n/6 _

N-1 ji2mkn/N
k=0 ckef /

e127r(5”)/6 S k=5—
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The Fourier Series for Discrete-Time Periodic Signals

Example (continued)

= o

-5 -10 123456 k

Figure 10: Spectrum of the periodic signal discussed in Example.
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The Fourier Series for Discrete-Time Periodic Signals

@ Determine spectrum of signal
x(n) = {%, 1,0,0}

where x(n) is periodic with period N = 4
@ From analysis equation
N-1 3

. 1 ;
e = g 2 XM s =23 x(me PN, k=0,1,2,3
n=0 n=0

ok =2(1+eI™/2), k=0,1,2,3
C = %’ = 71;(1 _J)a =0, 3= 71;(1 +J)
Magnitude and phase spectra are
ol = 3, laal = %2, |2l = 0, Jes| = 2
£cg =0, £cy = =%, £co = undefined, Lc3 = 7
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The Fourier Series for Discrete-Time Periodic Signals

Example (continued)

leyl

L

2
3-2-101234 k

Ley

LS

4

-3 1 e
]-2 1o 234 k
_TL
4
Figure 11: Spectra of the periodic signal discussed in Example.
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Power Density Spectrum of Periodic Signals

o Average power of a discrete-time periodic signal with period N

N—-1
Po= 5D Ix(n)?
n=0
1 N—-1
= 3 X0 ()
N—-1 ] 1 N—-1 N—-1 ]
x(n) = ce™ /N 5 p = v 2 X" > c;fe‘ﬂ”k"/"’)
k=0 n=0 k=0
N—-1 1 N—-1 ]
_ C;: - X(n)efz"k"/N]
N
k=0 n=0
1 N—-1 ] N—-1
=7 x(n)e 2N — p, — Z |exl?
n=0 k=0

o Average power in signal is sum of powers of individual frequency
components

o |ck|? for k=0,1,...,N — 1 is called power density spectrum o



Power Density Spectrum of Periodic Signals

o If x(n) is real (x*(n) = x(n)), then

Cp = C_k
or
lc_k| =|ck| and  —Lcy = Lo
o Because
Ck+N = Ck
then
lck| = |len—k|  and Lok = —Len—«

e Thus, for a real signal, the spectrum
¢k, k=0,1,...,N/2 for N even,
orck, k=0,1,...,(N—1)/2 for N odd
completely specifies signal in frequency domain
e This is consistent with the fact that the highest relative frequency that
can be represented by a discrete-time signal is 7
0<wip=21k/N<1m—0<k<N/2
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Power Density Spectrum of Periodic Signals

@ Determine Fourier series coefficients and power density spectrum of
periodic signal shown in Fig. 12

x(n)

I,

-N 0 L N

n

Figure 12: Discrete-time periodic square-wave signal.

@ Applying analysis equation

q =l ' = '
Cx = N X(n)ef_/27rkn/N = ZAeﬁznkn/N, k=01, N—1
n=0 n=0
L—1 AL
A —j2mk/Nyn N k =
k=N (e er ) = A 1—e—J2mkL/N
Nn:o N]__eeﬁTk/N7 k=1,2,...,N—1
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Power Density Spectrum of Periodic Signals

Example (continued)

@ Simplifying last expression further

1 — e—J2mkL/N _ e JTkL/N ginkL/N _ o—jmkL/N _ eﬂ.wk(Lil)/Nsin(ka/N)
1_ e—Jjerk/N e—Jmk/N ajrk/N _ a—jmk/N Sin(7‘rk/N)
Therefore
ar, k=0,£N,£2N,...
Ck = { ﬁe—fﬂk(L—l)/N%, otherwise

Power density spectrum

aul ALYy k=0,+N,+2N, ...
= AN2 ( sin(rkL/N)\ 2 _
(%) (%&k—//\/}) , otherwise
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Power Density Spectrum of Periodic Signals

L=2,N=10
5
4
3
- 2
)
s l l
0
2
1.5 1 0.5 0 0.5 1 1.5
Frequency (Cycles/Sampling interval)
L=2,N=40
5
4k
3h
= 2T
= 1
0
1
5 . . n . L
15 1 05 0 0.5 1 15

Frequency (Cycles/Sampling interval)

Figure 13: Power density spectrum |cx|? for L =2, N = 10 and 40, and A =1
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The Fourier Transform of Discrete-Time Aperiodic Signals

o Fourier transform of a finite-energy discrete-time signal x(n)

o

X(w)= > x(n)e " (7)

n—=—oo

o X(w) is a decomposition of x(n) into its frequency components
o Frequency range for a discrete-time signal is unique over frequency
interval of (—m,7) or, equivalently, (0,27)

