
Pre–processing for data mining.

Luboš Popeĺınský

Habilitation thesis

Masaryk University in Brno,
Faculty of Informatics

December 2003

Abstract

This text refers to automatic data pre-processing methods for data mining,
in particular to data transformation for classification. The introductory part
brings an overview of automatic data pre-processing methods. It focus on
several methods for feature construction that has been investigated in the last
years. The main part of this thesis brings a summary of results obtained by
the author and his collaborators, mainly PhD. students, in the last four years.
This thesis makes three original contributions to data pre-processing. The
new method for combination of principal components analysis and machine
learning is the first one. Then the maximal frequent patterns are shown to
be very useful as new boolean features. At last the new selective sampling
method is introduced.

Acknowledgement

Let me express my thanks to many colleague - it is honor for me to call
most of them friends - who helped me to see beauty (and nightmares) of
scientific work. First of all, I am grateful to my colleagues at Faculty of
Informatics, namely to Mojmı́r Křet́ınský and Karel Pala for their long-term
encouragement, and especially to Luděk Matyska. Without his support not
only the Knowledge Discovery Laboratory would be born.

Once in Porto it was Pavel Brazdil who came with idea of combining
statistical methods and machine learning. Luc De Raedt brings me to the
exciting research in the field of learning first-order maximal frequent patterns.
Jan Blaťák and Miroslav Nepil have been more than my collaborators in
the last years and their contribution to the results presented here has been
enormous.

Discussion with many colleagues when preparing a proposal of a grant
on data pre-processing contributes to this text. My thanks are due to
Olga Štěp’anková (for much more than this), Jaroslav Zendulka and Jana
Šarmanová. Fruitful discussions with my colleagues and students - either in
Czechia, Portugal, France or in Germany helps me a lot. Let me express
my thanks to Stefan Kramer, Petr Kuba, Carlos Soares, Luis Torgo among
others.

I declare that this thesis was composed by myself, and all presented results
are my own, unless otherwise stated.

Some of the material previously appeared in conference proceedings. The
part on principal components as new features is an extended version of [74].
The first results results obtained with the RAP system has been published
in Hinterzaarten, Germany in 2002. Besides those text notes, Part III is also
based on [11, 12]. Some of results introduced in Part IV has been published
in [68].

Contents

Abstract 1

Acknowledgements 2

List of figures 8

List of tables 9

I General 11

1 Introduction 12

1.1 Knowledge discovery in databases 12
1.2 Standards for KDD . 13
1.3 Approaches to data pre-processing 14
1.4 Automatic data pre-processing 15
1.5 Outline of this thesis . 16

2 Pre–processing techniques in data mining 18

2.1 Data format and data transformation 18
2.2 Feature construction . 19
2.3 Principal components . 19

2.3.1 General . 19
2.3.2 Kaiser–Meyer–Olkin criterion 20
2.3.3 Optimal number of principal components 21

2.4 Frequent patterns . 21
2.4.1 General . 21
2.4.2 Maximal patterns . 22
2.4.3 Emerging patterns . 22

5

2.5 Propositionalization . 23

2.5.1 General . 23

2.5.2 Propositionalization and feature construction 24

2.5.3 Partial propositionalization 24

2.6 Sampling . 25

2.6.1 Data reduction . 25

2.6.2 Informativness of an example 26

2.6.3 Random sampling . 26

2.6.4 Selective sampling . 27

II Principal components 29

3 Principal components as new features 30

3.1 Computing new features . 30

3.1.1 Data sets . 30

3.1.2 Learners to explore . 31

3.1.3 Algorithm . 31

3.2 To add or to replace? . 32

3.2.1 Negative results for replacement 32

3.2.2 Comparison with Duszak’s results 33

4 Experimental results 34

4.1 General . 34

4.2 Decision tree learning . 36

4.2.1 Error rate . 36

4.2.2 Training time . 37

4.2.3 Hypothesis size . 38

5 Answering the main questions 39

5.1 What number of PCO’s to add 39

5.2 Which data are promising for PCA 40

5.3 Where PCO’s appear in a decision tree? 41

5.4 How to lower computation time 41

5.5 Improved version of the algorithm 42

5.6 Conclusion . 42

III Maximal frequent patterns as new features 44

6 RAP 45

6.1 General . 45
6.2 Algorithm . 46
6.3 Discretization. 47
6.4 Language bias . 48

7 Feature construction with RAP 49

7.1 General . 49
7.2 Propositional feature construction 49
7.3 First-order feature construction 51

7.3.1 Mutagenicity prediction. 52
7.3.2 Carcinogenicity prediction. 53
7.3.3 Comparison with other work 53

7.4 Comparison with Warmr . 53
7.5 Conclusion . 54

IV Selective sampling 55

8 Committee-Based Selective Sampling 56

8.1 Committee-Based Selective Sampling 56
8.2 Experimental Results of Selective Sampling 58

9 Meta-Learning for Parameter Setting 61

9.1 Motivation . 61
9.2 Experimental Results of Meta-Learning 64
9.3 Conclusion . 64

V Concluding remarks 66

Index 67

Bibliography 77

List of Figures

1.1 Phases of the CRISP-DM Process Model 14

3.1 Error rates for satimage . 33

4.1 Results for diabetes, letter, satimage, waveform21 . . . 35

5.1 Results for wform21, satimage and letter 40

8

List of Tables

4.1 Results for C5.0 . 36

4.2 Training time . 37

7.1 Predictive accuracy results of propositional learners on the
datasets with new features. In boldface the best accuracy
is given. In italics are those results for which the patterns
selected with the wrapper were better than all generated pat-
terns. We omitted results of IB1 on letter dataset since
the MLC++ implementation can process only 10 000 exam-
ples while this dataset is larger. 50

7.2 Comparison of the error rates achieved by CBA classifier and
by C4.5 with new features computed by RAP 51

7.3 Predictive accuracy results for mutagenicity prediction domain. 52

8.1 The comparison of results achieved on whole dataset (WD),
by selective sampling (SS), and by random sampling (RS).
The initial algorithm Ainit was c50tree and the final algorithm
Afinal was c50boost. The parameters of selective sampling were
set as follows: N = 2, I = 0.2, F = 0.3, and X = 0.1. The
random sampling was set to select the same resulting fraction
of data (30 %). 59

8.2 The similar experiment as above, but for the final algorithm
c50rules. The parameters of selective sampling were set here
as follows: N = 2, I = 0.1, F = 0.3, and X = 0.2. The
random sampling was set again to select the same resulting
fraction of data (30 %). 59

9

9.1 The impact of parameter X on the resulting time, model size
and error rate, shown on satimage dataset with c50tree as an
initial learner and c50boost as a final learner. The resting
parameters are fixed to these values: N = 2, I = 0.2, and
F = 0.3. The expression e1/h1 denotes the original (observed)
ratio of easy to hard examples whereas the expression e2/h2

refers to the resulting (computed) ratio. The following time
values are listed: T1 – sampling time, T2 – training time, T3 –
testing time, and T – total time. Selective sampling with the
setting X = 1.0 corresponds to random sampling, therefore
the sampling time is set to zero. 62

9.2 A construction of meta-examples. 63
9.3 The results of meta-learning for selective sampling with c50tree

as an initial algorithm and c50boost and c50rules as final al-
gorithms. 65

Part I

General

11

Chapter 1

Introduction

1.1 Knowledge discovery in databases

Searching for useful information such as patterns, associations, changes,
anomalies and other important structures in huge amount of data is usu-
ally called knowledge discovery in databases (KDD). The knowledge discov-
ery process can be defined as a nontrivial process identifying new, valid,
potentially useful, interpretable patterns in data [37]. This process can be
divided into three main phases, data preparation, data mining and patterns
evaluation and presentation. Data preparation then consists of the following
steps. The first steps are integration and selection: integration of several het-
erogeneous sources into one data source and selection of the data required
for analysis. The next step is cleaning: processing wrong, missing, irrele-
vant and noisy data. Data transformation aims at a form of data which is
more suitable for mining itself. Some data attributes can be excluded and
new attributes can be computed from the original ones. Another goal of the
transformation is also data reduction which enables one to mine only a sam-
ple of data. Data mining represents the key step of the whole KDD process.
A learning algorithm is employed to receive a generalization of the data. It
must be stressed here that without good preparation it is almost impossible
to achieve good results whatever advanced the mining algorithm is.

