
Inductive Reasoning and Kolmogorov Complexity

Ming Li*

University of Waterloo, Department of Computer Science
Waterloo, Ontario N2L 3G1, Canada

Paul M.B. Vitányi

Centrum voor Wiskunde en Informatica, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands

and
Universiteit van Amsterdam, Faculteit Wiskunde en Informatica

ABSTRACT

This is a sloppy first draft of [J. Comp. System Sciences, 44:2(1992), 343-384].
Also, there are some problems with the pictures and references due to the
obsolete troff processing.

Reasoning to obtain the ‘truth’ about reality, from external data, is an important,

controversial, and complicated issue in man’s effort to understand nature. (Yet,

today, we try to make machines do this.) There have been old useful principles,

new exciting models, and intricate theories scattered in vastly different areas

including philosophy of science, statistics, computer science, and psychology.

We focus on inductive reasoning in correspondence with ideas of R.J. Solomon-

off. While his proposals result in perfect procedures, they involve the noncom-

putable notion of Kolmogorov complexity. In this paper we develop the thesis

that Solomonoff’s method is fundamental in the sense that many other induction

principles can be viewed as particular ways to obtain computable approximations

to it. We demonstrate this explicitly in the cases of Gold’s paradigm for induc-

tive inference, Rissanen’s minimum description length (MDL) principle, Fisher’s

maximum likelihood principle, and Jaynes’ maximum entropy principle. We

- 2 -

present several new theorems and derivations to this effect. We also delimit

what can be learned and what cannot be learned in terms of Kolmogorov com-

plexity, and we describe an experiment in machine learning of handwritten char-

acters. We also give an application of Kolmogorov complexity in Valiant style

learning, where we want to learn a concept probably approximally correct in

feasible time and examples.

The eye of the understanding is like the eye of the sense; for as you may see great objects

through small crannies or levels, so you may see great axioms of nature through small and con-

temptible instances. [Francis Bacon, Sylva Sylvarum 337, 1627]

1. A Historical View of Inductive Reasoning

The Oxford English Dictionary gives as the meaning of induction: the process of inferring a

general law or principle from the observations of particular instances. This defines precisely

what we would like to call inductive inference. On the other hand, we regard inductive reasoning

as a more general concept than inductive inference, namely as a process of re-assigning a proba-

bility (or credibility) to a law or proposition from the observation of particular instances. In other

words, in the way we use the notions, inductive inference draws conclusions that consist in

accepting or rejecting a proposition, while inductive reasoning only changes the degree of our

belief in a proposition. The former is a special case of the latter. In this paper we discuss induc-

tive reasoning in correspondence with R.J. Solomonoff’s ideas as expressed in e.g. [Solomonoff

1964 However, Solomonoff’s procedure is not effective, since it involves the noncomputable

Kolmogorov complexity of objects. We shall show, however, that there is considerable structure

in many different approaches proposed for induction, since they can be variously derived as com-

putable approximations to Solomonoff’s method.

The history of inductive inference, which is as old as empirical science itself, dates back at

least to the Greek philosopher of science Epicurus (342? - 270? B.C). To reason by induction is

nothing but to learn from experience. As the sun rises day by day, our belief in that the sun will

* The work of the first author was supported in part by National Science Foundation Grant DCR-8606366, Office of
Naval Research Grant N00014-85-k-0445, Army Research Office Grant DAAL03-86-K-0171, and NSERC Operating
Grant OGP0036747. Part of the work was performed while he was at the Department of Computer Science, York
University, North York, Ontario , Canada. A preliminary form of this paper appeared in Proc. 4th IEEE Structure in
Complexity Theory Conference, 1989.

- 3 -

rise tomorrow increases, and we eventually infer the truth that the sun will rise every morning.

As human history evolves, man tries to understand and explain the events that happen around

him: this takes the form of different induction methods to formulate scientific theories from posi-

tive and negative, fortunate and unfortunate, lucky and unlucky, happy and miserable experi-

ences. Two metaphysical principles stand out and prevail today: the principle of Epicurus’ multi-

ple explanations (or indifference) and Occam’s principle of simplest explanation (Occam’s

razor).

The Principle of Multiple Explanations: If more than one theory is consistent with the

data, keep them all.

The source of the following material is [Epicurus Epicurus, in his Letter to Pythocles, explains

that: There are cases, especially of events in the heavens such as the risings and settings of

heavenly bodies and eclipses, where it is sufficient for our happiness that several explanations be

discovered. In these cases, the events ‘have multiple causes of coming into being and a multiple

predication of what exists, in agreement with the perceptions.’ Epicurus maintains that, if several

explanations are in agreement with the (heavenly) phenomena, then we must keep all of them for

two reasons. Firstly, the degree of precision achieved by multiple explanations is sufficient for

human happiness. Secondly, it would be unscientific to prefer one explanation to another when

both are equally in agreement with the phenomena. This, he claims, would be to ‘abandon physi-

cal inquiry and resort to myth.’ His follower Lucretius (95 - 55 B.C.) illustrates the inevitability

of the use of the multiple explanation principle by the following example:

‘‘There are also some things for which it is not enough to state a single cause, but several, of which

one, however, is the case. Just as if you were to see the lifeless corpse of a man lying far away, it would be

fitting to state all the causes of death in order that the single cause of this death may be stated. For you

would not be able to establish conclusively that he died by the sword or of cold or of illness or perhaps by

poison, but we know that there is something of this kind that happened to him.’’

Based on the same intuition, in the calculus of probabilities it has been customary to postu-

late the ‘principle of indifference’ or the ‘principle of insufficient reason’. When there is no other

evidence, because of the absolute lack of knowledge concerning the conditions under which a die

falls, we have no reason to assume that a certain face has higher probability of turning up. Hence

we assume that each side of the die has the probability 1/6. The principle of indifference consid-

ers events to be equally probable if we have not the slightest knowledge of the conditions under

which each of them is going to occur. For the case of a die, this actually coincides with the so-

called ‘maximum entropy principle’, we will discuss later, which states that we should choose

- 4 -

probabilities pi for face i to be the outcome of a trial, i = 1, 2,...,6, such that !"i=1
6 pi ln pi is max-

imized under the only constraint "i=1
6 pi = 1. We obtain precisely pi = 1/6 for i = 1, 2,...,6.

The second and more sophisticated principle is the celebrated Occam’s razor principle com-

monly attributed to William of Ockham (1290? - 1349?). This enters the scene about 1500 years

after Epicurus. In sharp contrast to the principle of multiple explanations, it states:

Occam’s Razor Principle: Entities should not be multiplied beyond necessity.

This is generally interpreted as: Among the several theories that are all consistent with the

observed phenomena, one should pick the simplest theory. (According to Bertrand Russell, the

actual phrase used by Ockham was: ‘It is vain to do with more what can be done with fewer.’)

Surely Occam’s razor principle is easily understood from an ‘utilitarian’ point of view: if both

theories explain the same set of facts, why not use the simpler theory?! However things become

more intricate when we want to know whether a simpler theory is really better than the more

complicated one. This also raises another question which has been a bone of contention in Philo-

sophy ever since the razor’s inception. For what is the proper measure of simplicity? Is x 100+1

more complicated than ax 17+bx 2+cx+d? E.g., the distinguished contemporary philosopher K.

Popper pronounced that the razor is without sense to use on such grounds. However, it is interest-

ing to notice that the principle can be given objective contents, and has recently been very suc-

cessfully applied in many different forms in computational learning theory.

To explain this, let us consider an over-simplified example of inferring a finite automaton

with one-letter input using Occam’s razor principle.

Accepted inputs: 0, 000, 00000, 000000000;

Rejected inputs: #, 00, 000000;

For these data, there exist many consistent finite automata. Figure 1 shows the trivial automaton

and Figure 2 shows the smallest automaton, where S denotes starting state and darker states are

accepting states.

S
0 0 0 0 0 0 0 0 0

Figure 1: A trivial automaton

- 5 -

S
0

0

Figure 2: The smallest automaton

Intuitively, the automaton in Figure 1 just encodes data plainly, we therefore do not expect

that machine anticipate the future data. On the other hand the second machine makes a plausible

inference that the language accepted consists of strings of an odd number of 0’s. The latter

appeals to our intuition as a reasonable inference. However, a too simplistic application of

Occam’s razor principle may also lead to nonsense as the following story illustrates.

Once upon a time, there was a little girl named Emma. Emma had never eaten a banana, nor had she

been on a train. One day she went for a journey from New York to Pittsburgh by train. To relieve Emma’s

anxiety, her mother gave her a large bag of bananas. At Emma’s first bite of a banana, the train plunged

into a tunnel. At the second bite, the train broke into daylight again. At the third bite, Lo! into a tunnel; the

fourth bite, La! into daylight again. And so on all the way to Pittsburgh and to the bottom of her bag of

bananas. Our bright little Emma (applying Occam’s razor principle?) told her grandpa: ‘Every odd bite of a

banana makes you blind; every even bite puts things right again.’ [After N.R. Hanson, ‘Perception and

Discovery’, Freeman, Cooper & Co, 1969, p.359.]

Let us consider how the idea of ‘simplicity’ affects a scientist’s thinking. We refer to a

beautiful study of simplicity by Kemeny [Kemeny Initially, there were no new facts that failed to

be explained by the Special Theory of relativity. The incentive to invent the General Theory of

Relativity, by Albert Einstein, was his conviction that the Special Theory was not the simplest

theory that can explain all the observed facts. Reducing the number of independent variables

obviously simplifies a theory. By the requirement of general covariance Einstein succeeded in

replacing the previous independent ‘gravitational mass’ and ‘inertial mass’ by a single concept.

In spite of the apparent universal acceptance of Occam’s razor, consciously or uncons-

ciously, the concept of simplicity remains highly controversial. Generally speaking, it has

remained a crude non-precise idea. Things are subtler than they appear. Is the following formula-

tion precise?

Occam’s Razor Rule: Select a hypothesis which is as well in agreement with the observed

value as possible; if there is any choice left, choose the simplest possible hypothesis.

- 6 -

Example. Consider the problem of fitting n points by a polynomial. The above rule tells us

to choose the polynomial of lowest degree passing through all the n points. But due to measure-

ment precision and possible noise, whatever degree polynomial the points originated from, we

will end up a polynomial of degree n!1 which fits the data precisely. But this polynomial most

likely does not help us to predict future points.

Example. Consider another example given by Kemeny: Let there be unknown number of

white balls and black balls in a sealed urn. Through an opening you randomly pick one ball at a

time, note its color and replace it, and shake the urn thoroughly. After n draws you must decide

what fracton of the balls in the urn is white. The possible hypotheses state that some rational

fraction r of balls in the urn is white, where 0r1. By the above rule, if in n draws, m white balls

are selected, then we should formulate the hypothesis r=m/n. Let there be 1/3 white and 2/3

black balls. However the probability of getting the true hypothesis m=n/3 is zero if n is not

divisible by 3, and it tends to zero, even under the assumption that n is divisible by 3. On the

other hand we know that to obtain a hypothesis 1/3!#r1/3+#, for any #, has probability tend-

ing to 1 exponentially fast, by the so-called Chernoff formula. (For Chernoff’s formula see e.g. [

Angluin Valiant) Even when the process converges, n may be too large for practical use.

Kemeny’s Rule. Select the simplest hypothesis compatible with the observed values.

Here ‘compatible’ is defined as follows. The hypothesis Hi is compatible with data D if, assum-

ing the truth of Hi , there was at most one percent chance of getting a deviation as great as

m (Hi ,D) for some measure function m. This is related to Valiant’s learning theory to be dis-

cussed later.

But how does one define simplicity? Is 1/4 simpler than 1/10? Is 1/3 simpler than 2/3?

