Digital Signal Processing
 Frequency-Domain Analysis of LTI Systems

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic
amiri@mail.muni.cz
prenosil@fi.muni.cz

April, 2012

- We develop characterization of LTI systems in frequency domain
- Basic excitation signals are complex exponentials and sinusoidal functions
- Characteristics of system are described by a function of ω called frequency response, which is Fourier transform of impulse response $h(n)$ of system
- Frequency response function completely characterizes an LTI system in frequency domain
- This allows us to determine steady-state response of system to any arbitrary weighted linear combination of sinusoids or complex exponentials
- We know that response of any relaxed LTI system to an arbitrary input signal $x(n)$ is given by convolution sum formula

$$
y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
$$

- System is characterized in time domain by its unit sample response $h(n)$
- To develop a frequency-domain characterization of system, we excite system with complex exponential

$$
x(n)=A e^{j \omega n}, \quad-\infty<n<\infty
$$

- $A=$ amplitude
- $\omega=$ any arbitrary frequency confined to $[-\pi, \pi]$

$$
\begin{equation*}
y(n)=\sum_{k=-\infty}^{\infty} h(k)\left[A e^{j \omega(n-k)}\right]=A\left[\sum_{k=-\infty}^{\infty} h(k) e^{-j \omega k}\right] e^{j \omega n} \tag{1}
\end{equation*}
$$

- The term in brackets in (1) is Fourier transform of unit sample response $h(k)$ of system

$$
H(\omega)=\sum_{k=-\infty}^{\infty} h(k) e^{-j \omega k}
$$

Hence response of system to $x(n)=A e^{j \omega n}$ is

$$
y(n)=A H(\omega) e^{j \omega n}
$$

- Response is also in form of a complex exponential with the same frequency as input, but altered by multiplicative factor $H(\omega)$
- As a result of this characteristic behavior, $x(n)=A e^{j \omega n}$ is called an eigenfunction of system
- An eigenfunction of a system is an input signal that produces an output that differs from input by a constant multiplicative factor
- Multiplicative factor (in this case $H(\omega)$) is called an eigenvalue of system

Example

- Determine output sequence of system with impulse response

$$
h(n)=\left(\frac{1}{2}\right)^{n} u(n)
$$

when input is

$$
x(n)=A e^{j \pi n / 2}, \quad-\infty<n<\infty
$$

- Fourier transform of $h(n)$

$$
\begin{aligned}
H(\omega)=\sum_{n=-\infty}^{\infty} h(n) e^{-j \omega n} & =\frac{1}{1-\frac{1}{2} e^{-j \omega}} \xrightarrow{\omega=\pi / 2} H\left(\frac{\pi}{2}\right)=\frac{1}{1+j \frac{1}{2}}=\frac{2}{\sqrt{5}} e^{-j 26.6^{\circ}} \\
y(n) & =A H(\omega) e^{j \omega n}=A\left(\frac{2}{\sqrt{5}} e^{-j 26.6^{\circ}}\right) e^{j \pi n / 2} \\
& =\frac{2}{\sqrt{5}} A e^{j\left(\pi n / 2-26.6^{\circ}\right)}, \quad-\infty<n<\infty
\end{aligned}
$$

The only effect of system on input signal is to scale amplitude by $2 / \sqrt{5}$ and shift phase by -26.6°

Example (continued)

- If input sequence is

$$
x(n)=A e^{j \pi n}, \quad-\infty<n<\infty
$$

at $\omega=\pi$

$$
H(\pi)=\frac{1}{1-\frac{1}{2} e^{-j \pi}}=\frac{1}{\frac{3}{2}}=\frac{2}{3}
$$

and output of system is

$$
y(n)=\frac{2}{3} A e^{j \pi n}, \quad-\infty<n<\infty
$$

- If we alter frequency of input signal, effect of system on input also changes and hence output changes
- $H(\pi)$ is purely real
- Phase associated with $H(\omega)$ is zero at $\omega=\pi$
- In general, $H(\omega)$ is a complex-valued function of ω

$$
H(\omega)=|H(\omega)| e^{j \Theta(\omega)}
$$

- $|H(\omega)|=$ magnitude of $H(\omega)$
- $\Theta(\omega)=\measuredangle H(\omega)$, which is phase shift imparted on input signal by system at frequency ω
- Since $H(\omega)$ is Fourier transform of $\{h(k)\}, H(\omega)$ is a periodic function with period 2π

$$
H(\omega)=\sum_{k=-\infty}^{\infty} h(k) e^{-j \omega k}
$$

- Unit impulse $h(k)$ is related to $H(\omega)$ through integral expression

$$
h(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H(\omega) e^{j \omega k} d \omega
$$

- For an LTI system with a real-valued impulse response, magnitude and phase functions possess symmetry properties

$$
\begin{aligned}
H(\omega) & =\sum_{k=-\infty}^{\infty} h(k) e^{-j \omega k}=\sum_{k=-\infty}^{\infty} h(k) \cos \omega k-j \sum_{k=-\infty}^{\infty} h(k) \sin \omega k \\
& =H_{R}(\omega)+j H_{l}(\omega)=|H(\omega)| e^{j \Theta(\omega)} \\
& =\sqrt{H_{R}^{2}(\omega)+H_{l}^{2}(\omega)} e^{j \tan ^{-1}\left[H_{l}(\omega) / H_{R}(\omega)\right]}
\end{aligned}
$$

where

$$
H_{R}(\omega)=\sum_{k=-\infty}^{\infty} h(k) \cos \omega k \quad \text { and } \quad H_{l}(\omega)=-\sum_{k=-\infty}^{\infty} h(k) \sin \omega k
$$

- $H_{R}(\omega)$: even, $H_{l}(\omega)$: odd $\longrightarrow|H(\omega)|$: even, $\Theta(\omega)$: odd
- If we know $|H(\omega)|$ and $\Theta(\omega)$ for $0 \leq \omega \leq \pi$, we also know these functions for $-\pi \leq \omega \leq 0$

Example

- Determine magnitude and phase of $H(\omega)$ for three-point moving average (MA) system

$$
y(n)=\frac{1}{3}[x(n+1)+x(n)+x(n-1)]
$$

and plot these two functions for $0 \leq \omega \leq \pi$

- We have

$$
h(n)=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}
$$

$$
\begin{aligned}
& H(\omega)=\sum_{k=-\infty}^{\infty} h(k) e^{-j \omega k}=\frac{1}{3}\left(e^{j \omega}+1+e^{-j \omega}\right)=\frac{1}{3}(1+2 \cos \omega) \\
& |H(\omega)|=\frac{1}{3}|1+2 \cos \omega| \quad \text { and } \quad \Theta(\omega)= \begin{cases}0, & 0 \leq \omega \leq 2 \pi / 3 \\
\pi, & 2 \pi / 3 \leq \omega<\pi\end{cases}
\end{aligned}
$$

Figure 1: Magnitude and phase responses for the MA system in Example.

John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Prentice Hall, 2006.