Most of data mining tasks can be seen as search for frequent patterns
[63]. Let r be a database, L a language for expressing properties (defining
subgroups), q a frequency criterion (true = frequent, false = infrequent).
Then the data mining task lies in finding the theory Th of r with respect to

12

1.2. STANDARDS FOR KDD 13

L and q such that Th(L, r, q) = {φ ∈ L | q(r, φ)}. In the following text we
will always assume that L is finite.

To illustrate this definition have a look at the following example. Let r
be a supermarket basket database. Each basket may contain some of items
from the set Σ, Σ = { a(pricots), b(iscuits), c(offee), t(urkey),

w(ine) }, i.e. the L language is a set of all subset of Σ L = 2Σ. The frequency
criterion q(r, φ) holds if φ appears at least in min supp = 3 baskets. In the
context of mining frequent patterns, the threshold min supp is called minimal
support.

Let the r database contains baskets

abcde, abe, abce, abcd, ace .

In the Table there are the frequent patterns, i.e. sets of cardinality 1,2,3.

1 a,b,c,e

2 ab, ac, ae, bc

3 abc, abe, ace

1.2 Standards for KDD

Data mining and KDD have already become widely accepted information
technologies, defining their standards. The best- known industrial standard
which defines a mining task, including data preparation and a resulting model
obtained by data mining, is Predictive Model Markup Language (PMML) 1

developed by Data Mining Group (DMG). The main emphasis is put on the
mining task itself and on the knowledge acquired. From the viewpoint of
preprocessing description it supports only simple transformations of struc-
tured data provided by commercial systems. From other industrial standards
we mention two. Common Warehouse Model for Data Mining (CWM DM)2

deals with a model in UML which shows objects related to mining. Data
pre-processing step has been incorporated into theCross-Industry Standard
Process for Data Mining (CRISP-DM, or CRISP) standard3. This standard
deals with a description of KDD process that deals with huge amount of
real data. An XML based language named DMSL (Data Mining Specifica-

1http://www.dmg.org/pmml-v1-1.htm
2http://www.omg.org/cwm/
3http://www.crisp-dm.org

14 CHAPTER 1. INTRODUCTION

Figure 1.1: Phases of the CRISP-DM Process Model

tion Language) [51] is being developed at FIT VUT. This language defines
a KDD process framework with especial emphasis on the data preprocessing
step. Nevertheless, there is no commonly accepted standard which would of-
fer tools for detailed and extensible preprocessing description. The situation
in formal description of overall preprocessing and KDD process is similar.

1.3 Approaches to data pre-processing

Data preparation is supposed to be the most laborious part of KDD since
it consumes most of the project time. Before the wide spread of KDD in
practice, data pre-processing methods did not attract much attention of re-
searchers. The situation changed at the end of 90th [33, 20, 50, 52].

There are in principal two ways of preparation. In the first one, called

1.4. AUTOMATIC DATA PRE-PROCESSING 15

here computer-aided data preparation, a user uses tools that which make the
process as easy as possible but need a human expertise. E.g. in MineSet
(originaly developed in SGI 4, now in Purple Insight 5) or SumatraTT [97] it
is human who has to decide which tools to use and in what manner. Namely
it is up to user which attributes to remove, which new attributes build from
old ones, or how to sample the data. Three variants of this approaches has
been recognised in the last years to improve efficiency of the whole process.
The top-down approach in the MiningMart EU project 6 focuses on creating
a collection of well-described solutions for individual mining tasks. When
a new problem is being solved, the most suitable solution is searched for
among the existing solutions. The second approach used e.g. in the Mine-
Set or Dminer (former Kepler) projects provides a user with a set of tools
prepared for individual mining techniques and preprocessing. Then the user
can successively choose those tools which he/she considers to be most suit-
able. These systems usually do not enable a common user to enrich the
system with his/her own functions easily. The third approach tackles the
data mining task by a bottom-up method [97]7 . It enables a user to define a
class of elementary transformation operations, thus extending the repertoire
of available preprocessing methods. The commercial systems such as DB-
Miner, IBM Intelligent Miner, SAS Enterprise Miner, Microsoft SQL Server,
or Bayesian Knowledge Discoverer offer only the simplest preprocessing tools
such as attribute exclusion according to user requests, but they do not sup-
port automatic detection of irrelevant attributes. Similarly, they allow a user
to define new attributes but they do not include their automatic construc-
tion from data. If they are capable of text mining, then they do not support
Czech language.

1.4 Automatic data pre-processing

In this text we focus on another way, on automatic methods for data pre-
processing. Some techniques can help user to create good data set, namely
automatic feature selection, feature construction and sampling. Nevertheless,
it must be stressed at the beginning that the whole process of data pre-

4http://www.sgi.com/software/mineset.html
5http://www.purpleinsight.com/
6http://www-ai.cs.uni-dortmund.de/MMWEB/
7See also SolEuNet project, http://soleunet.ijs.si/

16 CHAPTER 1. INTRODUCTION

processing is impossible to fully automatize. It is also necessary to say that
the techniques discussed in this thesis cannot play their role before the data
have been collected, selected and cleaned.

Feature selection techniques are the most developed from these three
pre-processing methods (see e.g. [20]). This thesis concerns the second and
the third methods, feature construction and sampling. There are several
reasons why we focused on them. It is well-known that a serious drawback
of propositional learners like C4.5 [79] or C5.0 8 is its very restricted language.
A good data transformation technique may result in new attributes that are
more appropriate for such algorithms.

The amount of data that are to be processed by data mining systems
is increasing and it is not possible to process all the data because of limited
computation resources. Fortunately it is not necessary to process all of them.
Sampling techniques aim at finding a small fraction examples that represents
well the full data set.

1.5 Outline of this thesis

A wide range of feature construction techniques, also called attribute con-
struction or constructive induction techniques, has been explored to enrich
the language of propositional learners [7, 15, 92, 98]. The rest of Part I
contains a survey of different techniques for feature construction including
principal components analysis, frequent patterns and propozitionalization.
The last section of the Part I serves as an introduction to sampling tech-
niques.

Principal components are of course not new. They are used sometimes
when studying a particular data analysis problem [84]. They are much more
widespread among statisticians and data analysts than among machine learn-
ing researchers. To our best knowledge few systematic studies have been
carried out to evaluate their benefits as new features and the associated
computational costs. The aim of Part II of this thesis is to contribute to this
issue.