Saying that an urn contains 1/3rd part white balls comes down to the same thing as saying that it

contains a 2/3rd part black balls. Kemeny warned: ‘do not use more precision in your theories

than is necessary.’ But what is necessary and what is not? All these issues are very subjective.

Does a simple theory generate a hypothesis which is good for predicting future outcomes? How

do we achieve fast convergence? How does one trade between ‘simplicity’ and ‘truth’ (‘compati-

bility’)? Kemeny actually asked for ‘a criterion combining an optimum of simplicity and compa-

tibility’ [crediting Nelson Goodman for this suggestion].

- 7 -

1.1. Combining Epicurus, Ockham, and Bayes

The study of inductive reasoning predates artificial intelligence or computer science by more than

2000 years. There is tremendous amount of literature in many different fields under diverging

terminologies. Our goal is to extract a common core of simple ideas underlying all these

approaches, in the spirit of Occam’s Razor principle. We will start with Bayesian inference

theory.

To apply Bayesian type reasoning one has to assign a priori probabilities (prior probability)

to each possible hypothesis. Since the posthumous publication in 1763 of Th. Bayes’ (?? - 1761)

famous memoir ‘An essay towards solving a problem in the doctrine of chances’ by his friend

Richard Price, [Bayes essay there has been continuous bitter debate on the controversial prior

probability in the Bayesian formula.

The invention of Kolmogorov complexity, by its first inventor R. Solomonoff, was as an

auxiliary notion to resolve this particular problem. Namely, using Kolmogorov complexity he

found a single ‘universal’ prior distribution which can be substituted for any particular actually

valid distribution (as long as it is computable) in Bayes’ formula, and obtain approximately as

good results as if the actually valid distribution had been used. It sounds like magic, but

Solomonoff’s approach does give a more or less satisfactory solution to this unlikely objective.

The elegant idea of a universal prior is a combination of Occam’s razor and modern compu-

tability theory. However, the universal prior is uncomputable, since it involves Kolmogorov com-

plexity. In this paper we develop the thesis that many theories, models, and principles for induc-

tive reasoning that were formulated both before and after Solomonoff’s inception, can be

rigorously derived as particular computable approximations to it.

We first describe the basics of Bayesian theory and how to apply Kolmogorov complexity

to obtain the Universal prior probability distribution. We then derive the Gold paradigm and its

principles. We derive a form of Rissanen’s Minimum Description Length (MDL) principle. From

the MDL principle Rissanen derives the Fisher’s Maximum Likelihood principle and Jaynes

Maximum Entropy principle. This paper contains a review of all these theories and principles. It

has been our experience that some experts say the connections as claimed are obvious, while

some other experts deny those connections exist. Thus, since the proof of the pudding is in the

eating, we explicitly establish derivations together with the appropriate related theorems. We

also describe an experiment we have performed in machine learning of recognition of handwrit-

ten characters using the MDL principle. Combination of Gold-style inference with ideas from

- 8 -

computational complexity theory leads to Valiant’s model of deductive learning. We give an

application of the Universal prior distribution to obtain a theory of learning simple concepts

under simple distributions. A more extensive treatment of this material will be given in our

forth-coming textbook [Li Introduction Kolmogorov

2. The Universal Prior Distribution

2.1. Bayesian Inference

In the following discussion of probability we assume the usual so-called Kolmogorov Axioms,

see e.g. [Feller Introduction For our purpose we need the following. We have a hypothesis

space, H = {H1, H2, ...}, which consists of a countable set of hypotheses, which are mutually

exclusive (in the sense that at most one of them is right), and exhaustive (in the sense that at least

one of them is right). With each hypothesis Hi we associate a probability P (Hi) such that

"i
P (Hi)= 1. The student is supplied with some data D, providing information about which

hypothesis is correct. From the definition of conditional probability, i.e.,

P (A | B)=P (A %B)/P (B), it is easy to derive Bayes’ formula (rewrite P (A%B) in the two pos-

sible different ways, equate the two expressions, and set A =Hi and B =D):

P (Hi | D) = P (D)
P (D |Hi)P (Hi) (1)

where

P (D) =
i
"P (D |Hi)P (Hi).

We interpret the different variables in the formula as follows. The Hi’s represent the possible

alternative hypotheses concerning the phenomenon we wish to discover. The term D represents

the empirically or otherwise known data concerning this phenomenon. The term P (D), the pro-

bability of data D, can be considered as a normalizing factor so that "i
P (Hi |D)= 1. The term

P (Hi) is called the prior probability or initial probability of hypothesis Hi , i.e., the probability

that Hi is true before we have seen any evidence. The term P (Hi |D) is called the final,

a posteriori, or inferred probability, which reflects the probability of Hi modified from the prior

probability P (Hi) after seeing the data D. The term P (D | Hi), the conditional probability of see-

ing D when Hi is true, is assumed to be computable from D and Hi . In many learning situations,

- 9 -

data can only be consistent with an hypothesis Hi in the sense of being forced by it such that

P (D | Hi)= 1. If the data is inconsistent with hypothesis Hi then P (D |Hi)= 0. In such a situa-

tion, the data either is determined by a hypothesis, or disqualifies it. (We assume there is no

noise that distorts the data.) For example, the hypothesis is datum x &L or x L.

The most interesting term is the prior probability P (Hi). In the context of machine learn-

ing, P (Hi) is often considered as the learner’s initial degree of belief in hypothesis Hi . In essence

Bayes’ rule is a mapping from a priori probability P (Hi) to a posteriori probability P (Hi |D),

where the mapping is determined by data D. In general, the problem is not so much that in the

limit the inferred probability would not ‘condense’ on the ‘true’ hypothesis, but that the inferred

probability gives as much information as possible about the possible hypotheses from only a lim-

ited number of data, cf. example below. In fact, the continuous bitter debate between the Baye-

sian and non-Bayesian opinions centered on the prior probability. The controversy is caused by

the fact that Bayesian theory does not say how to initially derive the prior probabilities for the

hypotheses. Rather, Bayes’ rule only says how they are to be updated. However, in each actual

case the prior probabilities may be unknown, uncomputable, or conceivably do not exist. (What

is the prior probability of use of words in written English? There are many different sources of

different social backgrounds living in different ages.) This problem is solved if we can find a sin-

gle probability distribution to use as the prior distribution in each different case, with approxi-

mately the same result as if we had used the real distribution. Surprisingly, this turns out to be

possible up to some mild restrictions.

Example.We use an example of von Mises [von mises probability truth Let an urn contain

many dice each with different attributes. A die with attribute p has probability p showing 6 in a

random throw. For convenience, assume the attribute set A is finite, and the difference between

each pair of attributes is greater than 2#. Randomly draw a die from the urn, our task is to deter-

mine its attribute. We do this by experimenting. Throw the die n times independently. If 6

shows up m times, we choose the attribute that is nearest to m/n. Let Hp be the event of drawing

a die with attribute p from an urn. Let Dq be the experimental data such that m successes (6’s)

* Properly speaking, formula (1) is not due to Bayes, but it is due to P.S. Laplace (1749 - 1827) who stated the formula
and attached Bayes’ name to it [Laplace Actually, Bayes in his original paper [Bayes Essay assumed the uniform dis-
tribution for the a priori probability, hence he has essentially derived P (Hi |D)=P (D |Hi) /"i

P (D |Hi). Although this
formula can be derived from (1) by simply assuming that all P (Hi) are the same, Bayes did not state his result in the
general form as in (1), nor did he derived his result through a formula similar to (1). Despite the fact that Bayes’ rule is
just a rewriting of the definition of conditional probability and nothing more, it is its interpretation and applications that
are most profound and caused much bitter controversy during the past two centuries.

- 10 -

were observed out of n throws and | q !m /n | < #, for q&A. So

P (Hp |Dq) = P (Dq)
P (Dq |Hp)P (Hp) ,

where P (Dq)="p
P (Dq | Hp)P (Hp). According to Chernoff’s formula (see [angluin valiant),

for '<1, we have:

P (m!np>'np | Hp) < e
!
2
1
'2np

,

P (np!m>'np | Hp) < e
!
3
1
'2np

.

Hence, if p is the true attribute of the die we have drawn then, choosing '=p/2# (so | p !m/n | (#

implies |m!np | >'np), P (Dq | Hp) goes to 0 exponentially fast when the number of experi-

ments increases, for q)p, and P (Dp | Hp) goes to 1 at the same rate. Hence P (Hp |Dp) goes to 1.

Thus we derive the correct attribute of the die with high probability (using a polynomial number

of throws). The interesting point is that if the number of trials is small, then the inferred probabil-

ity P (Hp |Dq) may heavily depend on the the prior probability P (Hp). However, if n is large, then

irrespective of the prior distribution, the inferred probability condenses more and more around

m/n.

Example. We explain a simplified version of Solomonoff’s theory of inductive inference.

The simplification is in that we, for the moment, consider only a discrete sample space like

{0, 1}*, The set of all finite binary sequences, rather than {0, 1}* , the set of all one-way infinite

binary sequences.

We view theory formation in science as the process of obtaining a compact description of

the past observations together with predictions of future ones. The investigator observes increas-

ingly larger initial segments of an finite binary sequence as the outcome of an finite sequence of

experiments on some aspect X of nature. To describe the underlying regularity of this sequence,

the investigator tries to formulate a theory that governs X, on the basis of the outcome of past

experiments. Candidate theories (hypotheses) are identified with computer programs that com-

pute binary sequences starting with the observed initial segment.

First assume the existence of a prior probability distribution, described by probability func-

tion P, over a discrete sample space += {0,1}*. Define a function µ over + by

µ(x)=" {P (xy): y &+}. Thus, µ(x) is the probability of a sequence starting with x. Given a

- 11 -

previously observed data string S, the inference problem is to predict the next symbol in the out-

put sequence, i.e., extrapolating the sequence S. In terms of the variables in Formula (1), Hi is the

hypothesis that the sequence under consideration starts with initial segment S a. The data D con-

sist in the assertion that the sequence in fact starts with initial segment S. Thus, for P(Hi) and

P (D) in Formula (1) we substitute µ(S a) and µ(S), respectively, and obtain, a = 0 or a = 1,

P (Sa | S) =
µ(S)

P (S | Sa)µ(Sa) .

Here µ(S)=P (S | S 0)µ(S 0)+P (S | S 1)µ(S 1)+P (S). Obviously, P (S | Sa)= 1 for any a, hence

P (Sa | S) =
µ(S)
µ(Sa) . (2)

In terms of inductive inference or machine learning, the final probability P (Sa | S) is the proba-

bility of the next symbol being a, given the initial sequence S. Obviously we now only need the

prior probability to evaluate P (Sa | S).

The goal of inductive inference in general is to be able to either (i) predict (extrapolate) the

next element of S, or (ii) to infer an underlying effective process (in the most general case, a Tur-

ing machine, according to the Church-Turing thesis) that generated S, and hence to be able to

predict the next symbol.

In order to solve the problem for unknown prior probability, Solomonoff proposed what he

called a universal prior distribution. We now carefully define the universal prior distribution

and prove several fundamental theorems due to Solomonoff and L.A. Levin, and afterwards con-

tinue this example. The definitions and theorems are so fundamental that our approach totally

rests upon them. These results are in some form hidden in [Solomonoff 1964] [Solomonoff

IEEE 1978 convergence] [Levin Zvonkin] [Gács Lecture Notes 1987 For various reasons they

are difficult to access, and almost unknown except to a few people doing research in this area. It

seems useful to recapitulate them. First we need the basic definitions of Kolmogorov complexity.

2.2. Kolmogorov Complexity

Inductive reasoning was the midwife that stood at the cradle of Kolmogorov complexity. Nowa-

days, Kolmogorov complexity has been applied in many areas of computer science and

mathematics (see [Kolmogorov complexity handbook for a general survey), and few realize that

Kolmogorov complexity was at first invented for the purpose of inductive inference. In this essay,

- 12 -

we go back to this origin.

