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The Concept of Bandwidth

o Low-frequency signal

o A power signal (or energy signal) whose power density spectrum (or
energy density spectrum) is concentrated about zero frequency
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Figure 1: Low-frequency signal.
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The Concept of Bandwidth

o High-frequency signal
o A power signal (or energy signal) whose power density spectrum (or
energy density spectrum) is concentrated at high frequencies
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Figure 2: High-frequency signal.
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The Concept of Bandwidth

o Medium-frequency signal or bandpass signal

o A power signal (or energy signal) whose power density spectrum (or
energy density spectrum) is concentrated somewhere in broad frequency
range between low frequencies and high frequencies
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Figure 3: Medium-frequency signal.
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The Concept of Bandwidth

o Bandwidth of a signal
o To express quantitatively the range of frequencies over which power or
energy density spectrum is concentrated
o E.g., if a continuous-time signal has 95% of its power (or energy)
density spectrum concentrated in F; < F < F,, then 95% bandwidth of
signal is F, — F
@ A bandpass signal is narrowband if its bandwidth F, — F7 is much
smaller than median frequency (F2 + F1)/2
o Otherwise, it is wideband
@ A signal is bandlimited if its spectrum is zero outside frequency range
|F| > B
o A periodic continuous-time signal x,(t) is bandlimited if its Fourier
coefficients ¢, = 0 for |k| > M (M is some positive integer)
o A continuous-time finite-energy signal x(t) is bandlimited if its Fourier
transform X(F) =0 for |F| > B
o A periodic discrete-time signal with fundamental period N is
periodically bandlimited if Fourier coefficients ¢, = 0 for ko < |k| < N
o A discrete-time finite-energy signal x(n) is (periodically) bandlimited if
|X(w)| =0 for wp < |w| <7



The Concept of Bandwidth

o Exploiting duality between frequency and time domains, a signal x(t)
is time-limited if
x(t)=0, |t|>7
o If a signal is periodic with period T,, it is periodically time-limited if
X(t) =0, 7T<[t|]< T,/2
o A discrete-time signal x(n) of finite duration (x(n) =0, |n| > N) is also

time-limited
o When a signal is periodic with fundamental period N, it is periodically

time-limited if
x(n)=0, ng<|n <N
o No signal can be time-limited and bandlimited simultaneously
@ A reciprocal relationship exists between time duration and frequency

duration of a signal
o The narrower the pulse becomes in time domain, the larger the
bandwidth of signal becomes
o Consequently, product of time duration and bandwidth of a signal is

fixed
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Frequency-Domain and Time-Domain Signal Properties

@ There are two time-domain characteristics that determine type of
signal spectrum we obtain
@ Whether time variable is continuous or discrete
@ Whether signal is periodic or aperiodic
@ Summary of results of previous sections
o Continuous-time signals have aperiodic spectra
o Because complex exponential exp(j27Ft) is a function of continuous
variable t, and hence it is not periodic in F
o Thus frequency range extends from F =0 to F = oo
o Discrete-time signals have periodic spectra
o Both Fourier series and transform are periodic here with period w = 27
o Frequency range is finite and extends from w = —7 to w = 7, where
w = 7 corresponds to the highest possible rate of oscillation
o Periodic signals have discrete spectra
o Periodic signals are described by means of Fourier series
o Fourier series coefficients provide lines that constitute discrete spectrum
o Line spacing is AF = 1/T, for continuous-time periodic signals and
Af =1/N for discrete-time signals
o Aperiodic finite energy signals have continuous spectra
o Because X(F) and X(w) are functions of exp(j27Ft) and exp(jwn),
respectively, which are continuous functions of F and w



omain and Time-Domain Signal Prope
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Figure 4: Summary of analysis and synthesis formulas.
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Frequency-Domain and Time-Domain Signal Properties

o Periodicity with "period” « in one domain automatically implies
discretization with "spacing” of 1/« in the other domain, and vice
versa

e "Period” in frequency domain means frequency range
e "Spacing” in time domain is sampling period T
o Line spacing in frequency domain is AF
a=T,—1/a=1/T,=AF
a=N—Af=1/N
a=F—T=1/F
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Properties of Fourier Transform for Discrete-Time Signals

e Direct transform (analysis equation)

[e.e]
X(w) = F{x(n)} = > x(n)e /"
n=—00
o Inverse transform (synthesis equation)
x(n) = FUXW)} = & [ X(w)e* dw
2 o

e x(n) and X(w) are a Fourier transform pair

x(n) LN X(w)
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Properties of Fourier Transform for Discrete-Time Signals