Part III deals with boolean features construction. We describe shortly
RAP, a system for mining first-order maximal patterns and present results
of feature construction received with this system. We show that partial search
for maximal patterns is competitive in term of accuracy to other approaches.

8http://www.rulequest.com

1.5. OUTLINE OF THIS THESIS 17

The main advantage of the current version is that RAP usually generates
less number of candidates then other systems.

Selective sampling aims at reduction of the training set without a big de-
crease of the accuracy of a model trained. In Part IV we present a parametric
variant of committee-based selective sampling and a meta-learning technique
for setting its parameters.

Chapter 2

Pre–processing techniques in

data mining

2.1 Data format and data transformation

In this thesis we focus on mining in a single relation (table). It is the most
frequent format of data explored in data mining research. We will assume
data are expressed in the form of a single table with M attributes and N
lines.

It does not mean at all that the techniques mentioned in this thesis cannot
be applied into more complex data format. E.g. frequent patterns discov-
ery is actually a method of propositionalization and any data that can be
described in first order logic can be pre–processed by this way.

Each of the pre–processing method can be characterized as data reduction
or data extension. Two main techniques aims at reducing data. Feature
selection aims at removing attributes that are unuseful for mining. It results
in the M1 x N table where M1 < M . It can be seen as a kind of a vertical
reduction of data. Sampling enables one to narrow the number of lines in the
table. The resulting table has the dimension M x N1 where N1 < N . It is a
horizontal reduction.

Feature construction aims at enriching te initial model. The newly con-
structed attributes are usually added to the original data. Other possibility
is to replace (some of) the initial attributes with the newly constructed fea-
tures. It is the case of principal components which are frequently used for
replacing all the numeric attributes e.g. in image analysis.

18

2.2. FEATURE CONSTRUCTION 19

2.2 Feature construction

Feature construction [53, 102] (or constructive induction [15]) is one of the
most sophisticated data transformation steps in data mining. Automated
methods for attribute construction enables one to enrich the set of attributes
with new ones. We look for new attributes that are supposed to be more
suitable for the mining task at hand than the original ones. More formally,
for the existing attributes xi, i = 1..M we look for new attributes of the form
fk(x1, ..., xl), k = 1, ..., K, l ∈ {1, 2, ..., M} where fk is an arbitrary function.
Functions most frequently used are logical functions of the form xi?xj for
? =<, =, >= etc., or arithmetic functions like ai ∗xi + b∗xj + c. E.g. a linear
combination computed as a principal component is an example.

Given a repertoir of functions fk, the goal of any feature selection method
is to find efficiently a new set of attributes that are useful for improvement
of the mining result – accuracy increase, decrease of time or hypothesis com-
plexity etc.

Propositionalization[54, 52, 55] is the most general method for feature
construction. Based on inductive logic programming [66] it allows to trans-
form the multi-relational task into a single–relational representation1. This
transformation enable one to use the common propositional algorithms also
for knowledge discovery in multi-relational data. The benefit of proposition-
alization lies in the reduction of computational complexity of mining. Af-
ter propositionalization the hypotheses space becomes considerably reduced.
Kramer et al. [54] claim that this reduction does not necessarily result in a
lower accuracy of the resulting model.

The rest of this chapter contains an introduction into the techniques that
the author and his collaborators used for development of new data trans-
formation methods. Only the topics that are relevant to these methods are
overviewed.

2.3 Principal components

2.3.1 General

Principal components analysis [67, 81] (or the Karhunen-Loeve expansion)
is a statistical method for dimensionality reduction. Principal components

1also called the propositional, feature-based, or attribute-value representation

20 CHAPTER 2. PRE–PROCESSING TECHNIQUES IN DATA MINING

(PCO’s) are commonly used to replace attributes with smaller number of
new attributes. It is an unsupervised projection method that computes lin-
ear combinations of the original attributes that are constructed to explain
maximally the variance. Let X = (X1, ..., XN) be a random vector with vari-
ance matrix V . When looking for the first principal component c1 we look
for a vector c1 = (c11, ..., c1n) such that c1c

T
1 = 1 and variance of c1X

T is
maximal. It means that c1X

T describes as much of variablity of data X as
possible. The next principal component is computed in a similar way, and
must be uncorrelated with the first one, etc. Thus the first few principal
components are supposed to contain most of the information implicit in the
attributes.

Given M x N data matrix X, N - the number of examples, M - the
number of attributes, the idea, following [81], is to take q < M linear
combinations XA of the attributes which, in some sense, best represent the
original data. “Best” here means that variance is maximized.

Usually the singular value decomposition(SVD) of the data matrix X =
UΛV T is computed where Λ stands for a diagonal matrix with decreasing
non–negative values λi. U is an M x N matrix with orthonormal columns,
and V is p x p orthogonal matrix. The principal components are then the
columns of XV . It means [67, 81] that the principal components ci are equal
to eigenvectors of the variance matrix V .

The following properties hold, among others [81]:

1. PCO’s display the best possible rank-q approximation to X

2. the first q PCO’s minimize the sum of squres of the distances from data
points to their projections into the q-dimensional space

3. min(E[(y − f(x))T (y − f(x))] E
′

(y|x) = E(y) + βT (x − E(x)), where
β is a solution Cov(x)β = Cov(y, x)

2.3.2 Kaiser–Meyer–Olkin criterion

Kaiser–Meyer–Olkin criterion (KMO) is usually used to decide that PCO’s
are useful. Having correlation matrix rij and partial correlations matrix aij,

KMO =

∑ ∑

r2
ij

∑∑

r2
ij +

∑ ∑

a2
ij

2.4. FREQUENT PATTERNS 21

If KMO > 0.5, than PCO’s are recommended to replace the original at-
tributes.

2.3.3 Optimal number of principal components

One question that needs to be answered is: what is the optimal number of
PCO’s that we should compute? Let X = (X1, ..., XN) be again a random
vector with variance matrix V . Let Zi, i = 1, ..., r be principal components,
r is a number of positive eigenvalues of variance matrix V . Then the follow-
ing equalities hold:

varZ1 + varZ2 + ... + varZr = varX1 + varX2 + ... + varXN

As varZi = λi , where λi is the i-th eigenvalue of V , the previous equation
can be rewritten as:

λ1 + λ2 + ... + λr = varX1 + varX2 + ... + varXN

The sum σ2 = varX1 + varX2 + ... + varXn can be seen as a variability
measure of vector X. Thus to explain X in terms of Z we need such number
q of principal components that (λ1 + ... + λq)/σ

2 is close to 1.
Another possibility is to set the number of PCO’s to the number of eigen-

values that are significantly greater than one. It was shown [84] that the right
approximation does not realy need to compute complex data characteristics
like variances. It can be computed using the following criterion:

N = #eigenvalues|eigenvalue > 1 + 2 ∗
√

#attributes−1

#examples−1

2.4 Frequent patterns

2.4.1 General

It was argued [46] that many data mining tasks can be seen as (or based
on) a search for frequent patterns in a database. Most of recently-proposed
algorithms for mining frequent patterns are variants of Apriori algoritms
[2]. Apriori uses levelwise strategy (bottom-up breadth-first search) - from
frequent patterns of length I patterns of the length I + 1 are generated.