We are interested in defining the complexity of a concrete individual finite string of zeros

and ones. Unless otherwise specified, all strings will be binary and of finite length. All loga-

rithms in this paper are base 2, unless it is explicitly noted they are not. If x is a string, then l (x)

denotes the length (number of zeros and ones) of x. We identify throughout the xth finite binary

string with the natural number x, according to the correspondence:

(#, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5),...

Intuitively, we want to call a string simple if it can be described in a few words, like "the string of

a million ones"; A string is considered complex if it cannot be so easily described, like a "ran-

dom" string which does not follow any rule and hence we do not know how to describe apart

from giving it literally. A description of a string may depend on two things, the decoding method

(the machine which interprets the description) and outside information available (input to the

machine). We are interested in descriptions which are effective, and restrict the decoders to Tur-

ing machines. Without loss of generality, our Turing machines use binary input strings which we

call programs. More formally, fixing a Turing machine T, we would like to say that p is a

description of x if, on input p, T outputs x. It is also convenient to allow T to have some extra

information y to help to generate x. We write T (p,y)=x to mean that Turing machine T with input

p and y terminates with output x.

Definition 1. The descriptional complexity CT of x, relative to Turing machine T and binary

string y, is defined by

CT(x | y) = min{l (p): p&{0,1}*, T (p,y)=x},

or * if no such p exists.

The complexity measure defined above is useful and makes sense only if the complexity of

a string does not depend on the choice of T. Therefore the following simple theorem is vital. This

Invariance Theorem is given by Solomonoff [Solomonoff formal inductive inference Kolmo-

gorov [Kolmogorov Three approaches and Chaitin [Chaitin Ch2

Theorem 1. There exists a universal Turing machine U, such that, for any other Turing

machine T, there is a constant cT such that for all strings x, y, CU(x | y) $ CT(x | y)+cT.

Proof. Fix some standard enumeration of Turing machines T 1,T 2, Let U be the

Universal Turing machine such that when starting on input 0n1p, p&{0,1}*, U simulates the nth

- 13 -

Turing machine Tn on input p. For convenience in the proof, we choose U such that if Tn halts,

then U first erases everything apart from the halting contents of Tn’s tape, and also halts. By con-

struction, for each p&{0,1}*, Tn started on p eventually halts iff U started on 0n1p eventually

halts. Choosing cT=n+1 for Tn finishes the proof.

Clearly, the Universal Turing machine U that satisfies the Invariance Theorem is optimal in

the sense that CU minorizes each CT up to a fixed additive constant (depending on U and T).

Moreover, for each pair of Universal Turing machines U and U,, satisfying the Invariance

Theorem, the complexities coincide up to an additive constant (depending only on U and U,), for

all strings x, y:

|CU(x | y)!CU ,(x | y) | $ cU, U , .

Therefore, we set the canonical conditional Kolmogorov complexity C (x | y) of x under condition

of y equal to CU(x | y), for some fixed optimal U. We call U the reference Turing machine. Hence

the Kolmogorov complexity of a string does not depend on the choice of encoding method and is

well-defined. Define the unconditional Kolmogorov complexity of x as C (x)=C (x | #), where #

denotes the empty string (l (#)= 0).

Definition 2. In the sequel we need to use the prefix complexity variant, or self-delimiting

complexity, rather than C (x) from Definition 1. A prefix machine is a Turing machine with three

tapes: a one-way input tape, a one-way output tape, and a two-way work tape. Initially, the input

tape contains an indefinitely long sequence of bits. If the machine halts, then the initial segment

on the input tape it has read up till that time is considered the input or program, and the contents

of the output tape is the output. Clearly, the set of programs of each such machine is a prefix-

code. (Recall that if p and q are two code words of a prefix-code, then p is not a proper prefix of

q.) We can give an effective enumeration of all prefix machines in the standard way. Then the

prefix descriptional complexity of x&{0,1}*, with respect to prefix machine T, and binary string

y, is defined as

KT(x | y) = min{l (p): p&{0,1}*, T (p,y)=x},

or * if such p do not exist. One can prove an Invariance Theorem for prefix complexity, and

define the conditional and unconditional prefix Kolmogorov complexity, by fixing some reference

optimal prefix machine, in exactly the same way as before, so we do not repeat the construction.

Remark. The prefix Kolmogorov complexity of string x, is the length of the shortest prefix

- 14 -

program that outputs x. In this exposition, we will use K (x) to denote the prefix Kolmogorov

complexity of x. C (x) and K (x) differ by at most a 2 logK (x) additive term. In some applica-

tions this does not make any difference. But in some other applications, for example inductive

inference, this is vital. In particular, we need the property that the series "x
2!K (x) converges, cf.

below.

Definition 3. A binary string x is incompressible if K (x)(l (x).

Remark. Since Martin-L..of [Martin-L..of definition random 1966 has shown that incompres-

sible strings pass all effective statistical tests for randomness, we will also call incompressible

strings random strings. A simple counting argument shows that most strings are random. The

theory of computability shows that the function K (x) is noncomputable, but can be approximated

to any degree of accuracy by a computable function. However, at no point in this approximation

process can we know the error. Cf. also the surveys [Levin Zvonkin] [Li Two Decades

2.3. Semicomputable Functions and Measures

We consider recursive functions with values consisting of pairs of natural numbers. If <p, q> is

such a value then we interpret this value as the rational number p/q, and say that the recursive

function is rational valued.

Definition. A real function f is semicomputable from below iff there exists a recursive

function g (x, k) with rational values (or, equivalently, a computable real function g (x, k)), non-

decreasing in k, with f (x)= limk-*g (x, k). A function f is semicomputable from above, if ! f is

semicomputable from below.

(An equivalent definition: f is a function that is semicomputable from below if the set

{(x, r): r $ f (x), r is rational} is recursively enumerable.)

A real function f is computable iff there is a recursive function g (x, k) with rational values,

and | f (x)! g (x, k) | < 1/k.

Obviously, all recursive functions are computable, and all computable functions are sem-

icomputable. However, not all semicomputable functions are computable, and not all comput-

able functions are recursive. Nontrivial examples of functions that are semicomputable from

above but not computable are C (x), C (x | y), K (x), and K (x | y).

The following analysis is a simplified version over the discrete space N (or the set of finite

binary strings), of Zvonkin and Levin [Levin Zvonkin We follow to some extent [Gács Lecture

- 15 -

Notes Functions µ:N- [0, 1] that satisfy the usual properties of probability distributions except

that

"x
µ(x) $ 1.

we shall call measures. We say that a measure µ (multiplicatively) dominates a measure µ, if

there exists a constant c such that, for all x in N, we have µ,(x)$ c µ(x). It is known from the cal-

culus that no measure µ dominates all measures: for each measure µ there is a measure µ, such

that lim µ,(x)/µ(x)=*. However, if we restrict ourselves to the class of semicomputable meas-

ures, then it turns out that this class contains an ‘absorbing’ element, a measure that dominates all

measures in the class. We call the measure that dominates all other measures in a given class a

universal measure for that class. This important observation that such a measure exists was first

made by Levin [Levin Zvonkin

Theorem 2. The class of measures that are semicomputable from below contains a univer-

sal measure.

Proof. First we consider the standard enumeration of all partial recursive functions

.1, .2, Each .=.i in this list is a function on the positive integers. Let <.> denote a standard

effective invertible pairing function over N to associate a unique natural number <x, k> with

each pair (x, k) of natural numbers. This way we can interpret . as a two-argument function

.(<x, k>). We change each . into a partial recursive function / with the same range as . but

with, for each x, the value of /(<x, k>) is defined only if /(<x, 1>), /(<x, 2>), ...,/(<x, k!1>)

are defined. (Assign values to arguments in enumeration order.) We use each / to define a sem-

icomputable real function s by rational valued approximations s k(x), k = 1, 2,..., from below:

s (x) = sup {s k(x): s k(x)= p/q,

/(<x, k>)=<p, q>, k = 1,2,...}.

The resulting s-enumeration contains all semicomputable functions. Next we use each semicom-

putable function s to compute a measure µ from below. Initially, set µ(x)= 0 for all x. If s (1) is

undefined then µ will not change any more and it is trivially a measure. Otherwise, for k = 1, 2,...,

if s k(1)+ s k(2)+...+ s k(k)$ 1 then set µ(i) := s k(i) for i = 1, 2,..., k, else the computation of µ is

finished.

There are three mutually exclusive ways the computation of µ can go, exhausting all possi-

bilities. Firstly, s is already a measure and µ := s. Secondly, for some x and k with x $ k the value

- 16 -

s k(x) is undefined. Then the values of µ do not change any more from µ(i)= s k ! 1(i) for

i = 1, 2,..., k!1, and µ(i)= 0 for i (k, even though the computation of µ goes on forever. Thirdly,

there is a first k such that s k(1)+ s k(2)+...+ s k(k)> 1, that is, the new approximation of µ violates

the condition of measure. Then the approximation of µ is finished as in the second case. But in

this case the algorithm terminates, and µ is even computable.

Thus, the above procedure yields an effective enumeration µ1, µ2, ... of all semicomputable

measures. Define the function µ0 as:

µ0(x) ="n
2!n µn(x).

It follows that µ0 is a measure since

"x
µ0(x) ="n

2!n"x
µn(x) $ "n

2!n = 1.

The function µ0 is also semicomputable from below, since µn(x) is semicomputable from below

in n and x. (Use the universal partial recursive function .0 and the construction above.) Finally,

µ0 dominates each µn since µ0(x)> 2!n µn(x). Therefore, µ0 is a universal semicomputable meas-

ure.

Obviously, there are countably infinite universal semicomputable measures. We now fix a

reference universal semicomputable measure µ0(x), and denote it by m(x). It will turn out that

function m(x) adequately captures Solomonoff’s envisioned universal a priori probability.

If a semicomputable measure is also a probability distribution then it is computable.

Namely, if we compute an approximation µk of the function µ from below for which

"x
µk(x) > 1! #, then we have | µ(x)!µk(x) | < # for all x.

Any positive function w (x) such that "x
w (x)$ 1 must converge to zero. Hence m(x) con-

verges to zero as well. However, it converges to zero slower than any positive computable func-

tion that converges to zero. That is, m(x) is not computable, and therefore it is not a proper pro-

bability distribution: "x
m(x)< 1. There is no analogous result to Theorem 2 for computable

measures: amongst all computable measures there is no universal one. This fact is one of the rea-

sons for introducing the notion of semicomputable measures.

- 17 -

2.4. The Solomonoff-Levin Distribution

The original incentive to develop a theory of algorithmic information content of individual

objects was Ray Solomonoff’s invention of a universal a priori probability that can be used

instead of the actual (but unknown) a priori probability in applying Bayes’ Rule. His original

suggestion was to set the a priori probability P (x) of a finite binary string x to "2!l (p) , the sum
taken over all programs p with U (p)= x where U is the reference Turing machine of Theorem 1

for the C-complexity. However, using plain Turing machines this is improper, since not only

does "x
P (x) diverge, but for some x even P (x) itself diverges. To counteract this defect, Solo-

monoff in 1960 and 1964 used normalizing terms, but the overall result was unconvincing. Levin

[Levin Zvonkin succeeded in 1970 to find a proper mathematical expression of the a priori pro-

bability, of which we present the simpler version over the discrete domain N. This was elaborated

by Levin in 1973 and 1974 [Levin Notion random] [Levin non-growth and Levin and Gács in

1974 [Gács symmetry and independently by Chaitin in 1975 [Chaitin theory 1975 formally

identical

Definition. The Solomonoff-Levin distribution (actually a measure) on the positive integers

is defined by PU(x)="2!l (p) , where the sum is taken over all programs p for which the reference
prefix-machine U of Theorem 1 outputs x. This is a measure because of the following.

