PIC12F629 / 675 Programming PIC in C Part II Inline Assembler EEPROM

Mgr. Vojtěch Krmíček vojtec@ics.muni.cz

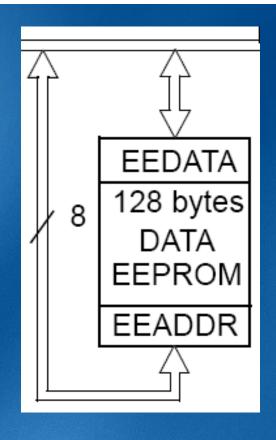
Ing. Zbyněk Bureš, Ph.D. zbynek.bures@unob.cz

Inline Assembler

Two variants:

A #asm block can't be used within any C constructs such as if, while, do...

Timing Functions


Frequency of oscillator must be defined: #define _XTAL_FREQ 4000000

Two functions:

- __delay_ms(x) // request a delay in milliseconds
- __delay_us(x) // request a delay in microseconds

Package

Davisa	Program Memory	Data M	lemory	1/0	10-bit A/D	Comparators	Timers	
Device	FLASH (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit	
PIC12F629	1024	64	128	6	_	1	1/1	
PIC12F675	1024	64	128	6	4	1	1/1	

EEPROM - basics

- Readable and writable during normal voltage,
- memory is not directly accessible, it's mapped in the register file space,
- direct access via C functions:
 - eeprom_write()
 - eeprom_read()
- address range from 0h to 7Fh
- interrupt on write complete (EEIF)

Functions for Accessing EEPROM I

- eeprom_write() initiates process of writing to the EEPROM memory and returns when write is completed
- new data in EEPROM are valid approx. 4ms later (= 4000 instruction cycles!)
- but next read/write operation waits until previous one is finished

Functions for Accessing EEPROM II

```
#include <htc.h>
void eetest(void){
unsigned char value = 1;
unsigned char address = 0;
eeprom write(address, value);
// Initiate writing value to address
value = eeprom read(address);
// read from EEPROM at address
```

EEPROM Registers

TABLE 8-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD		Value on all other RESETS	
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00	00	00	00
9Ah	EEDATA	EEPROM Data Register									0000	0000	0000
9Bh	EEADR	_	- EEPROM Address Register								0000	-000	0000
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD		x000		q000
9Dh	EECON2 ⁽¹⁾	EEPROM Control Register 2											

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', <math>q = value depends upon condition.

Shaded cells are not used by Data EEPROM module.

Note 1: EECON2 is not a physical register.