22 CHAPTER 2. PRE–PROCESSING TECHNIQUES IN DATA MINING

It may be hard to mine all the frequent patterns. Instead, mining only
closed patterns has been proposed as a possible direction [3]. A pattern
is closed if it has no extension (there is no longer pattern) with the same
frequency. Nevertheless, for some of dense datasets even the set of all dense
patterns is too large. The most promising alternative representation are
maximal pattern that are overviewed in the next paragraph. We conclude
with summary of emerging patterns.

2.4.2 Maximal patterns

A frequent pattern is called maximal if it is not an extension of any other
frequent pattern. It can be easily seen that from the set of all frequent
patterns one can generates all frequent patterns. There are many works done
on finding maximal patterns in propositional data, mainly in transaction
data (e.g. [99, 40]). MaxMiner [82] as well as MAFIA [18] employs look-
ahead when searching patterns in depth. MAFIA also prevent to continue
search when the new pattern is subsumed by an existing maximal one. When
transaction containing X contains as well Y, X is together with Y for the
extension. All-MFS [83] uses a generate-and-combine paradigm - first several
maximal patterns are generated randomly and then new ones are build as
combination of them.

2.4.3 Emerging patterns

Recently, emerging patterns have been introduced [25] and shown to be useful
as new features in learning. Having two datasets D1 and D2 the growth rate
of an itemset i in favour of D1 is defined as

g =
support D1(i)

support D2(i)

An emerging pattern (EP) is an itemset for which g > 1 or infinite. In other
words, support of an emerging pattern is changing for different datasets.

ρ–emerging patterns (ρEP) are those EPs with growth rate g ≥ ρ. EPs
with high value of ρ can be used for discriminating between D1 and D2.
When we set D1 as positive and D2 as negative examples, it is reasonable to
ask about the use of emerging patterns for classification. From this point of
view jumping emerging patterns are supposed to be interesting.

2.5. PROPOSITIONALIZATION 23

A jumping emerging pattern (JEP) is a pattern with zero support on D2

and non-zero support on D1.
2 Because of this zero/non-zero property JEPs

can be mined more efficiently than EPs. In [57] JEPs have been used for
building a classifier that is competitive with C4.5.

The used a (cross-product based) border-diff algorithm takes randomly
one positive example (or one example from a given class for N-class problem)
and a set of negative examples (or instances from other classes) and computes
for such a training set all JEPs. This process is repeated for all classes. For
testing, given a test example all JEPs are applied to the example and score
is calculated for each class. That class wins that has the highest score. Score
can be computed as a function of support of the JEPs.

Similar approach elaborated Liu et al. in [61]. They generate so called
class association rules, the rules that have only a class identifier in the con-
sequent. After employing the Apriori algorithm best class association rules
are selected. CBA algorithm based on this concept has been shown to be
more accurate on 16 of the 26 UCI datasets then C4.5rules.

Boundary ρ–emerging pattern (ρBEP or BEP) is a ρEP whose proper
subset is not a ρEP. An algortihm for mining BEPs is described in [59].
Plateau EP (PEP) is a set of patterns having the same support (frequency).
Plateau space (P-space) consists of all plateau EPs of all boundary EP with
the same frequency. Shadow pattern (SEP) of a BEP is a pattern one item
shorter then the BEP. A classification algorithm for two-class data called
prediction by collective likelihood (PCL) that uses BEPs is described in [60].
Frequency of BEPs found in the training set is compared with frequency of
these BEPs in test data.

2.5 Propositionalization

2.5.1 General

Learning discriminant functions in first-order logic can be realized by re-
formulating the problem into an attribute-value form and then applying an
efficient propositional learner [54]. This process is usually called proposi-

2Sometimes (especialy in early papers on emerging patterns), the jumping emerging
patterns, as defined above, are named emerging patterns. To prevent from confusion we
make the clear distinction here.

24 CHAPTER 2. PRE–PROCESSING TECHNIQUES IN DATA MINING

tionalization3. It has been shown that frequent patterns, actually frequent
Datalog queries, can be successfully used as new boolean features [22, 49].
Propositionalization can be either complete (i.e. without loss of information)
or partial. It must be stressed that the complexity of propositionalization is
in general exponential [30] in respect to the number of background knowledge
predicates and their arity. In other words it can result in a propositional rep-
resentation which contains too many columns. It is also one of the reasons
why a higher attention is currently paid to the partial propositionalization
[5, 53].

2.5.2 Propositionalization and feature construction

In the propositional representation examples are usualy represented as feature-
-vectors of a fixed size in the form f1 = v1 ∧ f2 = v2 ∧ . . . ∧ fa = va, where
fi are the features and vi the values. Up to our knowledge, all works on
propositionalization use only two-valued, boolean features. A feature can be
defined, following [54], as a conjunction of (possibly negated) literals

fi(X) : − Liti,1, . . . , Liti,ni
. (2.1)

where X refers to an individual (a line in the relational table, a molecule
etc.). Only literals that are defined in background knowledge can appear in
the body of clauses in (1). It seems be useful to extend the set of literals
with a predicate of equality [5].

Features may be constructed to describe a subset of the training examples
that are in some way interesting. Techniques for finding interesting subgroups
[55] are used here. Or they may be constructed to have a same value for a
sufficiently large fraction of examples. Methods for finding frequent patterns
(itemsets, datalog queries) can be employed. In our work we follow the latter.

2.5.3 Partial propositionalization

Stochastic propositionalization for finding a set of features is introduced in
[52]. It employes a strategy similar to random mutation hill-climbing. It was
shown that when employing C4.5 learner on this set of features the results
are competitive wth other approaches.

3We just mention that for some tasks, e.g. recursive predicates, no complete proposi-
tionalization exists.

2.6. SAMPLING 25

In [89] a method that uses hypotheses returned by Progol is introduced.
All subsets of literals that appear in a rule are used as a new features.

Warmr, an algorithm that emplys Apriori-like alorithm for finding a set
of first order frequent patters has been used for several propositionalization
task. In [49] Warmr was applied to carcinogenicity prediction data and the
generated frequent patterns were converted into probabilistic rules. These
rules have been found successfull for prediction.

In [5] a selective (lazy) propositionalization for function-free Datalog pro-
grams and the PROPAL system has been introduced that combines the
propositionalization step with the resolution step. PROPAL seems be quite
fast if compared with these learners, although the running time was measured
on a different hardware.

2.6 Sampling

2.6.1 Data reduction

A problem of data mining is volume of data. Even for data of moderate size
(in order of hundred thousands examples) the mining process may take too
long time with the state-of-the-art tools. As it is not possible to process all
the data, data reduction techniques need to be applied to receive a reduced
data set. Mining on such data must be efficient enough and to produce the
same, or almost the same, result in terms of accuracy, computational time
and/or complexity and comprehensibility of the found hypothesis.

Strategies for data reduction can be of different types [43]. Data cube
aggregation, the technique used in OLAP, employs different aggregation op-
erators in different dimensions of the original data. The found data cube can
be much more smaller, and very often also much more suitable, for mining
than the unreduced data.