@ Suppose both x(n) and X(w) are complex-valued

x(n) = xgr(n) + jxi(n) (1)
X(w) = Xr(w) + jXi(w) (2)

Putting (1) and e/ = cosw — jsinw in X(w) =>2° __ x(n)e "
Xr(w) = Z [xr(n) coswn + x;(n) sinwn] (3)
Xi(w) == > [xr(n)sinwn — xi(n) coswn] (4)

Putting (2) and & = cosw + jsinw in x(n) = 5 [, X(w)e/*"dw

xr(n) = 217T [XR( ) coswn — Xj(w) sinwn]dw (5)
xi(n) = 2; [XR( )sinwn + Xj(w) coswn]dw (6)



Properties of Fourier Transform for Discrete-Time Signals

o Real signals. If x(n) is real, then xg(n) = x(n) and x;(n) =0
o Hence (3) and (4) reduce to

Xr(w) = Z x(n)coswn and Xj(w)=— Z x(n)sinwn
Since cos(—wn) = coswn and sin(—wn) = —sinwn
XR(—w) = XR(w) and X/(—UJ) = —X/(w)
X*(w) = X(—w)

Magnitude and phase spectra for real signals
X(@)| = VXE@)+ XFw) and  £X|w| =tan"1 L)
[X(w)] = [ X(—w)| and 4AX(—w)=—4X(w)
For inverse transform of a real-valued signal (x(n) = xg(n)), (5) implies

x(n) = QL/ [Xr(w) coswn — X;(w) sinwn]dw
T Jor
Since both Xg(w) coswn and Xj(w)sinwn are even functions of w
1 T
x(n) = ;/ [Xr(w) coswn — Xj(w) sinwn]dw
0
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Properties of Fourier Transform for Discrete-Time Signals

o Real and even signals. If x(n) is real and even (x(—n) = x(n)), then
x(n) coswn is even and x(n)sinwn is odd

Xr(w) = Z x(n)coswn — Xg(w) = x(0) + 2 Zx(n) coswn (even)
n=-—o00 n=1
Xi(w) == > x(n)sinwn — Xj(w) =0

x(n) = %/OW[XR(w) coswn — Xj(w) sinwn]dw —
x(n) = 1 /O7r Xgr(w) coswndw

™

Thus spectra for real and even signals are

o Real-valued
o Even functions of w
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Properties of Fourier Transform for Discrete-Time Signals

o Real and odd signals. If x(n) is real and odd (x(—n) = —x(n)), then
x(n) coswn is odd and x(n)sinwn is even

o0

Xr(w) = Z x(n) coswn — Xg(w) =0
Xi(w) = — i x(n)sinwn — Xj(w —ZZ )sinwn (odd)

x(n) = %/OW[XR(w) coswn — Xj(w)sinwn]dw —
x(n) = ! /07T Xi(w) sinwndw

™

Thus spectra for real-valued odd signals are

o Purely imaginary-valued
o Odd functions of w

14 /40



Properties of Fourier Transform for Discrete-Time Signals

@ Determine and sketch Xg(w), Xj(w), |X(w)

, and £ X(w) for

1
X(w)=—, -l<axl
() 1—ae v
@ Multiplying both numerator and denominator by complex conjugate of
denominator

X(w) = 1— ae® _ 1—acosw — jasinw
- (1 —aew)(1—aeiw)  1—2acosw + a2
1— acosw asinw
Xp(w) = —— 2% and X(w)= -
r(w) 1 2acoswt a2 o ) 1—2acosw + a2
1
#el A= e
X .
AX|w| =tan~?! Xi(w) — _tan 1 20
Xgr(w) 1—acosw
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Properties of Fourier Transform for Discrete-Time Signals
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Figure 5: Spectra of the transform in Example for a = 0.8; all symmetry

properties for the spectra of real signals apply to this case.
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Properties of Fourier Transform for Discrete-Time Signals

@ Determine Fourier transform of

A M<n<M
| 0, elsewhere

@ x(n) is real and even (x(—n) = x(n))

Xr(w) = x(0) + QZx(n) coswn (even) and X;(w)=0
n=1

M .
X(w) = Xg(w) = A (1 +22coswn> = AM

p sin(w/2)
| ,sin(M + Lw [0, if X(w)>0
Well=r—fmam | ™ “e= { m if X(w) < 0
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Properties of Fourier Transform for Discrete-Time Signals

ll n
-M 0 M
X(w)
/\ / ‘ /\
~ LT\ A .
2 VAV UV o

L L L L »
-2 - T 2
L

Figure 6: Spectral characteristics of rectangular pulse in Example.
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Fourier Transform Theorems and Properties

o Linearity
o If
x1(n) <5 Xi(w)
and
x2(n) N Xo(w)
then

F
arx1(n) + axxa(n) +— a1 X1(w) + a2 Xz (w)
o Fourier transformation, viewed as an operation on a signal x(n), is a
linear transformation
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Fourier Transform Theorems and Properties

