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The Concept of Bandwidth

Low-frequency signal
A power signal (or energy signal) whose power density spectrum (or
energy density spectrum) is concentrated about zero frequency

Figure 1: Low-frequency signal.
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The Concept of Bandwidth

High-frequency signal
A power signal (or energy signal) whose power density spectrum (or
energy density spectrum) is concentrated at high frequencies

Figure 2: High-frequency signal.
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The Concept of Bandwidth

Medium-frequency signal or bandpass signal
A power signal (or energy signal) whose power density spectrum (or
energy density spectrum) is concentrated somewhere in broad frequency
range between low frequencies and high frequencies

Figure 3: Medium-frequency signal.
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The Concept of Bandwidth

Bandwidth of a signal
To express quantitatively the range of frequencies over which power or
energy density spectrum is concentrated
E.g., if a continuous-time signal has 95% of its power (or energy)
density spectrum concentrated in F1 ≤ F ≤ F2, then 95% bandwidth of
signal is F2 − F1

A bandpass signal is narrowband if its bandwidth F2 − F1 is much
smaller than median frequency (F2 + F1)/2

Otherwise, it is wideband
A signal is bandlimited if its spectrum is zero outside frequency range
|F | ≥ B

A periodic continuous-time signal xp(t) is bandlimited if its Fourier
coefficients ck = 0 for |k | > M (M is some positive integer)
A continuous-time finite-energy signal x(t) is bandlimited if its Fourier
transform X (F ) = 0 for |F | > B
A periodic discrete-time signal with fundamental period N is
periodically bandlimited if Fourier coefficients ck = 0 for k0 < |k| < N
A discrete-time finite-energy signal x(n) is (periodically) bandlimited if
|X (ω)| = 0 for ω0 < |ω| < π
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The Concept of Bandwidth

Exploiting duality between frequency and time domains, a signal x(t)
is time-limited if

x(t) = 0, |t| > τ

If a signal is periodic with period Tp, it is periodically time-limited if

xp(t) = 0, τ < |t| < Tp/2

A discrete-time signal x(n) of finite duration (x(n) = 0, |n| > N) is also
time-limited
When a signal is periodic with fundamental period N, it is periodically
time-limited if

x(n) = 0, n0 < |n| < N

No signal can be time-limited and bandlimited simultaneously
A reciprocal relationship exists between time duration and frequency
duration of a signal

The narrower the pulse becomes in time domain, the larger the
bandwidth of signal becomes
Consequently, product of time duration and bandwidth of a signal is
fixed
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Frequency-Domain and Time-Domain Signal Properties

There are two time-domain characteristics that determine type of
signal spectrum we obtain

1 Whether time variable is continuous or discrete
2 Whether signal is periodic or aperiodic

Summary of results of previous sections
Continuous-time signals have aperiodic spectra

Because complex exponential exp(j2πFt) is a function of continuous
variable t, and hence it is not periodic in F
Thus frequency range extends from F = 0 to F =∞

Discrete-time signals have periodic spectra
Both Fourier series and transform are periodic here with period ω = 2π
Frequency range is finite and extends from ω = −π to ω = π, where
ω = π corresponds to the highest possible rate of oscillation

Periodic signals have discrete spectra
Periodic signals are described by means of Fourier series
Fourier series coefficients provide lines that constitute discrete spectrum
Line spacing is ∆F = 1/Tp for continuous-time periodic signals and
∆f = 1/N for discrete-time signals

Aperiodic finite energy signals have continuous spectra
Because X (F ) and X (ω) are functions of exp(j2πFt) and exp(jωn),
respectively, which are continuous functions of F and ω
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Frequency-Domain and Time-Domain Signal Properties

Figure 4: Summary of analysis and synthesis formulas.
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Frequency-Domain and Time-Domain Signal Properties

Periodicity with ”period” α in one domain automatically implies
discretization with ”spacing” of 1/α in the other domain, and vice
versa

”Period” in frequency domain means frequency range
”Spacing” in time domain is sampling period T
Line spacing in frequency domain is ∆F

α = Tp −→ 1/α = 1/Tp = ∆F
α = N −→ ∆f = 1/N
α = Fs −→ T = 1/Fs
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Properties of Fourier Transform for Discrete-Time Signals