Kraft’s Inequality. If l 1,l 2, ... is a sequence of positive integers such that "n
2! ln $ 1 then

there is a prefix-code c :N- {0, 1}* (i.e., if n)m are positive integers, then c (n) is not a prefix

of c (m)), with l (c (n))= ln . Conversely, if c :N- {0, 1}* is a prefix-code, then the sequence

l 1, l 2, ... with ln = l (c (n)), n = 1, 2,... satisfies the inequality above. See e.g. [Gallager

Hence, by the Kraft Inequality, for the prefix-code formed by the programs p of U we have

"p
2!l (p) $ 1. Therefore, the combined probability "x

PU(x), summed over all x’s, sums up to less

than one, no matter how we choose reference U, because for some program q there is no output at

all.

Another way to conceive of PU(x) is as follows. We think of the input to the reference

prefix machine U as being provided by indefinite long sequences of fair coin flips. Thus, the pro-

bability of generating a program p for U is P (p)= 2!l (p) where P is the standard ‘coin-flip’ uni-

form measure. (Namely, presented with any infinitely long sequence starting with p, the machine

U, being a prefix-machine, will read exactly p and no further.) Due to the halting problem, for

some q the reference U does not halt. Therefore, the halting probability + satisfies

- 18 -

+ ="x
PU(x) < 1.

Now we are ready to state the remarkable and powerful fact that Levin’s universal sem-

icomputable measure m(x), the Solomonoff-Levin universal a priori probability PU(x), and the

simpler expression 2!K (x) , all coincide up to an independent fixed multiplicative constant. It is a

consequence of universally accepted views in mathematical logic (Church’s Thesis), that the wid-

est possible effective notion of simplicity of description of an object x is quantified by K (x).

The Solomonoff-Levin distribution can be interpreted as an recursively invariant notion that

is the formal representation of ‘‘Occam’s Razor’’: the statement that one object is simpler than

the other is equivalent to saying that the former object has higher probability than the latter.

Theorem 3. There is a constant c such that for each x, up to additive constant c, we have

! logm(x)=! logPU(x)=K (x).

Proof. Since 2!K (x) represents the contribution to PU(x) by a shortest program for x,

2!K (x) $PU(x) for all x. Since PU(x) is semicomputable from below by enumerating all programs

for x, we have by the universality of m(x) that there is a fixed constant c such that for all x we

have PU(x)$ cm(x).

It remains to show that m(x)=O (2!K (x)). This is equivalent to showing that for some con-

stant c we have ! logm(x)(K (x)+ c. It suffices to exhibit a prefix code such that for some other

fixed constant c ,, for each x there is a code word p such that l (p)$! logm(x)+ c ,, together with a

prefix-machine T such that T (p)= x. Then, KT(x)$ l (p) and hence by the Invariance Theorem 1

also K (x)$ l (p) up to a fixed additive constant. First we recall a construction for the Shannon-

Fano code.

Claim. If µ is a measure on the integers, "x
µ(x)$ 1, then there is a binary prefix-code

r :N- {0, 1}* such that the code words r (1), r (2),... are in lexicographical order, such that

l (r (x))$! logµ(x)+ 2. This is the Shannon-Fano code.

Proof. Let [0, 1) be the half open unit real interval. The half open interval [0.x, 0.x + 2!l (x))

corresponding to the set (cylinder) of reals 0x = {0.y : y = x z} (x finite and y and z infinite binary

strings) is called a binary interval. We cut off disjoint, consecutive, adjacent (not necessarily

binary) intervals In of length µ(n) from the left end of [0, 1), n = 1, 2,.... Let in be the length of the

longest binary interval contained in In . Set r (n) equal to the binary word corresponding to the

first such interval. It is easy to see that In is covered by at most four binary intervals of length in ,

from which the claim follows.

- 19 -

Since m(x) is semicomputable from below, there is a partial recursive function .(t, x) such

that .(t, x)$m(x) for all t, and limt-*.(t, x)=m(x). Let /(t, x)= 2!k, with k is a positive

integer, be the greatest partial recursive lower bound of this form on .(t, x). We can assume that

/ enumerates its range without repetition. Then,

"x, t
/(t, x) ="x"t

/(t, x) $ "x
2m(x) $ 2.

(The series "t
/(t, x) can only converge to precisely 2m(x) in case there is a positive integer k

such that m(x)= 2!k.)

Similar to before, we chop off consecutive, adjacent, disjoint half open intervals It,x of

length /(t, x)/2, in order of computation of /(t, x), starting from the left side of [0, 1). This is

possible by the last displayed equation. It is easy to see that we can construct a prefix-machine T

as follows. If 0p is the largest binary interval of It,x, then T (p)= x. Otherwise, T (p) is undefined

(e.g., T doesn’t halt).

By construction of /, for each x there is a /(t, x)>m(x)/2. By the construction in the

Claim, each interval It,x has length /(t, x)/2. Each I-interval contains a binary interval 0p of

length at least one quarter of that of I. Therefore, there is a p with T (p)= x such that

2!l (p) (m(x)/16. This implies KT(x)$!logm(x)+ 4. The proof of the theorem is finished.

Theorem 3 demonstrates a particularly important instance of the two conceptually different,

but equivalent, definitions of the semicomputable measures. We analyse this equivalence in

some detail. Let P 1, P 2, ... be the effective enumeration of all semicomputable probability distri-

butions constructed in Theorem 2. Let T 1, T 2, ... be the standard enumeration of prefix-machines.

For each prefix-machine T, define

QT(x) ="T (p)= x
2!l (p).

In other words, QT(x) is the probability that T computes output x if its input p is generated by

successive tosses of a fair coin. In other words, the inputs p are uniformly distributed with the

probability of p occurring equal 2!l (p) . It is easy to see that each QT satisfies

x
"QT(x) $ 1.

Equality holds iff T halts for all inputs (proper programs). Let Q1, Q2, ... (where we do not

require equality to hold) be the probability distributions associated with T 1, T 2,

- 20 -

Claim. There are recursive functions 1, 2 such that Qn =3(P1(n)) and Pn =3(Q2(n)), for

n =1, 2,....

Proof. Omitted.

Remark. The Coding Theorem tells us that there is a constant c > 0 such that

! logPU(x)!K (x)$ c. We recall from the definition of the Solomonoff-Levin distribution that

! logPU(x)=! log"U (p)= x
2!l (p) , and K (x)=min {l (p):U (p)= x}. A priori an outcome x may

have high probability because it has many long descriptions. But these relations show that in that

case it must have a short description too. In other words, the a priori probability of x is governed

by the shortest program for x.

Remark. Let P be any probability distribution (not necessarily computable). The P-

expected value ofm(x)/P (x) is

"x
P (x)

P (x)
m(x) < 1.

We find by Chebychev’s first Inequality1) that

"{P (x):m(x)$ k P (x)} (1! k
1 . (3)

Since m(x) dominates all semicomputable measures multiplicatively, for all x we have

P (x) $ cPm(x), (4)

for a fixed positive constant cP independent of x (but depending on the index of P in the effective

enumeration µ1, µ2, ... of semicomputable measures).

Inequalities (3) and (4) have the following consequences:2)

(i) If x is a random sample from a simple computable distribution P (x), then m(x) is a good

estimate of P (x).

(ii) If we know or believe that x is random with respect to P, and we know P (x), then we

can use P (x) as an estimate ofm(x).

1) Recall that Chebychev’s First Inequality says the following. Let P be any probability distribution, f any nonnegative
function with expected value EP(f) ="x

P (x) f (x)<*. For 4 (0 we have "{P (x): f (x)> 4} < 4!1EP(f). Here we
use it with k EP(f) substituted for 4.
2) We shortly remark, without further explanation, that in both cases the degree of approximation depends on the index
of P, and the randomness of x with respect to P, as measured by the randomness deficiency 50(x | P) = log (m(x) /P (x)).
If 50(x | P) =O (1) then x is random, otherwise x is not random. For example, for the Uniform Distribution

- 21 -

2.4.1. Solomonoff’s Inference Procedure and Its Mathematical Justification

We continue Solomonoff’s approach to inductive inference, as in [Levin Zvonkin In general, one

cannot prove that an inference procedure in statistics is good. This accounts for the many dif-

ferent approaches which are advocated in statistics. In contrast, about Solomonoff’s procedure we

can rigourously prove that it is good. First, we put the previously developed theory in a continu-

ous setting. Let the sample space S = {0, 1}*6{0, 1}* , the set of all finite and one-way infinite

binary sequences. Let a cylinder 0x = {xy : y & S}, the set of all elements from S that start with x.

A function µ from cylinders to the real interval [0, 1] is called a semimeasure if

(a) µ(S) $ 1; and

(b) µ(0x) (µ(0x0)+µ(0x1) .

A semimeasure is called a measure if equality holds in (a) and (b). A semimeasure µ is

(semi)computable if f (x)=µ(0x) is (semi)computable. Note that f needs to satisfy (a) and (b). It

is more convenient, and customary in this area, to simply write µ(x) instead of µ(0x). The prob-

lem was that the proper a priori probabilities µ in formula (2) are not known.

We modify the Turing machines in the standard enumeration so that they correspond to the

semicomputable measures.

A monotonic machine M is a three tape machine similar to the prefix machine we defined

before, but now for all finite (binary) inputs p and q, if p is a prefix of q, then M (q)=M (p)r for

some r in S. (For convenience we define the M (p) as the contents of the output tape when M

reads the next symbol after p. If M doesn’t halt then M (p) can be finite or one-way infinite.) Let

U be the universal monotonic machine, in the same way as we have already met universal Turing

machines and universal prefix machines.

The universal semicomputable semimeasure is defined as

M(x) =
U (p)&0x
" 2!l (p) ,

i.e., M(x) is the a priori probability that the output of the reference monotonic machine U starts

with x. Just as in the discrete case, one can show that for each semicomputable semimeasure µ,

50(x | P) = n !K (x | n) +O (1), where n = l (x). Such a (universal Martin-L
..of) test is needed, since otherwise we can-

not distinguish, for instance, between randomness and nonrandomness of samples from the uniform distribution.
(Clearly, the word C o n s t a n t i n o p l e is not a random 14-letter word. The probability of seeing it somewhere writ-
ten is decidedly greater than 128!14, say, for a randomly selected fourteen letter ASCII word.)

- 22 -

there exists a constant c, such that for all x & {0, 1}, we have

M(x) (c µ(x).

An alternative approach to defining a priori probability was taken by Cover [Cover gambling

schemes who defined

Mc(x) ="{m(xy): y & {0, 1}*}.

This function has related properties toM.

Solomonoff’s Predictor. Instead of using formula (2), we estimate the conditional proba-

bility P (xy | x) that the next segment after x is y by the expression

M(x)
M(x y) . (5)

Now let µ in Formula (2) be an arbitrary computable measure. This case includes all computable

sequences, as well as many Bernouilli sequences.

Justification. Solomonoff [Solomonoff IEEE 1978 showed that convergence of the error

made by the estimator is very fast, in the following sense. If µ is the actual prior probability

(measure) over the sample space {0, 1}, than we obviously cannot do better in predicting a ‘0’ or

‘1’ after an initial segment x than using the inferred probability

µ(x)
µ(xa) , a = 0, 1.

To estimate how much worse it is to use M instead of µ we consider the difference in inferred

probabilities. Let Sn denotes the µ-expectation of the squared difference between the µ-inferred

probability and theM-inferred probability, of ‘0’ occurring as the n + 1th symbol:

Sn =
l (x)= n
" µ(x)

M(x)
M(x 0)

!
µ(x)
µ(x 0)

2

.