@ Determine Fourier transform of

x(ny=al"l, -1<a<1
@ x(n) can be expressed as

x(n) = x1(n) + x2(n)

where
a", n>0 [ a", n<o0
Xl(”)_{ 0, n<o 2 Xz(”)_{ 0, n>0
Fourier transform of x;(n)
Xi(w) = _Z xi(n)e %N = Za e jwn — Z(ae‘f“’)” = —ae—Jw

knowing that |ae™/¥| = |a| < 1

v
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Fourier Transform Theorems and Properties

Example (continued)

e Fourier transform of xz(n)

Xo(w) = i xa(n)e ™ = Z a "eIwn
= Z (ael) ™" = "(ael?)
n=—o00 k=1
- ael
- 1— aew

Combining these two transforms, we obtain Fourier transform of x(n)

1— 32
1 — 2acosw + a2

X(w) = X1(w) + Xo(w) =
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Fourier Transform Theorems and Properties

x(n)
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Figure 7: Sequence x(n) and its Fourier transform in Example with a = 0.8.
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Fourier Transform Theorems and Properties

o Time shifting

o If i
x(n) «— X(w)
then
x(n — k) <1 ek X (w)
o Proof
F{x(n)} = X(w)= Y x(n)e"
F{x(n—k)} = Z x(n — k)e J«n
Z e —jw(l+k)

_ X(w)e—jwk _ |X(w)|ej[4X(w)—wk]

o If a signal is shifted in time domain by k samples, its magnitude
spectrum remains unchanged, but phase spectrum is changed by an
amount —wk
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Fourier Transform Theorems and Properties

o Time reversal

o If
x(n) 2 X(w)
then
x(—n) <2 X(~w)
o Proof
F{x(n)} = X(w)= D x(n)e "
F{x(=n)} = > x(—n)e "

S = 3 x(h)e!
I=—o00
= X(—w) = [X(-w)| <X

if x(n) is real X (w) e 4XE)
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Fourier Transform Theorems and Properties

o Convolution theorem

o If
x(n) <5 Xi(w)
and
x(n) <5 Xo(w)
then

x(n) = xa(n) *x(n) < X(w) = X (w)Xo(w)
e Proof: multiply both sides of convolution formula by e™“" and sum

over all n
x(n) = x1(n) * x2(n) = Z x1(k)xa(n — k)
k=—oc0
X@) =Y x(n)edor=3" [Z xl(k)Xz(n—/o]
n=—o0 n=—0o0 Lk=—o0
noksl, i x1 (k) i xa(1)e D = X1 (w)Xa(w)
k=—o0 I=—o00
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Fourier Transform Theorems and Properties

@ Using convolution theorem, determine convolution of sequences
x1(n) = x2(n) = {1, 1, 1}

@ For real and even signals

Xr(w) = x(0) + 2§:x(n) coswn and X(w)=0

n=1
X1(w) = Xo(w) =1+ 2cosw
X(w) = X1 (w)Xa(w) = (1 + 2 cosw)?
=3+ 4cosw + 2cos 2w
=3+2(e + e ) + (2 + e7/2)

Thus convolution of x;(n) with x(n) is (recall X(w) =372 x(n)e=/*m)
x() = {1,2,3,2,1)




Fourier Transform Theorems and Properties
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Figure 8: Graphical representation of the convolution property.
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Fourier Transform Theorems and Properties

o Correlation theorem

o If
x(n) <5 Xi(w)
and
x(n) <5 Xo(w)
then

F
rX1X2(n) > Sax (w) = Xl(w)x2(_w).
o Proof: multiply both sides of correlation formula by e™“" and sum over

all n
rx1X2(n) = Z Xl(k)xz(k_ n)
Sin(w) = Z Fagro ()€ 79" = Z [ Z xi(k)x2(k — ”)] e
k=n=l, _ Z (k) Z xa(1e N = Xy (w) Xa(—w)

Syx (w) is called cross-energy density spectrum of signals x1(n) and x2(n)
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Fourier Transform Theorems and Properties

o Wiener-Khintchine theorem
o Let x(n) be a real signal. Then

Foc(1) = S(w)

o l.e., energy spectral density of an energy signal is Fourier transform of its
autocorrelation sequence
o This is a special case of preceding theorem (correlation theorem)
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Fourier Transform Theorems and Properties