Direct transform (analysis equation)

X (ω) ≡ F{x(n)} =
∞∑

n=−∞
x(n)e−jωn

Inverse transform (synthesis equation)

x(n) ≡ F−1{X (ω)} =
1

2π

∫
2π

X (ω)e jωndω

x(n) and X (ω) are a Fourier transform pair

x(n)
F←→ X (ω)
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Properties of Fourier Transform for Discrete-Time Signals

Suppose both x(n) and X (ω) are complex-valued

x(n) = xR(n) + jxI (n) (1)

X (ω) = XR(ω) + jXI (ω) (2)

Putting (1) and e−jω = cosω − j sinω in X (ω) =
∑∞

n=−∞ x(n)e−jωn

XR(ω) =
∞∑

n=−∞
[xR(n) cosωn + xI (n) sinωn] (3)

XI (ω) = −
∞∑

n=−∞
[xR(n) sinωn − xI (n) cosωn] (4)

Putting (2) and e jω = cosω + j sinω in x(n) = 1
2π

∫
2π X (ω)e jωndω

xR(n) =
1

2π

∫
2π

[XR(ω) cosωn − XI (ω) sinωn]dω (5)

xI (n) =
1

2π

∫
2π

[XR(ω) sinωn + XI (ω) cosωn]dω (6)
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Properties of Fourier Transform for Discrete-Time Signals

Real signals. If x(n) is real, then xR(n) = x(n) and xI (n) = 0
Hence (3) and (4) reduce to

XR(ω) =
∞∑

n=−∞
x(n) cosωn and XI (ω) = −

∞∑
n=−∞

x(n) sinωn

Since cos(−ωn) = cosωn and sin(−ωn) = − sinωn
XR(−ω) = XR(ω) and XI (−ω) = −XI (ω)

X ∗(ω) = X (−ω)
Magnitude and phase spectra for real signals

|X (ω)| =
√
X 2
R(ω) + X 2

I (ω) and ]X |ω| = tan−1 XI (ω)
XR (ω)

|X (ω)| = |X (−ω)| and ]X (−ω) = −]X (ω)
For inverse transform of a real-valued signal (x(n) = xR(n)), (5) implies

x(n) =
1

2π

∫
2π

[XR(ω) cosωn − XI (ω) sinωn]dω

Since both XR(ω) cosωn and XI (ω) sinωn are even functions of ω

x(n) =
1

π

∫ π

0

[XR(ω) cosωn − XI (ω) sinωn]dω
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Properties of Fourier Transform for Discrete-Time Signals

Real and even signals. If x(n) is real and even (x(−n) = x(n)), then
x(n) cosωn is even and x(n) sinωn is odd

XR(ω) =
∞∑

n=−∞
x(n) cosωn −→ XR(ω) = x(0) + 2

∞∑
n=1

x(n) cosωn (even)

XI (ω) = −
∞∑

n=−∞
x(n) sinωn −→ XI (ω) = 0

x(n) =
1

π

∫ π

0
[XR(ω) cosωn − XI (ω) sinωn]dω −→

x(n) =
1

π

∫ π

0
XR(ω) cosωndω

Thus spectra for real and even signals are

Real-valued
Even functions of ω
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Properties of Fourier Transform for Discrete-Time Signals

Real and odd signals. If x(n) is real and odd (x(−n) = −x(n)), then
x(n) cosωn is odd and x(n) sinωn is even

XR(ω) =
∞∑

n=−∞
x(n) cosωn −→ XR(ω) = 0

XI (ω) = −
∞∑

n=−∞
x(n) sinωn −→ XI (ω) = −2

∞∑
n=1

x(n) sinωn (odd)

x(n) =
1

π

∫ π

0
[XR(ω) cosωn − XI (ω) sinωn]dω −→

x(n) = − 1

π

∫ π

0
XI (ω) sinωndω

Thus spectra for real-valued odd signals are

Purely imaginary-valued
Odd functions of ω

14 / 40



Properties of Fourier Transform for Discrete-Time Signals

Example

Determine and sketch XR(ω), XI (ω), |X (ω)|, and ]X (ω) for

X (ω) =
1

1− ae−jω
, −1 < a < 1

Multiplying both numerator and denominator by complex conjugate of
denominator

X (ω) =
1− ae jω

(1− ae−jω)(1− ae jω)
=

1− a cosω − ja sinω

1− 2a cosω + a2

XR(ω) =
1− a cosω

1− 2a cosω + a2
and XI (ω) = − a sinω

1− 2a cosω + a2

|X (ω)| =
√
X 2
R(ω) + X 2

I (ω) =
1√

1− 2a cosω + a2

]X |ω| = tan−1
XI (ω)