Then "n
Sn $K (µ)/2. Here, K (µ) is the Kolmogorov complexity of the index i, where Ti is a

Turing machine computing µ. Therefore, Sn converges to zero faster than 1/n. In other words, it

has been rigorously proved that for the above estimator the expected error at the nth prediction

converges to zero faster than 1/n!

This was improved by Gács [%A P. Gács %T Personal Communication as follows. If the

- 23 -

length of y is fixed, and the length of x grows to infinity, then

µ(x y)/µ(x)
M(x y)/M(x)

- 1,

with µ-probability one. In other words, the conditional a priori probability is almost always

asymptotically equal to the conditional probability.

With respect to the discrete sample space approach taken before, one can show that:

! logM(x) = ! logMc(x) = K (x)+O (logK (x)). (6)

2.4.2. Conclusions

On the positive side we have achieved the following. Bayes’ rule using the universal prior distri-

bution gives an objective interpretation to Occam’s razor principle. Namely, if several programs

could generate S 0 then the shortest one is used (for the prior probability), and further if S 0 has a

shorter program than S 1 then S 0 is preferred (i.e. predict 0 with higher probability than predict-

ing 1 after seeing S). Bayes’ rule via the universal prior distribution also satisfies Epicurus’ multi-

ple explanations dictum, since we do not select a single hypothesis after considering the evi-

dence, but maintain all hypotheses consistent with the evidence and just transform the probability

distribution on the hypotheses according to the evidence. Finally, there is mathematical proof

that Solomonoff’s inference procedure using the universal prior probability performs almost as

good as the one using the actual (computable) prior probability.

On the negative side we know that Solomonoff’s inference is not practicable in its pure

form. The universal prior distributions m(x) for discrete sample spaces, andM(x) for continuous

sample spaces, are not computable, essentially because the Kolmogorov complexity is not com-

putable. However, we can compute approximations to K (x), m(x), and M(x). It turns out that

using Solomonoff’s inference principles with such computable approximations yields many other

known inference models or principles. In the next few sections, we derive or establish connec-

tions with various well-known machine learning models and inductive inference paradigms or

principles. Thus we provide an alternative view of these models and principles from the lofty per-

spective of Kolmogorov complexity.

- 24 -

3. Gold’s Inductive Inference Paradigm

There are many different ways of formulating concrete inductive inference problems in the

real world. We will try to simplify matters as much as possible short of losing significance.

(i) The class of rules we consider can be various classes of languages or functions, where

we restrict ourselves to classes of recursive sets, context-free languages, regular sets and sets of

finite automata, and sets of Boolean formulae. We treat a language L as a function f using its

characteristic function, i.e., f (x)=7L(x)=1 if x&L, and 0 otherwise.

(ii) The hypothesis space or rule space denoted by R specifies syntactically how each rule

in (i) should be represented. We fix a standard enumeration of the representations for a class of

rules, R= {R 1, R 2, ...}, and assume that each rule f has at least one description in the correspond-

ing hypothesis space. For example, the hypothesis space can be standard encodings of context-

free grammars, or standard encodings of Finite Automata. In any case, it is assumed that the

hypothesis space is effectively enumerable (so it cannot be the set of all halting Turing machine

codes). For convenience, this enumeration of hypotheses R 1, R 2, ... consists of codes for algo-

rithms to compute recursive functions f 1, f 2, ... (languages are represented by their characteristic

functions).

(iii) The presentation of examples is vital to the inference process. We choose the sim-

plest, and yet most general, form of data presentation. For a function f to be inferred, there is a

fixed infinite sequence of examples (s 1, f (s 1)), (s 2, f (s 2)),.... When f =7L , we have 7L(s)= 1 if

s &L (s is a positive example of L) and 7L(s)= 0 otherwise (s is a negative example of L).

A rule (or function) f is said to be consistent with the initial segment of examples

S = (s 1, a 1) , . . . , (sn , an), (7)

if f (si)= ai , i =1,..,n. We require that all strings will eventually appear as first component in a

pair in S. The last assumption is strong, but is essential to the Gold paradigm.

How to infer a rule. By (ii), there is an effective enumeration f 1, f 2, ... of partial recursive

functions corresponding to the enumeration of hypotheses. The a priori probability of fk is

m(fk)=m(k). (Actually, m(fk)= cm(k), for some constant c depending on the effective enumera-

tion involved, but not depending on n. To assume that c = 1 makes no difference in the following

discussion.) We are given an infinite sequence of examples representing the rule or function f to

be learned. According to Bayes’ rule (1), for k = 1, 2,..., the inferred probability of fk after the

sequence of examples (7) is given by:

- 25 -

P (fk = f | f(si)= ai , i = 1,..,n) = " {m(j): fj(si)= ai , i = 1,..,n}
P (f(si)= ai , i = 1,..,n | fk = f)m(k) . (8)

Cf. also [Cover 1974 gambling] [Cover Impact In the numerator of the right-hand term, the first

factor is zero or one depending on whether fk is consistent with S, and the second factor is the a

priori probability of fk. The denominator is a normalizing term giving the combined a priori pro-

bability of all rules consistent with S. With increasing n, the denominator term is monotonically

nonincreasing. Since all examples eventually appear in S, the denominator converges to a limit,

say d $ 1. For each k, the inferred probability fk is monotonically nondecreasing with increasing

n, until fk is inconsistent with a new example, in which case it falls to zero and stays there hen-

ceforth. In the limit, only the fk’s that are consistent with the sequence of presented examples

have positive inferred probability m(k)/d. By Theorem 3, since m(k)=3(2!K (k)), the highest

inferred probability is carried by the rule fk with least Kolmogorov complexity among the

remaining ones. Similar statements hold after each initial segment of n examples, n = 1,2,....

Reasoning inductively, we transform the a priori probability according to Formula (8),

inferring a new posterior probability by the evidence of each initial segment of examples. At each

step, we can select the rule with the highest inferred probability, and in the limit we have selected

the proper rule. At each step we predict the rule with the highest inferred probability. Reformu-

lating, if we want to infer a language L using this procedure, then:

(a) The Bayesian a posteriori probability for the correct answer converges to c 2!l (p) /d,

where p is the shortest program which the reference machine uses to simulate M 0, where M 0 is

the smallest TM that accepts L. This correct answer will have the highest probability in the limit.

That is, inferred probability distribution over the underlying machines converges to a highest pro-

bability for M 0 in the limit. In other words, after n steps for some n, all the machines smaller

than M 0 violate some data pair in S, andM 0 is the choice forever after step n.

(b) It is interesting to notice that the a posteriori probability decreases monotonically until

it converges to c 2!l (p) /d for p the program with which U simulates M 0. Smaller machines are

chosen first and then canceled because they violate some data.

Predicting extrapolation. If we want to infer f (s), rather than f, given the sequence of

examples S, then using formulas (2) and (5), the inferred probability that f (s)= a is (denoting a

string s 1s 2 . . . sn as s 1:n):

P (f (s)= a | f (si)= ai , i = 1,..,n) = " {m(j): fj(si)= ai , i = 1,..,n}
" {m(j): fj(si)= ai , i = 1,..,n, fj(s)= a}

(9)

- 26 -

The Gold paradigm of inductive inference in the sense as originally studied by Gold in [

Gold Language identification 1967] [Gold 1978 can be viewed simply as a computable approxi-

mation to Equation (8). The fundamental idea of the Gold paradigm is the idea called

identification in the limit and a universal method of implementing the identification in the limit is

called ‘identification by enumeration’. These are contained in facts (a) and (b), as a computable

analogue of Solomonoff’s approach. We now investigate the correspondence between these two

basic ideas in some detail.

Identification in the Limit views inductive inference as an infinite process. Formally, let M

be an inductive inference method in order to derive some unknown rule R. If M receives a larger

and larger set of examples (bigger and bigger initial segment S), a larger and larger sequence of

M’s conjectures is generated, say, f 1, f 2, f 3, If there is some integer m such that fm is a

correct description of R and for all n>m

fm=fn ,

then M identified R in the limit. Two facts deserve mentioning: M cannot determine whether it

has converged and therefore stop with a correct hypothesis. M may be viewed as learning more

and more information about the unknown rule R and monotonically increasing its approximation

to R until the correct identification. Gold gave the best explanation to his definition:

I wish to construct a precise model for the intuitive notion "able to speak a language" in order to be

able to investigate theoretically how it can be achieved artificially. Since we cannot write down the rules of

English which we require one to know before we say he can "speak English", an artificial intelligence

which is designed to speak English will have to learn its rules from implicit information. That is, its infor-

mation will consist of examples of the use of English and/or of an informant who can state whether a given

usage satisfies certain rules of English, but cannot state these rules explicitly.

. . . A person does not know when he is speaking a language correctly; there is always the possibil-
ity that he will find that his grammar contains an error. But we can guarantee that a child will eventually

learn a natural language, even if it will not know when it is correct.

Identification by enumeration is a method to implement identification in the limit. It

refers to the following guessing rule: Enumerate the class of rules in rule space. At step t, guess

the unknown rule to be the first rule of the enumeration which agrees with data received so far.

Formally speaking, in our setting, if we have received an initial segment S, then, given s, predict

as the next example (s, f (s)) for f is the first rule that is consistent with S. Now if this can be

done effectively, identification in the limit will be achieved. We say an induction method

- 27 -

identifies a rule correctly in k steps if it will never produce wrong hypothesis starting from step

k* . Let G and G, be two guessing methods. G will be said to be uniformly faster than G, if the

following two conditions hold: (1) Given any R from the rule space, G will identify R correctly at

least as soon as G,, expressed in the number of examples needed, for all sequences of examples;

and (2) for some R, some sequence of examples, G will identify R sooner than G,. Say a guessing

method G is optimal if for any other guessing method G, there is a constant c such that: if R

appears to be the ith rule in the enumeration of G,, then it appears no later than ci in the enumera-

tion of G. It is easy to prove that the identification-by-enumeration method will identify a

hypothesis in the limit if this hypothesis can be identified in the limit at all. Further if G0 is an

identification-by-enumeration guessing rule, then there is no guessing rule uniformly faster than

G0. But only the Solomonoff procedure is optimal. Indeed,

Theorem 4. (a) Identification-by-enumeration is a computable approximation to inductive

inference (Solomonoff’s inference) associated with Formula (8). (b) Neither method is uniformly

faster than the other. (c) Solomonoff procedure is optimal, while identification-by-enumeration is

not.

Proof . (a) An effective enumeration for the identification-by-enumeration method, can be

viewed as a computable approximation to Solomonoff’s procedure according to formula (8) as

follows. Let the effective enumeration of the rule space be: R 1,R 2,R 3 Convert this to an

effective prefix-free description of each rule Ri in the rule space. For instance, if x = x 1, ...,xn is a

binary string, then x = x 10x 20...0xn1 is a prefix-code for the x’s. Similarly, x ,= l (x) x is a prefix-

code. Note that l (x ,)= l (x)+ 2 log l (x). We encode each rule Ri (a binary string) as p i ,, where p is

a (prefix) program that enumerates the rule space. The resulting code for the Ri’s is an effective

prefix-code. Denoting the length of the description of Ri by |Ri | , we have:

(i) if i<j, then |Ri | $ |Rj | ; and

(ii)
i
"2

! |Ri | $1 (by Kraft’s inequality).

Assign a priori probability P (Ri)= 2
! |Ri | to rule Ri , i =1, 2,.... (This is possible because of (ii).)

Using Formula (8) with P (Ri) instead of m(i) yields a computable approximation to

Solomonoff’s inductive inference procedure. Formula (8) chooses the shortest encoded

* Although here we treat only the case when the procedure converges to one single rule, this definition allows that the
procedure vacillate between the correct rules. Such definition is needed when, say, function f is not computable. Such
research has been initiated by J. Case [case power of vacillation

- 28 -

consistent rule which coincides with the first consistent rule in the effective enumeration. This

shows that identification by enumeration can be formulated as an computable approximation to

Solomonoff’s procedure.