Dimension reduction aims at finding and removing irrelevant, redun-
dant, or insignificant attributes. Feature selection, mentioned earlier, is the
main strategy used here. Data compression employs, as a rule, lossy com-
pression techniques, e.g. various signal processing techniques like discrete
Fourier transform or discrete wavelet transform [43]. After the transforma-
tion only the coefficients larger than a threshold are retained. It is a good
pre-processing method for data mining algorithms that can take advantage of
data sparsity. Another method of data compression is principal components

26 CHAPTER 2. PRE–PROCESSING TECHNIQUES IN DATA MINING

analysis discussed in Section 2.3.
Discretization and concept hierarchy generation techniques transform at-

tribute values into ranges (e.g. small, medium, large, or ≤ 0, > 0) or higher
conceptual levels (e.g. in the domains term of lectures, physics and chemistry
can be replaced by science).

In this thesis we concern with numerosity reduction. Data can be re-
placed by parameters of a data model. These methods are called parametric
methods and different regression techniques can be used here. The main non-
parametric methods are histograms, clustering and sampling. Output of good
sampling is a subset of the original data that represents well the whole data
set. Various sampling methods were examined [43, 64], from random selection
to selective sampling [19, 38, 56, 94]. The advanced techniques like selective
sampling aim at finding representative subsets of training data which would
be significantly smaller than the original data set but still would provide
enough information necessary for acquiring as accurate model as possible.

2.6.2 Informativness of an example

We define the function I(x) that assigns to each example its informativness.
The goal of sampling technique is to choose examples with the highest in-
formativness and only those to use for learning. The most simple sampling
technique is a random sampling where I(x) = 1/N for N equal to a number
of training examples.

2.6.3 Random sampling

Let we have a large data set that contains N examples. The most simple data
reduction method is drawing n of the N examples randomly. An advantage
of this method is a low complexity which is proportional to the cardinality n
of the sample, i.e. potentially sublinear.

Different variants of random sampling has been proposed [43]. The most
simple is random sampling without replacement. n examples are removed
randomly from the data set. In the case of random sampling with replace-
ment, an example are only copied into the sample, i.e. in the next step any
example already copied into the sample can be drawn again. If the data have
been grouped into M mutually disjoint groups, we can use cluster sampling
applying one of the method already mentioned into the clusters instead the
examples itself. The sample then contains m of M clusters. If the data are

2.6. SAMPLING 27

divided into several classes (or strata) with unequal frequency, or when the
data are skewed, stratified sampling should be used. In this case, random
sampling is applied to each stratum separately to ensure representativeness
of the sample.

Random sampling is especially useful for answering aggregate queries [43]
including frequent patterns. Using the central limit theorem we can deter-
mine a sufficient sample size n for estimating the value of the query or the
support of the frequent pattern.

2.6.4 Selective sampling

When learning a concept usually (1) all training examples are known and
classified before starting a learning process, and (2) all these training exam-
ples are then used for learning4. We will call this setting as passive learning.
This kind of learning is also called batch learning. Interactive learning, in
opposite to passive learning, usually does not have an access to a batch of
examples. Instead it asks for examples an oracle - a human, a database or
another program. The learner may be just as a receiver of examples sent
by the oracle, or it can ask for specific examples. Overview of queries most
commonly used in interactive learning can be found in [6].

Here we focus on the third possibility, active learning, also called selec-
tive sampling. It is up to the learning algorithm to find the best, i.e. the
most informative, examples. Selective sampling [19, 38, 56, 94] is an instance
selection method which aims at reducing the number of examples needed
for learning together with preserving the accuracy of the model learned. In
contrast to random sampling selective sampling techniques collect a repre-
sentative subset of examples that characterize well the target concept.

Most frequently, the reason for selective sampling is incapability of a
learning algorithm to learn from whole, huge data set but, following [68],
there are two other reasons for data reduction. The one reason could be
that a sufficient amount of labeled examples is difficult to obtain; a problem
frequently faced in natural language processing. If we cannot rely on unsu-
pervised learning and examples should be annotated manually by a human,
then we need to save the annotation costs [19, 94]. The second reason for
selective sampling is to obtain more compact and/or more comprehensive
result. Sometimes learning on a whole data set leads to a huge model. This

4E.g. C4.5 or C5 employs random sampling and windowing

28 CHAPTER 2. PRE–PROCESSING TECHNIQUES IN DATA MINING

can be caused e.g. by outliers in the training data [39]. For several learn-
ing algorithms, including C4.5, it has been observed [69] that increasing the
amount of learning data often results in a linear increase in model size with-
out no significant accuracy increase. Therefore, a selection of training data
can help to make the model more compact and concise.

Selective sampling proceeds, in general, by measuring the information
content of each training example. The objective is to select those examples
which could provide the most informative description of a target concept
being learned.

There are two main paradigms for measuring the information content:
uncertainty-based or committee-based.

Uncertainty-based selective sampling

Approaches to selective sampling based on uncertainty [56] often derive an
explicit measure of the expected information gained by using the example.
However, the main drawback of these approaches is that they are mostly
model-specific.

Committee-based selective sampling

Committee-based selective sampling [38]

Part II

Principal components

29

Chapter 3

Principal components as new

features

Although similar in their goals, statistical methods and machine learning
have not been combine very often. We will not discuss here the reason (that
seems be more subjective than rational). Instead we bring a positive evi-
dence for such a combination. We show that principal components (PCO’s)
can be very useful as new attributes in decision tree learning. We show that
3 PCO’s is optimal to add them as new features. After a summary of ex-
perimental results we introduce a new criterion for recognising that principal
are promising for the given data set. We show how time complexity can be
significantly lowered for large data sets.

3.1 Computing new features

The PCO’s are usually used to replace the original attributes. Another way
is to add them to the attributes. In [28, 29] PCO’s were used for replacement.
Here we test both ways.

3.1.1 Data sets

The datasets used represent a subset of 54 datasets used in comparative
studies within project METAL1. We explored all data sets that contains at
least 3 continuous attributes(columns) and have more than 500 lines. We

1http://www.metal-kdd.org/

30

3.1. COMPUTING NEW FEATURES 31

removed the data sets for which C5.0 reached error rate smaller than 3% as
no significant profit can be obtained for such data with any pre–processing
technique.

Because of dimensionality problems (too many attributes or too many
records ≥ 20000) musk and pyrimidines data set were removed, too. We
evaluated our method on 17 datasets containing both numerical and cate-
gorical attributes. The number of columns varied between 8(diabetes) to
66 (optical), the number of lines was in the range between 537(fluid) and
20000(letter). More information on the data set can be found in Appendix
A.

3.1.2 Learners to explore

We explored propositional learners that are frequently used in machine learn-
ing community: decision tree learner C5.0 without boosting – c50tree,
instance-based learner mlcib [87] and naive Bayes classifier mlcnb [87, 65].
For all learners the default settings of parameters has been used.

We also performed first experiments with other learners, namely with
C5.0 with boosting, with linear discriminant method, and with linear trees
(a decision tree that can introduce linear function in its nodes) [47]. However,
no significant decrease of error rate has been observed for them. The reason
may be that they actually form some kind of linear combination of attributes.

3.1.3 Algorithm

All results below are computed using 10-fold cross validation. In each step
the following algorithm was called:

1. Normalise data (i.e. continuous attributes);

2. Compute the first N principal components (linear functions) from the
learning set;

3. Employ these linear functions to compute PCO’s for the learning set
as new attributes;
ADD the computed values of principal components to the learning set;
or REPLACE the original attributes;

4. Normalise the test set using means and standard deviations that have
been computed from the learning set;

32 CHAPTER 3. PRINCIPAL COMPONENTS AS NEW FEATURES

5. Employ the same linear functions as above to compute PCO’s for the
test set;
ADD the computed values of the principal components to the test set
or REPLACE the original attributes;

6. Run a learning algorithm on the extended learning set ;

7. Test the result on the extended test set.

We tested all possible values of N = 1..Number of Attributes for each
data set.