XR(ω)
= − tan−1

a sinω

1− a cosω
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Properties of Fourier Transform for Discrete-Time Signals

Figure 5: Spectra of the transform in Example for a = 0.8; all symmetry
properties for the spectra of real signals apply to this case.
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Properties of Fourier Transform for Discrete-Time Signals

Example

Determine Fourier transform of

x(n) =

{
A, −M ≤ n ≤ M
0, elsewhere

x(n) is real and even (x(−n) = x(n))

XR(ω) = x(0) + 2
∞∑
n=1

x(n) cosωn (even) and XI (ω) = 0

X (ω) = XR(ω) = A

(
1 + 2

M∑
n=1

cosωn

)
= A

sin(M + 1
2)ω

sin(ω/2)

|X (ω)| =

∣∣∣∣∣Asin(M + 1
2)ω

sin(ω/2)

∣∣∣∣∣ and ]X (ω) =

{
0, if X (ω) > 0
π, if X (ω) < 0
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Properties of Fourier Transform for Discrete-Time Signals

Figure 6: Spectral characteristics of rectangular pulse in Example.
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Fourier Transform Theorems and Properties

Linearity
If

x1(n)
F←→ X1(ω)

and

x2(n)
F←→ X2(ω)

then

a1x1(n) + a2x2(n)
F←→ a1X1(ω) + a2X2(ω)

Fourier transformation, viewed as an operation on a signal x(n), is a
linear transformation
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Fourier Transform Theorems and Properties

Example

Determine Fourier transform of

x(n) = a|n|, −1 < a < 1

x(n) can be expressed as

x(n) = x1(n) + x2(n)

where

x1(n) =

{
an, n ≥ 0
0, n < 0

and x2(n) =

{
a−n, n < 0
0, n ≥ 0

Fourier transform of x1(n)

X1(ω) =
∞∑

n=−∞
x1(n)e−jωn =

∞∑
n=0

ane−jωn =
∞∑
n=0

(ae−jω)n =
1

1− ae−jω

knowing that |ae−jω| = |a| < 1
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Fourier Transform Theorems and Properties

Example (continued)

Fourier transform of x2(n)

X2(ω) =
∞∑

n=−∞
x2(n)e−jωn =

−1∑
n=−∞

a−ne−jωn

=
−1∑

n=−∞
(ae jω)−n =

∞∑
k=1

(ae jω)k

=
ae jω

1− ae jω

Combining these two transforms, we obtain Fourier transform of x(n)

X (ω) = X1(ω) + X2(ω) =
1− a2

1− 2a cosω + a2
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Fourier Transform Theorems and Properties

Figure 7: Sequence x(n) and its Fourier transform in Example with a = 0.8.
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Fourier Transform Theorems and Properties

Time shifting
If

x(n)
F←→ X (ω)

then
x(n − k)

F←→ e−jωkX (ω)
Proof

F{x(n)} = X (ω) =
∞∑

n=−∞
x(n)e−jωn

F{x(n − k)} =
∞∑

n=−∞
x(n − k)e−jωn

l=n−k−−−−→ =
∞∑

l=−∞

x(l)e−jω(l+k)

= X (ω)e−jωk = |X (ω)|e j[]X (ω)−ωk]

If a signal is shifted in time domain by k samples, its magnitude
spectrum remains unchanged, but phase spectrum is changed by an
amount −ωk
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Fourier Transform Theorems and Properties

Time reversal
If

x(n)
F←→ X (ω)

then

x(−n)
F←→ X (−ω)

Proof

F{x(n)} = X (ω) =
∞∑

n=−∞
x(n)e−jωn

F{x(−n)} =
∞∑

n=−∞
x(−n)e−jωn

l=−n−−−→ =
∞∑

l=−∞

x(l)e jωl

= X (−ω) = |X (−ω)|e j]X (−ω)

if x(n) is real
−−−−−−−−−−→ = |X (ω)|e−j]X (ω)
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Fourier Transform Theorems and Properties