We now show that neither method is uniformly faster than the other. Let G1, G2, ... be an

effective enumeration of the hypotheses space by a Gold procedure, and let H1, H2, ... be the

(noneffective) enumeration of the hypotheses space by decreasing a priori probability according

to Solomonoff. In other words, K(H1)$K (H2)$ In both cases we deal with identification-

by-enumeration, so it is known that there is no guessing rule uniformly faster than either of them.

To prove (c), let an arbitrary procedure G using identification-by-enumeration effectively

enumerates rules in our rule space as R 1,R 2, Then obviously K (Ri)=K (i)+cG , where cG

depends on G. Hence m(Ri) is approximately at least c .i
1 for some c. Hence the number of rules

that have probability greater than this is at most c .i.

Remark. What about non-uniform speed comparison? In case the particular rule f to be

inferred is sufficiently simple (has low Kolmogorov complexity) then Solomonoff’s procedure

can be much faster than Gold’s enumeration. Let f be the function we want to infer, and let

f = fm , with m minimal, in Gold’s enumeration order. Let also f = fn , for n with K (n) minimal.

To infer the correct f, in Gold’s approach we must eliminate all fk with k <m. But in

Solomonoff’s approach, we only need to eliminate all fk with K (k)<K (n). Now necessarily there

are many f’s that are ‘simple’ in the sense that K (n) << l (m), for which e.g. Solomonoff’s pro-

cedure works much (sometimes noncomputably) faster than Gold’s method.

The following theorem sets limits on the number of examples needed to infer a particular

function f.

Theorem 5. Let f 1, f 2, ... be an effective enumeration of the rule space. Suppose we want

to infer f = fi , with i minimal, from a set of n examples S as in (7). Let c be an appropriate large

enough constant.

(a) If K (i)>K (f (s 1)...f (sn) | s 1 ...sn)! c, then it is impossible by any effective deterministic pro-

cedure to infer f correctly.

(b) If we can infer f correctly by computable approximation to Solomonoff’s method (8) using

only S, and c extra bits of information, then K (i | S)$ c.

(c) If K (i | S)$ c then we can compute fi from S and c bits extra information.

Proof. (a) Otherwise we would be able to compute i from a program of length significantly

- 29 -

shorter than K (i): contradiction. Items (b) and (c) are obvious.

There is an enormous amount of research in the area under the title of Gold paradigm. We

refer the readers to the articles [Angluin Smith] [Case Smith and the book [Osherson We

present three examples of reasoning by means of Gold’s paradigm in order to give a flavor of this

research direction.

Example.[Gold, 1967] We can learn a function in the set of primitive recursive functions.

Proof. Effectively enumerate the set of all primitive recursive functions by /1,/2, On

any initial input segment (x 1,y 1) . . . (xk,yk), our inference machine just prints the least i such that

/i is consistent with the input, i.e., /i(xk)=yk for k=1, . . . ,n.

Example. [Gold, 1967] We cannot learn in general a function in the set of all total recursive

functions.

Proof. By diagonalization. Suppose M can identify all recursive functions. But then one can

define a recursive function f so that the guesses of M will be wrong on f infinitely often. We con-

struct f by simply simulating M. Let f (0)=0, Suppose the value of f (0), f (1), . . . , f (n!1) have

been constructed. On input n, simulate M on initial input f (0), f (1), . . . , f (n!1). Then define

f (n) equal 1 plus the guess ofM (modulo 2). So M never guesses f correctly.

Example. One of the first studied problem was extrapolating a sequence. A machine M

extrapolates a sequence f (1), f (2), . . . as follows. It makes an initial guess f ,(0). Then it inputs

the real f (0). At step i, based on previous inputs f (1), f (2), . . . , f (i !1), it guesses f ,(i). If there

is a i 0 such that for all i >i 0 f ,(i)=f (i), then we say M extrapolates f. Bringing everything in our

setting, the initial segment before step i is a sequence of pairs (1, f (1)) (2, f (2))...(i !1, f (i !1)),

and M extrapolates with the pair (i, f ,(i)). It is not surprising that the class of functions comput-

able by a Turing machine running in time t (n), for any computable function t, can be extrapo-

lated (by identification by enumeration).

4. Rissanen’s Minimum Description Length Principle

Solomonoff’s ideas about inductive reasoning have explicitly served as guiding principle in

Rissanen’s development of Minimum description length (MDL) principle. Let us derive

Rissanen’s MDL principle from Solomonoff’s induction principle. For simplicity, we deal with

only non-adaptive models. A non-adaptive model is a model P (D | 8) where the parameter vector

8=8(D) is estimated from n observed data points denoted by D.

- 30 -

Scientists formulate their theories in two steps: firstly a scientist must, based on scientific

observations or given data, formulate alternative hypotheses, and secondly he selects one definite

hypothesis. This is the subject of inference in statistics. Statisticians have developed many dif-

ferent principles to do this, like Occam’s razor principle, the Maximum Likelihood principle,

various ways of using Bayesian formula with different prior distributions. No single principle

turned out to be satisfactory in all situations. Philosophically speaking, Solomonoff’s approach

presents an ideal way of solving induction problems using Bayes’ rule with the universal prior

distribution. However, due to the non-computability of the universal prior function, such a theory

cannot be directly used in practice. Some approximation is needed in the real world applications.

Further, from theory to inductive inference and statistical practice, there is still a big distance, for

example, concrete formulae are needed.

Gold’s principle was a particularly simple approximation to Solomonoff’s induction - the

sophisticated notion of probability distribution is replaced by linear enumeration. Now we will

closely follow Solomonoff’s ideas, but substitute a ‘good’ computable approximation to m(x).

This results in Rissanen’s Minimum Description Length Principle (MDL principle). He not

only gives the principle, more importantly he also gives the detailed formulas on how to use this

principle. This makes it possible to use the MDL principle in real problems. The principle can be

intuitively stated as follows:

Minimum Description Length Principle. The best theory to explain a set of data is the

one which minimizes the sum of

(1) the length, in bits, of the description of the theory;

(2) the length, in bits, of data when encoded with the help of the theory.

We now develop this MDL principle from Bayes’ rule, Formula (1), using the Universal

distribution m(x). Recall Bayes’ formula:

P (H | D) =
P (D)

P (D | H)P (H) .

Here H is an hypothesis, here a probability distribution, which we assume to be computable or

anyway semicomputable, and D the observed data. We must choose the hypothesis H such that

P (H | D) is maximized. First we take the negative logarithm on both sides of the formula:

!logP (H |D)=!logP (D |H)!logP (H)+logP (D).

Since P (D) can be considered as a normalizing factor, we ignore it in the following discussion.

- 31 -

Since we are only concerned with maximizing the term P (H |D) or, equivalently, minimizing the

term !logP (H |D), this is equivalent to minimizing

! logP (D |H)! logP (H).

Now to get the minimum description length principle, we only need to explain the above two

terms in the sum properly. According to Solomonoff, when P is semicomputable, then we

approximate P by m. The prior probability P (H) is set to m(H)=2!K (H)±O (1), where K (H) is the

prefix Kolmogorov complexity of H. That is, !logP (H) is precisely the length of a minimum

prefix code, or program, of the hypothesis H.

Similar argument applies to term !logP (D |H). Assuming P is semicomputable, using the

conditional version of (3) and (4), we know that the universal semimeasure m(x) has the follow-

ing properties.

(a) There is a constant c, such that m(D | H)(cP (D | H).

(b) The P-probability that m(D | H)$ kP (D | H) is at least 1! 1/k.

By a conditional version of Theorem 3, m(D | H)= 2!K (D |H)±O (1). Hence again 2!K (D |H) is a rea-

sonable approximation of P (D |H), and minimizing !logP (D |H) can be considered as minimiz-

ing K (D |H), i.e., finding an H such that the description length, or the Kolmogorov complexity,

of D given H is minimized. The term !logP(D |H) can also be thought as the ideal code length

for describing data D, given hypothesis H. Such prefix code length can be achieved by the

Shannon-Fano code. The term !logP (D |H), also known as the self-information, in information

theory, and the negative log likelihood in statistics, can now be regarded as the number of bits it

takes to redescribe or encode D with an ideal code relative to H.

In the original Solomonoff approach, H in general is a Turing machine. In practice we must

avoid such an overly general approach in order to keep things computable. In different applica-

tions, the hypothesis H can mean many different things. For example, if we infer decision trees, H

is a decision tree; In case of learning finite automata, H can be a finite automaton; In case we are

interested in learning Boolean formulae, then H may be a Boolean formula; If we are fitting a

polynomial to a set of points, then H may be a polynomial of some degree; In general statistical

applications, one assumes that H is some model H (8) with a set of parameters 8={81, . . . ,8k},

where the number k may vary and influence the (descriptional) complexity of H (8). In such case,

from

!logP (D | 8)!logP (8),

- 32 -

using Taylor expansion at the point of optimal 8̂ (for best maximum likelihood estimator), and

taking only dominant terms, Rissanen has derived a formula for the minimum description length

as

8,k
min{!logP (D | 8)+

2
1 klogn},

where k is the number of parameters in 8={81, . . . ,8k}, and n is number of observations (or data

points) contained in D. At the optimal k and 8, the term 1/2 k log n is called the optimum model

cost.

Since K (H) is not computable and hard to approximate, Rissanen suggested the following

approach. First convert (or encode) H to a positive integer in N = {1,2, . . . }. Then we try to

assign prior distribution to each integer in N. Jeffreys [Jeffreys Theory of Probability suggested

to assign probability 1/n to integer n. But this results an improper distribution since the series

" 1/n diverges. We modify Jeffreys distribution. It is possible, by iterating the idea of encoding
n (viewed as the corresponding nth binary string) as n ,= l (n) n, to obtain a prefix-code such that

L (n) denotes the length of the code for n, with L (n) defined by

l* (n) = log n + loglog n + . . . ,

all positive terms, and

L (n) = l*(n)+ log c,

where c=2.865064 Viz, it can be proved [Rissanen Universal prior integers that:

n=1
"
*
2!l* (n) = c.

Therefore, the existence of a prefix-code as claimed follows from Kraft’s Inequality.

Assign prior probability P (n)= 2!L (n) to each integer n. We obtain the following desired

properties: (a) "n=1
* 2!L (n) = 1; and (b) integers n are coded by a prefix code. Hence, descriptions

of two integers, n 1 and n 2, can be just concatenated to produce the code for the pair (n 1,n 2), and

so on. The decoding process is trivial.

Using the MDL principle, Wax and Rissanen (according to Wax) and Quinlan and Rivest [

Quinlan Rivest have developed procedures to infer decision trees. Other work by Wax [Wax

Detection coherent and by Gao and Li [gao li applied MDL principle to recognition problems.

- 33 -

Example. We sketch an initial experiment we [gao li have performed in on-line handwrit-

ten character learning using the MDL principle. Inputing Chinese characters into computers is a

difficult task. There are at least 5,000 characters in daily use, all of different shapes. Many

methods have been invented for key-board input. Some have been successful in the limited sense

that they can be used by trained typists only. Handwriting input is an alternative choice. Many

such systems have been built with various recognition rates.

We [gao li have implemented such a system that learns handwritten characters from exam-

ples under the guidance of the MDL principle. We now sketch a simple experiment we have per-

formed. An input character is drawn on a digitizer board with 200/inch resolution in both hor-

izontal and vertical directions. The system learns a character from examples. The basic algo-

rithm involves low level preprocessing, scaling, forming a prototype of a character (for learning),

elastic matching (for recognizing), and so on. At the stage of forming a prototype of a character,

we have to decide on the feature extraction intervals. Then we code a character into a prototype

so that future inputs are classified according to their (elastic Hamming) distance to the prototypes.