3.2 To add or to replace?

3.2.1 Negative results for replacement

As it was mentioned earlier, the principal components are commonly used
to replace attributes with smaller number of new attributes. The second
way is to add principal components to the original dataset. First, we have
evaluated both methods on six datasets from UCI repository [10] containing
only numerical attributes with no missing values. The datasets satimage,

german numb, waveform21, waveform40, letter, segment were used.
All datasets contained at least 1000 examples. For each datasets we first
replaced attributes with 1,2,..,N principal components, N is the number
of attributes. We employed three learners, c50tree (C5.0 with standard
settings of parameters, without boosting, 10–cross-validation), mlcib1 (the
instance-based learner IB1) and mlcnb (Naive Bayes classifier). Then we ran
all the three learners on datasets extended with the same number ofPCO’s.

The results obtained by adding attributes were on the whole better then
those obtained by replacing attributes. For satimage dataset, see Figure 3.1,
for instance, the error rate of the decision tree was about 1% better when
attributes were added than in the other case. For waveform datasets, the
replacement worked better, but the difference was quite small. For letter

and segment the error rate with replacement was much worse than for the
extended dataset. See Appendix B for the graphs.

Because of that we decided to explore just the way of adding principal
components to the original set of attributes.

3.2. TO ADD OR TO REPLACE? 33

Figure 3.1: Error rates for satimage

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35

er
ro

r r
at

e(
%

)

number of principal components

satimage

c50tree
c50tree with PCA

c50tree REPLACED with PCA
mlcib1

’satimage.mlcib1.errorrate.add’
’satimage.mlcib1.errorrate.replace’

mlcnb
’satimage.mlcnb.errorrate.add’

’satimage.mlcnb.errorrate.replace’

3.2.2 Comparison with Duszak’s results

Chapter 4

Experimental results

We bring experimental results for the setting when PCO’s are being added
to the original attributes. We display results error rate, training time (and
hypothesis size if relevant) for three propositional learners, the decision tree
learner C5.0, the instance-based learner IB1, and the Naive Bayes learner.

4.1 General

In Fig. 4.1 there are results for four data sets and three learners c50tree,

mlcib, mlcnb that display typical trends of increase/decrease of accuracy.
Four typical trends can be observed that are independent on a particular
learner. For some data sets PCO’s displayed no effect – when increasing
their number error rate was not changing (diabetes for all three learners;
letter for c50tree). Sometimes the trend of error rate was decreasing but
it never decrease below the default level – error rate on the data set without
PCO’s (letter and c50tree). The most interesting trends can be seen for
satimage and waveform21 data sets. For small number of PCO’s – 1 or 2 –
the error rate is higher but for 3,4,... PCO’s it decrease below the default level
(satimage for any of the three learners; waveform21 for c50tree, mlcnb).
The important fact is that this trend is typical for majority of data sets for
which an extension of data with PCO’s results in increase of accuracy.

34

4.1. GENERAL 35

Figure 4.1: Results for diabetes, letter, satimage, waveform21

25

30

35

40

1 2 3 4 5 6 7 8

er
ro

r r
at

e(
%

)

number of principal components

diabetes

c50tree
c50tree ADDED PCOs

mlcib1
"diabetes.mlcib1.errorrate.add"

mlcnb
"diabetes.mlcnb.errorrate.add"

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

er
ro

r r
at

e(
%

)

number of principal components

letter

c50tree
c50tree ADDED PCOs

mlcib1
"letter.mlcib1.errorrate.add"

mlcnb
"letter.mlcnb.errorrate.add"

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35

er
ro

r r
at

e(
%

)

number of principal components

satimage

c50tree
c50tree with PCA

mlcib1
’satimage.mlcib1.errorrate.add’

mlcnb
’satimage.mlcnb.errorrate.add’

5

10

15

20

25

30

35

40

45

50

5 10 15 20

er
ro

r r
at

e(
%

)

number of principal components

waveform21

c50tree
c50tree with PCA

mlcib1
’w21.mlcib1.errorrate.add’

mlcnb
’w21.mlcnb.errorrate.add’

36 CHAPTER 4. EXPERIMENTAL RESULTS

4.2 Decision tree learning

4.2.1 Error rate

Table 4.1 contains the results for c50tree. In the first three columns there are
results for the optimal number of PCO’s – the number of them, comparison
with error rate on the original data (++ means decrease of error rate > 95%,
+ means decrease of error rate ≤ 95%), error rate ratio (error rate for the
extended data set divided by the error rate for the original one), and error
rate for the extended data. The second and the third triple of columns differ
only in the first column. The last column of the tables displays error rates
for the original data set.

Table 4.1: Results for C5.0

c50tree+ c50tree
best N of PCO’s added 2 PCO’s added 3 PCO’s

N err.r. err. err.r err. err.r. err.
ann 1 1.060 0.35 1.303 0.43 1.303 0.43 0.33
australian 1 1.000 15.51 1.009 15.65 1.000 15.51 15.51
diabetes 1 1.000 23.83 1.016 24.21 1.016 24.48 23.83
fluid 2 ++ 0.940 2.79 ++ 0.940 2.79 ++ 0.940 2.79 2.98
german 3 + 0.980 28.80 + 0.986 29.00 + 0.980 28.80 29.40
letter 1 1.010 12.16 1.021 12.34 1.024 12.38 12.09
optical 1 ++ 0.937 9.02 + 0.971 9.38 ++ 0.947 9.15 9.66
page 3 + 0.990 3.05 1.010 3.12 + 0.990 3.05 3.09
pendigits 12 ++ 0.893 3.24 + 0.986 3.58 ++ 0.915 3.32 3.63
quisclas 6 + 0.984 37.14 1.014 38.28 + 0.998 37.67 37.75
satimage 11 ++ 0.838 11.45 ++ 0.943 12.88 ++ 0.877 11.98 13.66
segment 3 + 0.964 3.51 1.022 3.72 + 0.964 3.51 3.64
vehicle 2 1.009 26.48 1.009 26.48 1.027 26.95 26.24
vowel 4 ++ 0.837 18.18 ++ 0.889 19.29 ++ 0.870 18.89 21.71
wform21 5 ++ 0.728 17.10 ++ 0.732 17.20 ++ 0.729 17.12 23.48
wform40 6 ++ 0.689 17.28 ++ 0.707 17.72 ++ 0.709 17.78 25.08
yeast 2 1.014 43.87 1.014 43.87 1.025 44.34 43.26

4.2. DECISION TREE LEARNING 37

For 11 out of 17 data sets decrease of error rate has been observed. It
means that a decrease of error rate appeared for significant number of data
sets (one-sample Wilcoxon test on the level 95%). We can also see that the
decrease of accuracy is more rare than the increase, and that that decrease is
quite small. However, the decrease is not significant on level ≥ 90% (t-test).