X(w+ 27k) = Z x(n)eJwt2mkn
n=—o0
o)
_ Z X(n)e—jwne—j27rkn
= Z x(n)e " = X(w)
n=—0o0

Hence X(w) is periodic with period 27
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The Fourier Transform of Discrete-Time Aperiodic Signals

o Multiplying both sides of (7) by e/“™ and integrating over (—, )

" X(w)emdu — / ' [i x(n)e—fw"] M g

n=—oo
On right-hand side, order interchange of ) and [ can be made if

N

Xn(w) = Y x(n)e "

n=—N

converges uniformly to X(w) as N — oo
o le., for every w, Xy(w) = X(w), as N — o0

> T (m—n 27x(m), m=n
Zx(n) el )dw:{o (m) m%n

n=—o0 i

x(n) = % /Tr X(w)e™ dw

—T
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The Fourier Transform of Discrete-Time Aperiodic Signals

Table 4: Frequency analysis of discrete-time aperiodic signals

Synthesis equation (inverse transform) | x(n) = % Jorr X(w)e/*Mdw

Analysis equation (direct transform) X(w) =300 x(n)ewn
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Energy Density Spectrum of Aperiodic Signals

o Energy of a discrete-time signal x(n) is

o0

Ec= Y xmP= 3 x(nx(n)

_ :i;: x(n) [% :;X*(w)e_j“’”dw}

n=—o00 -

_ - 2
= 27T IX(w)I dw

x(n)e_j‘”"] dw

Parseval's relation for discrete-time aperiodic signals with finite energy

E= S x(n)p / IX(w) 2w

n=—oo
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Energy Density Spectrum of Aperiodic Signals

o X(w) is a complex-valued function
X(w) = [X(w)|e®)
where
O(w) = £X(w)
is phase spectrum and | X(w)| is magnitude spectrum
o Energy density spectrum of x(n)
Sx(w) = [X(w)P?
o if x(n) is real, then
X (w) = X(-w)
[X(=w)| = [X(w)]
AX(—w) = —4X(w)
Sux(—w) = S (w)
Similar to real discrete-time periodic signals, frequency range of real

discrete-time aperiodic signals can also be limited further to one-half of
period

0<w<m
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Energy Density Spectrum of Aperiodic Signals

@ Determine and sketch energy density spectrum Sy« (w) of signal
x(n) =a"u(n), -l<a<l

@ Applying Fourier transform

(e o] o0

X(w) = Z (n)e T Za” T Z(ae‘jw)”
n—=—o00 n=0
Since |ae /| = |a| < 1, using geometric series
1
Xw) = 1— ae v
. 1
Sx(w) = [X(W)|* = X(w)X*(w) =

(1 — ae@)(1 — aelv)
_ 1
~ 1—2acosw + a2

47 /52



Energy Density Spectrum of Aperiodic Signals

) Sule)
x(n
a=05 4
3
2
1
1 1 1 1
0 5 10 15 20 n - T 0 it 1
2 2
Sxx(w)

x(n)

Figure 14: (a) Sequence x(n) = (3)"u(n) and x(n) = (—3)"u(n); (b) their
energy spectra. For a = —0.5 the signal has more rapid variations and as a
result its spectrum has stronger high frequencies.
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Energy Density Spectrum of Aperiodic Signals

@ Determine Fourier transform and energy density spectrum of sequence

(n) = A 0<n<L-1
xan 0, otherwise

x(n)

0 L-1 n

Figure 15: Discrete-time rectangular pulse.

@ Fourier transform of this signal is

0 1— e—ij

Xw)= Y x(n)e f‘””—ZA e — A

n=—0o0

v
o742



Energy Density Spectrum of Aperiodic Signals

Example (continued)

X(w) = Ae—ite/2(L-1)SN(WL/2)

sin(w/2)
AL, w=0
(X(w)] = |A| S:If&%%) , otherwise

sin(wL/2)

AX(w) = LA — g(L —1)+ )
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Energy Density Spectrum of Aperiodic Signals

IX(w)l

O(w)
xL
EaN
[\ \ ,\
- . N .,
—n| _z z 7
2 | 2
2
.

Figure 16: Magnitude and phase of Fourier transform of the discrete-time
rectangular pulse in Fig. 15, for the case A=1and L =5.
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