Handwritten characters are usually quite arbitrary and prone to lots of noise. If the feature

extraction interval is very small, then the algorithm will be very sensitive to errors and slight

changes in the recognition phase, causing low recognition rate. If the feature extraction interval is

very large, then it becomes less likely that we extract the essential features of a character and

hence we get a low recognition rate again. We must compromise. The compromise is on the

basis of minimum description length of prototypes.

We proceeded as follows to establish an optimal feature selection interval. A set of 186

characters drawings by one subject, exactly 3 examples for each of the 62 alphanumerical charac-

ters, were recorded. The character drawings were stored in a standardized integer coordinate sys-

tem ranged from 0 to 30 in both x and y directions. These character drawings were then input to

the system to establish a knowledge base, which formed the collection of prototypes with normal-

ized real coordinates, based on some selected feature extraction interval. After the construction of

knowledge base was finished, the system was tested by having it classify the same set of character

drawings. If a character is misclassified, it is encoded using extra bits (i.e., the term P (D | H)).

The error code length is the sum of the total number of points for all the incorrectly classified

character drawings. The model code length is the total number of points in all the prototypes in

the machine’s knowledge base multiplied by 2. The factor of 2 comes from the fact that the pro-

totype coordinates are stored as real numbers. This takes twice as much memory (in C) as the

- 34 -

character drawing coordinates which are in integer form. The prototype coordinates are real

instead of integer numbers, to facilitate the elastic matching process to give small resolution for

comparisons of classification.

Thus, both the model code length and the error code length are directly related to the feature

extraction interval. The smaller this interval, the more complex the prototypes, but the smaller the

error code length. The effect is reversed if the feature extraction interval goes toward larger

values. Since the total code length is the sum of the two code lengths, there should be a value of

the feature extraction interval gives a minimum for the total code length. This feature extraction

interval is considered to be the ‘best’ one in the spirit of the MDL principle. The corresponding

model, or knowledge base, is considered to be optimal in the sense that it contains enough of the

essence of the raw data but eliminates most redundancy of the noise component from the raw

data. This optimal feature extraction interval can be found empirically by carrying out the above

described build-and-test procedure repeatedly. That is, build the knowledge base, and then test it

based on the same set of characters for which it was built. Repeat this for a number of different

extraction intervals.

In fact, this actual optimization process is implemented on the system and is available

whenever the user wants to call it. For our particular set of characters, the results

Figure 3. Optimization

of this optimization are given in Figure 3, which depicts three quantities: the model code length,

- 35 -

the error code length, and the total code length versus feature extraction interval (SAMPLING

INTERVAL in the Figure). For larger feature extraction intervals, the model code length is small

but most of the character drawings are misclassified, giving a very large total code length. On the

other hand, when the feature extraction interval is at the small end of the scale, all the training

characters get correctly classified, and the error code length is zero. However the model code

length reaches its largest value, resulting in a larger total code length again. The minimum code

length occurred at extraction interval of 8, which

Figure 4. Optimization correct ratio

gives 98.2 percent correct classification. Figure 4 illustrates the fraction of correctly classified

character drawings for the training data.

Whether the resulting ‘optimal’ model really performs better than the models in the same

class, the knowledge bases established using different feature extraction intervals, is subject to

testing it on new character drawings. For this purpose, the set of 62 handwritten characters were

drawn again by the same person who provided the initial data to build the knowledge base. Thus

the new data can be considered to be from the same source as the previous data set. The new data

were classified by the system using the knowledge base built from the former data set of 186

character drawings, based on different feature extraction intervals. The testing result is plotted in

Figure 5 in terms of the fraction of correct classification (CORRECT RATIO) versus feature

extraction interval (SAMPLING INTERVAL). It is interesting to see that 100% correct

- 36 -

Figure 5. Test result

classification occurred at feature extraction intervals 5, 6 and 7. These values of feature extraction

intervals are close to the optimized value 8. At the low end of feature extraction interval scale the

correct classification drops, indicating disturbance caused by too much redundancy in the model.

The recommended working feature extraction interval is thus either 7 or 8 for this particular type

of character drawings. For more information on this research, see [gao li (preprint available from

the first author).

5. Fisher’s Maximum Likelihood Principle

Rissanen [universal prior has argued that Fisher’s maximum likelihood principle [Fisher] [

Gauss is a special case of the MDL principle. By our treatment of MDL it is therefore a more res-

tricted computable approximation to Solomonoff’s induction. The Maximum Likelihood princi-

ple says that given data D, one should use the hypothesis H that maximizes P (D |H) or,

equivalently, minimizes !logP (D |H), the first term in of the MDL principle. We will use H and

8 interchangeably because 8 is used by statisticians. What makes ML principle sound in statistics

is the implicit assumption that each hypothesis H consists of a probability distribution

8=(81, . . . ,8k) with the same number k of parameters, each parameter 8i with fixed precision. In

other words, in the probability distribution P (D | H =8) the number k of parameters of 8, and the

precision of each of them, is the same for each H. Hence, one assumes that the descriptions of all

- 37 -

hypotheses (models 8) are of equal length; that is, the complexity of the models is considered to

be fixed. This is, obviously, a subjective assumption. In contrast, the MDL principle minimizes

the sum of !logP (D |H) and !logP (H) Intuitively, if one increases the description length of the

hypothesis H, it may fit the data better and therefore decrease the description of data given H. In

the extreme case, if one encodes all the data information into the model H precisely, P (H) is

minimized and ! logP (H) is maximized. In that case, no code is needed to describe the data; that

is, P (D |H) is maximized (equals 1) and !logP (D |H) is minimized (equals 0).

On the other hand, if one decreases the description length of H, then this may be penalized

by the increasing description length of the data, given H. In the extreme case say, H is a trivial

hypothesis that contains nothing, then one needs 0 bits to describe H. But then, one gains no

insight of data and has to ‘plainly’ describe the data without help from any hypothesis.

Hence one may consider the MDL principle as a more general principle than the ML princi-

ple in the sense that it considers the trade-off between the complexity of the model H and the

power of the model to describe the data D, whereas the ML principle does not take the hypothesis

complexity into account.

Yet the rationale behind the ML principle was to be objective by avoiding the ‘subjective’

assumption of the prior probability. The ML principle is equivalent with selecting the probabilis-

tic model P (D | 8) which permits the shortest ideal code length for the observed sequence, pro-

vided that the model used in the encoding, i.e., the parameter 8 is given, too. Thus, the ML prin-

ciple is just a special case of the MDL principle under the assumption that hypotheses are equally

likely and the number of parameters in 8 are fixed and small (so they do not make P (D | 8)= 1).

The shortcoming of the ML principle is that it cannot handle the situation where we do not know

the number (and precision) of the parameters. For example, in the fitting polynomial example, the

ML principle does not work well when the degree of the polynomial is not fixed. On the other

hand the MDL principle works naturally for this example.

6. Jaynes’ Maximum Entropy Principle

Rissanen [universal prior and M. Feder [Feder have shown that Jaynes’ Maximum Entropy

(ME) principle [Jaynes rationale maximum entropy] [Jaynes information inference] [Jaynes

Probabilities can also be considered as a special case of the MDL principle. This is interesting

since it is known in statistics that there are a number of important applications where the ML

principle fails but where the maximum entropy formalism has been successful, and vice versa. In

- 38 -

order to apply Bayes’ theorem, we need to decide what the prior probability pi =P (Hi) is subject

to condition

i
"pi = 1,

and certain other constraints provided by empirical data or considerations of symmetry, proba-

bilistic laws, and so on. Usually these constraints are not sufficient to determine the pi’s uniquely.

Jaynes proposed to use the estimated values p̂i which satisfy said constraints and maximize the

entropy function

H = !
i
" pi ln pi

subject to the constraints. This is called the maximum entropy (ME) principle.

We now demonstrate the rationale behind the ME principle, its use, and its connection with

the MDL principle following discussions in [Jaynes rationale] [Feder] [Rissanen universal

prior Consider a random experiment with k possible outcomes in each trial, thus kn possible out-

comes in n trails. Let ni be the number of times the ith value appears in an outcome D of n trials.

Let frequency fi = ni /n, i = 1, 2,...,k. The entropy of outcome D is:

H (f 1, . . . , fk) = !
i=1
"
k
fi ln fi . (10)

Let there be m <k linearly independent constraints of the form

i=1
"
k
aji fi = dj , 1$ j $m, and (11)

i=1
"
k
fi = 1 (12)

where the set D= {d 1, ...,dm} is related to the observed data, measuring as it were m ‘physical

quantities’ subject to the matrix A = {aji}.

Example. Consider a loaded die, k = 6. If we do not have any information about the die,

then using the Epicurus’ multiple explanation principle, we may assume that pi = 1/6 for

i = 1,...,6. This actually coincides with the ME principle, since H (p 1, ...,p 6)="i=1
6 pi ln pi sub-

ject to (12) achieves maximum value ln6= 1.7917595 for pi = 1/6 for all i. Now suppose some

experiments on the die have been performed, and it is observed that the die is biased and the

- 39 -

average throw gives 4.5. That is,

i=1
"
6
i pi = 4.5.

In terms of Equation (11), we have m = 1, D= {4.5}, and aj 1 = (1,2,3,4,5,6). Maximizing the

expression in Equation (10), subject to constraints (11) and (12) gives estimates:

p̂i = e!4i("e!4i)!1, 1= 1,...,6,

where 4=!0.37105. Hence (p̂ 1, ..., p̂ 6)= (0.0543, 0.0788, 0,1142, 0.1654, 0.2398, 0.3475). The

maximized entropy H (p̂ 1, . . . , p̂ 6) equals 1.61358. How dependable is the ME principle? Jaynes

has proven an ‘entropy concentration theorem’ which, for example, implies that in an experiment

of N = 1000 trails, 99.99% of all outcomes satisfying the constraints of Equations (11) and (12)

have entropy

1.602 $ H (
n
n 1 , . . . ,

n
n 6) $ 1.614.

Now we turn to the MDL principle to deal with the same problem. The following argument

can be derived from probabilistic assumptions. But Kolmogorov [Kolmogorov logical founda-

tions 1969] [Kolmogorov Combinatorial foundations 1983 advocated a purely combinatorial

approach, such as we give below, which does not need any such assumptions. Let

8= (p 1, . . . ,pk) be the actual prior distribution of a random variable. We perform a sequence of n

independent trials. Kolmogorov observed that the real substance of Formula (10) is that we need

approximately n H (8) bits to record the sequence of n outcomes. Namely, it suffices to state that

each outcome appeared n 1, ...,nk times, respectively, and afterwards give the index of which one

of the

C (n 1, . . . ,nk) = n 1! . . . nk!
n !

possible sequences D of n outcomes actually took place. For this no more than

k log n + logC (n 1, . . . ,nk)+O (log log n)

bits are needed. The first term corresponds to ! logP (8), the second term corresponds to

! logP (D | 8), and the third term represents the cost of encoding separators between the indivi-

dual items. Using Stirling’s approximation for the factorial function, we find that for large n this

- 40 -

is approximately

n (!
i=1
"
k

n
ni log

n
ni) = n H (

n
n 1 , . . . ,

n
nk).

Since k and n are fixed, the least upper bound on the minimum description length for an arbitrary

sequence of n outcomes under certain given constraints D is found by maximizing the term

logC (n 1, ...,nk) subject to said constraints. This is equivalent to maximizing the entropy function

(10) under constraints D. (Such constraints may be derived, for example, from the laws of large

numbers: in case of independent experiments with a probability distribution 8, we have ni /n 9 pi ,

and we have a certain rate of convergence with certain probability.)