4.2.2 Training time

Table 4.2: Training time

c50tree+ c50tree
PCO time train. time time

ann 0.71 0.56 0.43
australian 0.04 0.07 0.04
fluid 0.18 0.11 0.15
diabetes 0.06 0.08 0.05
letter 10.05 7.68
optical 0.85 4.36 7.42
pendigits 3.96 1.02 3.37
page 0.52 0.82 1.14
quisclas 1.87 2.44 2.53
satimage 4.22 3.73 4.55
segment 0.75 0.57 0.61
vehicle 0.31 0.23 0.24
vowel 0.34 0.74 0.51
waveform21 0.20 1.87 2.55
waveform40 1.79 3.68 5.46
yeast 0.23 0.43 0.60

In our analysis of times (Tab. 4.2), we first compared the training with
and without PCO’s. For 12 out of 17 data sets the training time for data with
PCO’s was smaller than for the same data without PCO’s. From promising
data sets, only vowel displayed greater training time for data with PCO’s.
Then the time to compute PCO’s was added to the training time of the
decision tree and compared with the time used to construct a decision tree

38 CHAPTER 4. EXPERIMENTAL RESULTS

without PCO’s. Only for ann data set the ratio of these times overcame
3, and only for 5 out of 16 the ratio was greater 2, i.e. more than twice
slower than without PCO’s. For optical data the sum of PCO time and
the training time was smaller than the time without PCO’s. Thus, we can
conclude that time complexity seems acceptable.

4.2.3 Hypothesis size

We compared the sizes of decision trees (number of nodes) with the corre-
sponding sizes of trees when using PCO’s. For 13 out of 17 datasets the
size of the decision tree generated decreased when using principal compo-
nents. From promising data sets only for fluid data the tree complexity
overcame the complexity of tree without PCO’s. Some small increase in hy-
pothesis complexity was observed for fluid from 15.4 to 16.3 (5.2%) what
corresponds to 1 extra node in the decision tree. More extra nodes appeared
for australian (increase from 19.9 to 21.8, ∆=9.5%, i.e. approx. 2 extra
nodes), yeast (166.3, 181.5, ∆=9.1%, 15 nodes) and diabetes (22.1, 25.4,
∆=14.9%, approx. 3 extra nodes). When adding the complexity of 3 PCO’s
(number of attributes * 3) to the complexity of the tree this sum was smaller
than c50tree complexity only for waveform21.

Chapter 5

Answering the main questions

5.1 What number of PCO’s to add

The statement above can be reformulated by such a way: for most of data
sets there exists a number N of PCO’s that are good candidates for adding
to the original set of attributes. A question that needs to be answered now is:
what is the optimal number N of PCO’s that we should add? In [76] N was
set the number of PCO’s to the number of eigenvalues that are significantly
greater than one. For large data sets it can be computed using the following
criterion[84] :

N = #eigenvalues|eigenvalue > 1 + 2 ∗
√

#attributes−1

#examples−1

Another possibility is to exploit the level of variance that is explained with
the first N principal components using eigenvalues of variance matrix [67, 81].
However, none of these criteria worked sufficiently well.

Based on the experiments performed and after analysis of error rate de-
pendency on N we employed the following way of setting N that fits well and
needs no additional computation. Looking at Fig. 5.1, the curve satimage

with PCA (similarly for wform21), we can see the typical trend for the data
sets that profit from the use of PCO’s. (letter data set is the counter ex-
ample; no profit can be obtained with PCO’s). For most of the data sets the
trend of error rate as a function of N has a similar shape. For small number
of PCO’s – 1 or 2 – the error rate is higher than or equal to the error rate
without use PCO’s. Starting from 3 PCO’s, the error rate is decreasing below
this level. After, the decrease is still continuing but the difference between

39

40 CHAPTER 5. ANSWERING THE MAIN QUESTIONS

Figure 5.1: Results for wform21, satimage and letter

15

20

25

1 2 3 4 5 6 7 8 9 10

er
ro

r r
at

e(
%

)

number of principal components

satimage
satimage with PCA

letter
letter with PCA

wform21
wform21 with PCA

wform40

cases for N ¿ 3 PCO’s and for 3 PCO’s is not big. Compare now the first
and the third triple of columns in Tab. 4.1. We can see that all data sets
that are promising for any value of N are also promising for N = 3. It does
not mean at all that for some N > 3 the error rate ratio will be even smaller.
However, the expected difference will not be big (see Tab 4.1). Moreover, the
C5.0 decision tree learner does not work well when the number of attributes
is too big (over-fitting). As we use the PCO’s as additional attributes we are
tending to add so small number of new attributes as possible. Thus N = 3
is a good choice.

5.2 Which data are promising for PCA

Kaiser–Meyer–Olkin criterion (KMO) is usually used to decide that PCO’s
are useful. If KMO ¿ 0.5 PCO’s can be used to replace the original attributes.
We also tested this criterion. We observed that for our task the threshold
must be higher. We obtained the best results for the threshold 0.6. But even
in that case the criterion KMO ¿ 0.6 still hold for some of non–promising
data sets. Other possibility was to check the variance covered with 3 PCO’s.
However, neither that criterion was significant.

5.3. WHERE PCO’S APPEAR IN A DECISION TREE? 41

We employed a new method based on sampling. 10% examples (or at
least 200 examples) was randomly selected for the data set and PCO’s were
computed for the sample. Than the error rates obtained with C5.0 learner
for that sample and the sample extended with PCO’s were compared. If the
addition of PCO’s displayed decrease of error rate, the data set was signed
as promising.

This criterion holds for all promising data sets displayed in Table 4.1 but
segment. It is not time consuming (1.573 sec for pendigits data set that
contains 10992 examples and 16 continuous attributes). Moreover it can be
used with any other learner.

5.3 Where PCO’s appear in a decision tree?

We observed that at least one of PCO’s appeared in the root (on level 1) of
the decision tree or not deeper than on level 4 for the promising data sets.
It holds for 15 out of 17 data sets (australian was removed because no
PCO’s appeared in the tree) (significant for the Sign test on level 99%) It is
the 2nd principal components that appears “sooner” : for 7 out of 11 such
data sets it appeared 7-times (1st PCO three-times, 3rd PCO twice) as the
first in the decision tree). It must be, however, noticed that this statement
holds, unfortunately, for all the data sets explored, even for those that are
not “promising” for adding principal components.

5.4 How to lower computation time

Computation of PCO’s is anyway time consuming. However, if the data set
becomes smaller the time needed decreases. We checked whether PCO’s (i.e.
linear functions) computed from a small sample could be used for whole data
set. As we worked with quite large data sets – the smallest, fluid, contained
537 examples – it seemed reasonable to verify this hypothesis.

We used the PCO’s (linear functions) that were computed for the 10%
sample. We observed that time varied from 16% (satimage) to 61% (german)
of the time when PCO’s were computed from the whole learning set. It is
important to stress that for 8 out of 11 data sets this computation time
was smaller than 30%. We can see that this approach leads to a significant
decrease of time complexity if compared with [73].

42 CHAPTER 5. ANSWERING THE MAIN QUESTIONS

Moreover, no significant increase of error rate has been observed. The
biggest increase of error rate was observed for optical, from 9.15 to 9.55.
For 6 out of 11 promising data sets the error rate even slightly decreased.