Convolution theorem
If

x1(n)
F←→ X1(ω)

and

x2(n)
F←→ X2(ω)

then

x(n) = x1(n) ∗ x2(n)
F←→ X (ω) = X1(ω)X2(ω)

Proof: multiply both sides of convolution formula by e−jωn and sum
over all n

x(n) = x1(n) ∗ x2(n) =
∞∑

k=−∞

x1(k)x2(n − k)

X (ω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

[ ∞∑
k=−∞

x1(k)x2(n − k)

]
e−jωn

n−k=l−−−−→ =
∞∑

k=−∞

x1(k)
∞∑

l=−∞

x2(l)e−jω(k+l) = X1(ω)X2(ω)
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Fourier Transform Theorems and Properties

Example

Using convolution theorem, determine convolution of sequences

x1(n) = x2(n) = {1, 1
↑
, 1}

For real and even signals

XR(ω) = x(0) + 2
∞∑
n=1

x(n) cosωn and XI (ω) = 0

X1(ω) = X2(ω) = 1 + 2 cosω

X (ω) = X1(ω)X2(ω) = (1 + 2 cosω)2

= 3 + 4 cosω + 2 cos 2ω

= 3 + 2(e jω + e−jω) + (e j2ω + e−j2ω)

Thus convolution of x1(n) with x2(n) is (recall X (ω) =
∑∞

n=−∞ x(n)e−jωn)

x(n) = {1, 2, 3
↑
, 2, 1}
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Fourier Transform Theorems and Properties

Figure 8: Graphical representation of the convolution property.
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Fourier Transform Theorems and Properties

Correlation theorem
If

x1(n)
F←→ X1(ω)

and

x2(n)
F←→ X2(ω)

then

rx1x2(n)
F←→ Sx1x2(ω) = X1(ω)X2(−ω)

Proof: multiply both sides of correlation formula by e−jωn and sum over
all n

rx1x2(n) =
∞∑

k=−∞

x1(k)x2(k − n)

Sx1x2(ω) =
∞∑

n=−∞

rx1x2(n)e−jωn =
∞∑

n=−∞

[
∞∑

k=−∞

x1(k)x2(k − n)

]
e−jωn

k−n=l−−−−→ =
∞∑

k=−∞

x1(k)
∞∑

l=−∞

x2(l)e−jω(k−l) = X1(ω)X2(−ω)

Sx1x2(ω) is called cross-energy density spectrum of signals x1(n) and x2(n)
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Fourier Transform Theorems and Properties

Wiener-Khintchine theorem
Let x(n) be a real signal. Then

rxx(l)
F←→ Sxx(ω)

I.e., energy spectral density of an energy signal is Fourier transform of its
autocorrelation sequence
This is a special case of preceding theorem (correlation theorem)
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Fourier Transform Theorems and Properties

Example

Determine energy density spectrum of

x(n) = anu(n), −1 < a < 1

Using results of previous examples for this signal

rxx(l) =
1

1− a2
a|l |, −∞ < l <∞

F{rxx(l)} =
1

1− a2
F{a|l |} =

1

1− 2a cosω + a2

According to Wiener-Khintchine theorem

Sxx(ω) =
1

1− 2a cosω + a2
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Fourier Transform Theorems and Properties

Frequency shifting
If

x(n)
F←→ X (ω)

then

e jω0nx(n)
F←→ X (ω − ω0)

Proof

X (ω) =
∞∑

n=−∞
x(n)e−jωn −→ X (ω − ω0) =

∞∑
n=−∞

x(n)e−j(ω−ω0)n

=
∞∑

n=−∞
(e jω0nx(n))e−jωn

= F{e jω0nx(n)}
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Fourier Transform Theorems and Properties

Figure 9: Illustration of the frequency-shifting property of the Fourier transform
(ω0 ≤ 2π − ωm).
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Fourier Transform Theorems and Properties

Modulation theorem
If

x(n)
F←→ X (ω)

then

x(n) cosω0n
F←→ 1

2 [X (ω + ω0) + X (ω − ω0)]