@ Determine energy density spectrum of
x(n)=a"u(n), —-l<a<l

@ Using results of previous examples for this signal

1
re(l) = 1= 23'”, —00 < | < o0
Flrm()} = 1= Fla} = 15—
1— 232 1 —2acosw + a2

According to Wiener-Khintchine theorem

1
Six =
(w) 1 —2acosw + a2
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Fourier Transform Theorems and Properties

o Frequency shifting

o If
x(n) 2 X(w)
then
&0y ()« X(w — wo)
o Proof
X(w) = Z x(n)e™ " — X(w — wp) = Z x(n)eI(w=wo)n
_ Z (ejwonx(n))e—jwn

= F{e"x(n)}
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Fourier Transform Theorems and Properties

X(w)
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Figure 9: lllustration of the frequency-shifting property of the Fourier transform
(wo <27 — wp).
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Fourier Transform Theorems and Properties

o Modulation theorem
o If
x(n) 2 X(w)
then
x(n) coswon < X (w 4 wo) + X(w — wo)]
o Proof: expressing coswgn as
coswon = 3(ef0n 4 eiwon)
and using frequency-shifting property
x(n) ¢ X(w) — e#x(n) <25 X(w — wo)
we obtain
F{i(e/0n 4+ e J«0m)x(n)} = 2[X(w — wo) + X(w + wo)]
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Fourier Transform Theorems and Properties
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Figure 10: Graphical representation of the modulation theorem; the spectra of
the signals x(n), y1(n) = x(n) cos 0.5mn and y»(n) = x(n) cosmn. o



Fourier Transform Theorems and Properties

o Parseval’s theorem

o If
x1(n) <5 Xi(w)
and
Xg(n) (L> Xg(w)
then - _
; sa(n)xi(n) = % [ X% (@)

o Proof: eliminating Xi(w) on right-hand side of above equation

1 - —jwn *

) Lzooxl(n)e S9N X5 (w)dw

= 3 mlnye [ X@erdo= 3 (ko)
n=—00 2m n=—o00
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Fourier Transform Theorems and Properties

o In special case where xo(n) = x1(n) = x(n), Parseval's relation reduces

to
00

> P = 5- [ IxG)Pd

n=—0o0

o Left-hand side of this equation is energy E, of x(n)

o Left-hand side is also equal to autocorrelation of x(n), rw(/) at I =0

o Integrand in right-hand side is equal to energy density spectrum, so
integral over —m < w < 7 yields total signal energy

E=ral0)= 3 WP =5 [ IX@Pdo = 5 [ Sut)as

n=—0o0
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Fourier Transform Theorems and Properties

o Multiplication of two sequences (Windowing theorem)

o If i
; x1(n) +— Xi1(w)
x(n) <5 Xo(w)
then
xs(n) = x(ma(n) < Xs(w) = 5 [ X% - N

o Integral on right-hand side is convolution of Xi(w) and Xz(w)

o This convolution integral is known as periodic convolution of X;(w) and
X>(w) because it is convolution of two periodic functions having the
same period

@ Multiplication of aperiodic sequences is equivalent to periodic
convolution of their Fourier transforms

o Based on duality, convolution in time domain (aperiodic summation) is
equivalent to multiplication of continuous periodic Fourier transforms

@ Due to periodicity of Fourier transforms for discrete-time signals, there is
no " perfect” duality between time and frequency domains with respect
to convolution operation, as in the case of continuous-time signals
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Fourier Transform Theorems and Properties

o Proof of windowing theorem:
We know

x3(n) = x1(n)x2(n) and  xi(n) = % /7r X1(\) e d A

Thus

oo [e.9]

Xsw)= 3 xa(ne = 3 x(nxa(n)e

n=—0o0 n=—0o0
[e )

= > [% / i Xl()\)ef’\”d)\] xo(n)e "

n=—o0 -

— % i X1 (A)dA [ > X2(n)e_j(“’_’\)"]

- n=-—o00

- L /_7; Xy(\)Xa(w — A)dA
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Fourier Transform Theorems and Properties

o Differentiation in frequency domain

o If
x(n) £ X(w)
then
nx(n) éj%g")

o Proof: differentiate series in Fourier transform definition, term by term
with respect to w

dX(w) - —jwn
ity L;oox(n)e J ]
— Y —jwn
n:,mX(n)dwe
=—j Z nx(n)e=*"

Multiplying both sides by j, we obtain the desired result 39/40
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