7. Valiant Style Deductive Learning

Can we make Gold-style learning feasible? According to commonly accepted views in the theory

of computation, this means that the learning algorithm should run in polynomial time - and hence

also use but a polynomial number of examples. The latter condition necessarily implies that not

all examples in an infinite domain can turn up. Hence we need to assume a mechanism for mak-

ing a selection of examples. A deterministic selection fixes the sequence of examples drawn in

advance, hence we would like to assume that examples are drawn from some distribution. The

idea in Gold’s approach that an inference algorithm should work for all sequences of examples

then translates to the idea that the learning algorithm should work for all distributions.

The second unavoidable modification of the common approach in statistical inference, or

recursion theoretical learning, imposed by the feasability constraint, is as follows. In traditional

inference we want to learn a concept precisely in the limit. The feasibility restriction to a polyno-

mial algorithm precludes the precise learning of nontrivial concepts, and therefore we have to

relax precision to within a certain error. This corresponds with natural learning, where it is impor-

tant that learning is fast, and it suffices to learn approximately.

We have now arrived at Valiant’s proposal: a learning theory, where one wants to learn a

concept with high propability, in polynomial time, and a polynomial number of examples, within

a certain error, under all distributions on the examples. The additional computational require-

ments are orthogonal to the usual concerns in inference, and result in a distinctly novel theory.

However, there are at least two problems with it:

(1) Under all distributions, many concept classes, including some seemingly simple ones,

- 41 -

are not known to be polynomially learnable or known not to be polynomially learnable if

NP)RP, although some concept classes are polynomially learnable under some fixed distribution.

(2) In real life situations, it is sometimes impossible to sample according to underlying dis-

tributions.

Item (1) is counterintuitive for a proposed theory of machine learning; in fact it shows that

Valiant’s initially proposed requirements for learning are too strong. In practice, we usually do

not have to make such a general assumption. Due to this reason several authors have proposed to

study Valiant learning under fixed distributions. Then some previously (polynomially) unlearn-

able classes become learnable. For instance, the class of µ!DNF-formulae is polynomially learn-

able under the uniform distribution. However, the assumption of any special distribution is obvi-

ously too restrictive and not practically interesting.

7.1. A New Approach

In [Li SIAM Simple Concepts we proposed to study Valiant-style learning under all simple dis-

tributions, which properly include all computable and semi-computable distributions. This

allows us to systematically develop a theory of learning for simple concepts that intuitively

should be polynomially learnable. To stress this point: maybe it is too much to ask to be able to

learn all finite automata fast (humans cannot either), but surely we ought to be able to learn a

sufficiently simple finite automaton fast (as humans can). Previous approaches looked at syntacti-

cally described classes of concepts. We introduce the idea of the restriction of a syntactically

described class of concepts to the concepts that are simple in the sense of having low Kolmo-

gorov complexity. This will cover most intuitive notions of simplicity. Our other restriction, from

distribution-free learning to simple-distribution-free learning is also not much of a restriction.

Already the computable distributions include all distributions we have a name for, like the uni-

form distribution, normal distribution, geometric distribution, Poisson distribution - so the even

wider class of simple distributions ought to cover everything practically interesting.

It is an integral part of the proposed approach to also deal with the problem of inability of

sampling according to underlying distributions. In real life the samples are sometimes (or often)

provided by some mechanical or artificial means or good-willed teachers, rather than provided

according to its underlying distribution. Naturally the simpler examples are provided first. Con-

sider a situation where a robot wants to learn but there is nobody around to provide it with exam-

ples according to the real distribution. Because it does not know the real distribution, the robot

- 42 -

just has to generate its own examples according to its own (computable) distribution and do

experiments to classify these examples. For example, in case of learning a finite state black box

(with resetting mechanism and observable accepting/ rejecting behavior). So the sampling distri-

bution and the real distribution may be quite different.

7.2. Definitions

Definition. (1) Let X be a set. A concept is a subset of X. A concept class is a set C : 2X of con-

cepts. An example of a concept c&C is a pair (x,b) where b=1 if x&c and b=0 otherwise. A sam-

ple is a set of examples.

(2) Let c&C be the target concept and P be a distribution on X. Given accuracy parameter

#, and confidence parameter 5, a learning algorithm A draws a sample S of size mA(#,5) accord-

ing to P, and produces a hypothesis h = hA(S)&C.

(3) We say C is learnable if for some A in above, for every P and every c&C,

Pr(P (h;c)> #) $ 5,

where ; denotes the symmetric difference. In this case we say that C is (#,5)!learnable, or pac-

learnable (probably approximately correct).

(4) C is polynomially learnable if A runs in polynomial time (and asks for polynomial

number of examples) in 1/5, 1/#, and the length of the concept to be learned.

Definition. A distribution P (x) is simple if it is (multiplicatively) dominated by a semi-

computable distribution Q (x). That is, there is a constant c such that for all x,

cQ (x)(P (x).

The first question is how large the class of simple distributions is. It certainly includes all

semi-computable distributions and hence all distributions in our statistics books. It can be shown

that there is a non-semicomputable distribution which is simple, and that there is a distribution

which is not simple.

- 43 -

7.3. Discrete Sample Space

First we deal with discrete sample spaces. We show that if a concept is polynomially learnable

under this single distribution then it is polynomially learnable in Valiant’s sense under all ‘sim-

ple’ distributions if we sample according to the ‘universal’ distribution. We also provide new

non-trivial learning algorithms for several (old and new) classes of problems under our assump-

tion. These classes were not known to be polynomially learnable under Valiant’s more general

assumption, some were even NP-complete. For example, the class of DNF’s such that each

monomial has Kolmogorov complexity O (logn), the class of k-reversible DFA of Kolmogorov

complexity O (log n), and the class of k-term DNF are polynomially learnable under our assump-

tions. All these results hold for the appropriate polynomial time computable variants - perhaps

bringing the approach in the practicable domain.

Definition. The learning algorithm samples according to m(x), if in the learning phase the

algorithm draws random samples from m(x). (We can formalize this in different ways.) We

obtain the following completeness result.

Theorem 6. A concept class C is polynomially learnable under the universal distribution

m, iff it is polynomially learnable for each simple distribution P, provided the sample is drawn

according to m.

Proof. P (x) is dominated by some semi-computable distribution Q (x). Q (x) is in turn

dominated by m(x). Hence, there is a constant c > 0 such that for all x,

cm(x) (P (x)

Assume C is learnable (in time t) under distribution m(x). Then one can run the learning

algorithms with error parameter # /c in polynomial time. Let err be the set of strings that are

misclassified by the learned concept. So with probability at least 1!5

x&err
" m(x) $ # /c.

Hence

x&err
" P (x)$c

x&err
" m(x)$#.

Hence if the underlying distribution is P (x) rather than m(x), we are still guaranteed to ‘pac-

learn’ C (in time t), if sampling according to m(x). This still requires that the learning algorithm

- 44 -

has the required constant c as additional input. The argument can be improved so that this extra

input can be dispensed with [Li SIAM Learning simple

Since m assigns higher probabilities to simpler strings, one could suspect that after poly-

nomially many examples, all simple strings are sampled and the strings that are left unsampled

have only very low (inverse polynomial) probability. However, the next theorem shows that this

is not the case.

Theorem 7. Let S be a set of n c samples drawn according to m . Then

x<S
"m(x) = +((logn)2

1).

Now let us consider polynomially computable distributions. Again, all textbook distribu-

tions we know are polynomially computable. Call a distribution polynomial simple if it is dom-

inated by a polynomially computable distribution. In all of the discussion below all Kolmogorov

complexity (including the related notion m) can be replaced by its polynomial bounded version.

7.3.1. Learning under m(x)

In the [Li 1989 Simple Concepts we gave an example of a class of simple concepts, log n-DNF,

which is polynomially learnable under the universal distribution, and hence in our sense under all

simple distributions, and which is not known to be polynomially learnable in the general Valiant

model. Here we present a class that was shown to be not polynomially learnable in Valiant’s

sense, unless P = NP, but which is polynomially learnable underm(x).

DNF stands for ‘disjunctive normal form’. A DNF is any sum m1+m2+...+mr of monomi-

als, where each monomial mi is the product of some literals chosen from a universe x 1, . . . , xn or

their negations x 1, . . . , xn . A k-term DNF is a DNF consisting of at most k monomials. A mono-

mial in a DNF is monotone if no variable in it is negated. In [Pitt Valiant 35 1989

it was shown that learning a monotone k-term DNF by k-term (or 2k-term) DNF is NP-complete.

(In contrast to k-DNF is a DNF where each monomial consists of at most k literals. Recall, that

k-DNF is learnable in Valiant’s sense [Valiant 1984 learnable)

Theorem 8. Monotone k-term DNF is polynomially learnable by monotone k-term DNF

while sampling underm.

Proof (Sketch). Assume we are learning a monotone k-term DNF

f (x 1, . . . ,xn)=m1+ . . . +mk, where mi’s are the k monotone monomials (terms) of f.

- 45 -

Learning Algorithm.

0. Draw a sample of nk, examples, k,>k+1. Set DNF g :==. (g is the DNF we will eventually

output as approximation of f.)

1. Pick a positive example a=(a 1, . . . ,an). Form a monotone term m such that m includes xi if

ai=1.

2. for each positive example a = (a 1, ...,an) do: if ai = 0 and deleting xi from m violates no

negative examples, delete xi from m.

3. Remove from the sample all positive examples which are implied by m. Set g> g+m. If

there are still positive examples left, then go to step 1, else halt and return g.

We show that the algorithm is correct. Let us write mi :m for two monotone monomials if

all the variables that appear in mi also appear in m. At step 1, the monomial m obviously implies

no negative examples, since for some monomial mi of f we must have mi :m. Step 2 of the algo-

rithm keeps deleting variables from m. If at any time for no monomial mi&f holds mi :m, then

there exists a negative example that contains at most k 0’s such that it satisfies m but no mi of f.

This negative example is of Kolmogorov complexity at most klog n, hence by the Chernoff for-

mulae (Section 2.1) with high probability it is contained in the sample. Hence at step 2, with

high probability, there will be an mi such that mi :m. Hence we eventually find a correct mi

(precisely) with high probability. Then at step 3, we remove the positive examples implied by

this mi and continue on to find another term of f. The algorithm will eventually output g=f with

high probability by standard calculations.

Remark. Notice that this is not an approximation algorithm like the one in [Li 1989 Simple

Concepts

to learn log n-DNF. This algorithm outputs the precise monotone formula with high probability.

7.4. Continous Sample Space

Secondly, we deal with continuous sample spaces. For example, the uniform distribution now is

defined as L (0x)= 2! | x | , where 0x denotes the set of all one-way infinite binary strings starting

with x. This is the Lebesgue measure on interval [0,1]. While for discrete sample spaces all con-

cept classes are Valiant learnable (although not all are polynomially learnable), this is not the

case for continuous sample spaces. We can define the notion of ‘simple’ semimeasure and that of

universal semicomputable semimeasure, over a continuous sample space, and show that all

- 46 -

concept classes are learnable over each simple semimeasure D iff they are learnable under the

universal semimeasure. In contrast with the discrete case w.r.t. polynomial learning, here we do

not need to require that the learning algorithm samples according to the universal measure. For

details, see [Li 1989 Simple Concepts

8. Acknowledgement

We are grateful Ray Solomonoff, Leonid Levin, and Peter Gács for conversations about algorithmic com-

plexity and inductive reasoning. We thank Mati Wax for useful discussions on the MDL principle; Leslie

Valiant for suggesting handwritten character recognition as a viable application; and Qiong Gao for partici-

pating in the realization of it. Fahiem Bacchus, Danny Krizanc and John Tromp read and commented on

the manuscript.

-- --