Proof: expressing cosω0n as

cosω0n = 1
2 (e jω0n + e−jω0n)

and using frequency-shifting property

x(n)
F←→ X (ω) −→ e jω0nx(n)

F←→ X (ω − ω0)

we obtain

F{ 12 (e jω0n + e−jω0n)x(n)} = 1
2 [X (ω − ω0) + X (ω + ω0)]
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Fourier Transform Theorems and Properties

Figure 10: Graphical representation of the modulation theorem; the spectra of
the signals x(n), y1(n) = x(n) cos 0.5πn and y2(n) = x(n) cosπn.
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Fourier Transform Theorems and Properties

Parseval’s theorem
If

x1(n)
F←→ X1(ω)

and

x2(n)
F←→ X2(ω)

then
∞∑

n=−∞
x1(n)x∗2 (n) =

1

2π

∫ π

−π
X1(ω)X ∗2 (ω)dω

Proof: eliminating X1(ω) on right-hand side of above equation

1

2π

∫
2π

[ ∞∑
n=−∞

x1(n)e−jωn

]
X ∗2 (ω)dω

=
∞∑

n=−∞
x1(n)

1

2π

∫
2π

X ∗2 (ω)e−jωndω =
∞∑

n=−∞
x1(n)x∗2 (n)
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Fourier Transform Theorems and Properties

In special case where x2(n) = x1(n) = x(n), Parseval’s relation reduces
to

∞∑
n=−∞

|x(n)|2 =
1

2π

∫
2π
|X (ω)|2dω

Left-hand side of this equation is energy Ex of x(n)
Left-hand side is also equal to autocorrelation of x(n), rxx(l) at l = 0
Integrand in right-hand side is equal to energy density spectrum, so
integral over −π ≤ ω ≤ π yields total signal energy

Ex = rxx(0) =
∞∑

n=−∞
|x(n)|2 =

1

2π

∫
2π

|X (ω)|2dω =
1

2π

∫ π

−π
Sxx(ω)dω

36 / 40



Fourier Transform Theorems and Properties

Multiplication of two sequences (Windowing theorem)
If

x1(n)
F←→ X1(ω)

and
x2(n)

F←→ X2(ω)
then

x3(n) = x1(n)x2(n)
F←→ X3(ω) =

1

2π

∫ π

−π
X1(λ)X2(ω − λ)dλ

Integral on right-hand side is convolution of X1(ω) and X2(ω)
This convolution integral is known as periodic convolution of X1(ω) and
X2(ω) because it is convolution of two periodic functions having the
same period
Multiplication of aperiodic sequences is equivalent to periodic
convolution of their Fourier transforms
Based on duality, convolution in time domain (aperiodic summation) is
equivalent to multiplication of continuous periodic Fourier transforms
Due to periodicity of Fourier transforms for discrete-time signals, there is
no ”perfect” duality between time and frequency domains with respect
to convolution operation, as in the case of continuous-time signals

37 / 40



Fourier Transform Theorems and Properties

Proof of windowing theorem:
We know

x3(n) = x1(n)x2(n) and x1(n) =
1

2π

∫ π

−π
X1(λ)e jλndλ

Thus

X3(ω) =
∞∑

n=−∞
x3(n)e−jωn =

∞∑
n=−∞

x1(n)x2(n)e−jωn

=
∞∑

n=−∞

[
1

2π

∫ π

−π
X1(λ)e jλndλ

]
x2(n)e−jωn

=
1

2π

∫ π

−π
X1(λ)dλ

[ ∞∑
n=−∞

x2(n)e−j(ω−λ)n

]

=
1

2π

∫ π

−π
X1(λ)X2(ω − λ)dλ
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Fourier Transform Theorems and Properties

Differentiation in frequency domain
If

x(n)
F←→ X (ω)

then
nx(n)

F←→ j dX (ω)
dω

Proof: differentiate series in Fourier transform definition, term by term
with respect to ω

X (ω) =
∞∑

n=−∞
x(n)e−jωn

dX (ω)

dω
=

d

dω

[ ∞∑
n=−∞

x(n)e−jωn

]

=
∞∑

n=−∞
x(n)

d

dω
e−jωn

= −j
∞∑

n=−∞
nx(n)e−jωn

Multiplying both sides by j , we obtain the desired result
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