5.5 Improved version of the algorithm

Input: Data set, Attribute type declaration file, Number of PCO’s, Cardi-
nality of the random sample

1. Normalise data (i.e. continuous attributes);

2. Select the random sample; Compute the first 3 principal components
from the sample; Check for the sample whether error rate decreased
after adding PCO’s; If not, use C5.0 on the whole data set with no
PCO’s and stop. Otherwise

3. Employ PCO’s of the sample(linear functions) to compute PCO’s for
the learning set as new attributes; Add the computed values of principal
components to the learning set;

4. Run C5.0 on the extended learning set.

5.6 Conclusion

We displayed the experimental results showing that principal components
are useful as new attributes for decision tree learning for significant number
of the data sets explored. There is an explanation of the positive result
brought. Each decision tree learned with C5.0 splits the example space with
axes-parallel lines. Principal components actually allow to build boundaries
between examples with lines of any direction. Although it may sound correct
this statement has not been proved yet.

We experimentally proved that the results obtained earlier, when PCO’s
was used to replace the original attributes, do not hold in general. We
introduced the new criterion that allows easily to learn whether a data set is
a good candidate for application of PCO’s. We showed that for the promising
data set 3 principal components is optimal to add to the original attributes.

Further work should be carried out to explore some other way of ex-
ploitation of principal components, e.g. pruning them (simplifying the linear

5.6. CONCLUSION 43

functions) or choosing only some of them. Modification of a decision tree
learners so that it is able to compute principal components in each step of
expansion of the decision tree is challenging.

Part III

Maximal frequent patterns as

new features

44

Chapter 6

RAP

6.1 General

Another preprocessing method introduced in this chapter is based on the
search for maximal frequent patterns. The frequent patterns are those pat-
terns which comply with a sufficient number of training examples. As men-
tioned earlier, most of the methods established so far generate all frequent
patterns by breadth first search. From these patterns found, a subset of rel-
evant patterns is selected. After that, binary attributes are generated from
these relevant patterns.

This approach have been shown successful for many domains [23]. How-
ever, this strategy is too unefficient for the class of data sets that contain
long patterns. Bayardo [8] showed that even for benchmark data from the
UCI repository the Apriori-like approach is inadequate. This method is ex-
tremely inefficient, or even fails, if there is too many short frequent patterns.
In general, it is the case of mining dense data – e.g. biochemical and/or
molecular data or in (hyper)text. In this case another search strategy – e.g.
heuristic or random search – may be preferable.

The RAP system [11] generates frequent patterns by a heuristic search,
which results in a faster acquisition of interesting patterns than the breadth
first search can achieve. The problem of designing the heuristic evaluation
function deserves especial attention.

Here we show that partial search for maximal frequent Datalog queries as
new features is competitive with other approaches. We demonstrate a capa-
bility of RAP, a system for learning maximal frequent patterns in first-order

45

46 CHAPTER 6. RAP

logic, for finding new features. Accuracy reached with propositional learners
and features generated with RAP is comparable to other feature construction
methods. In most experiments RAP was faster then other methods.

6.2 Algorithm

In this section we shortly describe RAP [11], system for searching frequent
datalog queries in first-order logic.

The algorithm RAP-Main outlined below describe computation of one
maximal pattern.

Algorithm: RAP-Main

Input: Database r, language bias definition L, the key predicate used to
address examples (key), the threshold minfreq and maximal pattern length
maxlength
Structures: set of infrequent patterns Infreq and set of known patterns
Known
Output: maximal pattern Q

was algorithmic[1]

\STATE {make initial pattern Q (default

$Q=\textit{key}(\textit{Key})$)} \WHILE {pattern Q is shorter

than $maxlength$ }

\STATE {generate set Q_{SPECS} of new refinements of Q}

\STATE {discretize continuous arguments in added literals}

\IF {$Q_{SPECS} \not= \emptyset$}

\STATE {select one refinement Q_s from Q_{SPECS}} such that \\

$Q_s \not\in \textit{Infreq}$ and $Q_s \not\in \textit{Known}$

\ELSE

\STATE {pattern Q is maximal}

\ENDIF

\STATE {compute support of Q_s on database \mathbf{r}}

\IF {support of Q_s is great or equal than \emph{minfreq}}

\STATE {$Q=Q_s$}

\ELSE

\STATE {add pattern Q to \emph{Infreq} and go to Step 5}

\ENDIF

\ENDWHILE

6.3. DISCRETIZATION. 47

In this section we briefly describe each step of this algorithm.

Refinement generation.

The refine operator uses language bias definition (see section 6.4.) to refine
the pattern Q. There are two possible settings, which drive its function. The
system can generate all possible extensions (candidates) of pattern Q or it
can generate (randomly) only one possible refinement. It is useful in the
case, where system RAP uses depth-first or random strategy.

6.3 Discretization.

In system RAP is integrated unsupervised discretization method. It is based
on equal frequency intervals algorithm [62]. This method is not so good as
supervised methods, but it is suitable for frequent pattern discovery task,
because we often process unclassified data.

Selecting refinement.

System RAP can use one of three available methods, random choice, full
depth-first search and best-first search for selecting one refinement from set
QSPECS. There are implemented three heuristics. First of them selects the
candidate with minimal value of V (Qe) where V is computed as

V (Qe) = freq(Qe) − |freq(Qe, P os) − freq(Qe, Neg)|

freq(Qe) is frequency of candidate Qe and freq(Qe, X) is count of examples
which belong to the class X and are covered by candidate Qe. This method
is suitable for domains with two main classes but it may be used on other
datasets too.

The second method uses the entropy measure.The system compute en-
tropy for all candidates from QSPECS and selects pattern with minimal one.

The last method uses the confidence measure. The user specifies minimal
confidence and system then selects first pattern whose confidence is greater
than given value. The confidence is computed for association rule which has
the class identifier in the consequent and Qe in the antecedent (it is simillar
to CARs in the CBA classifier).

48 CHAPTER 6. RAP

Check infrequent patterns.

The system can store information about known infrequent patterns. For some
kind of data it is inefficient to use this information because the structure
maybe quite huge. Using a setting the saving infrequent patterns can be
suppressed.

Check known patterns.

Similar situation can appear when testing whether the new pattern is equal
or subsumed by some of known patterns. However, the number of the known
patterns is not usually so large. There are three main methods how the
patterns are checked. RAP checks if Qe is not subset of or if it is not eaqual
to some known maximal or frequent pattern. This checking can be suppressed
for the patterns shorter than a given length.

6.4 Language bias

Our formalism is based on the lower level format of Warmr and Tilde

[21] language bias. In this subsection we mention main features and some
differences from format of Warmr language definition.

Literals or their conjunction which can occur in the patterns are specified
by the rmode/1 predicate in language definition. User can specify count of
occurrences of conjunction in pattern.

System RAP can work with typed language bias only. We must specify
the types of arguments of each literal mentioned in rmode definition.

System RAP now uses the key format for identifying examples. It uses
special predicate, key/1 which must be defined in the background knowledge
and language bias too (there must be mentioned type of example identifier).

User can use lookahead and constraints on variable bindings [21]. Usage of
these definitions can save the time of execution because it eliminates useless
refinements.

Chapter 7

Feature construction with RAP

7.1 General

We validate our approach on three tasks. We used RAP on propositional
data as a preprocessing system for propositional learners and for proposi-
tionalization of two real-world domains from bioinformatics. All the results
were obtained using 10-fold cross-validation.

7.2 Propositional feature construction

We tested RAP as the preprocessing system for three propositional learners
on 9 propositional datasets from UCI archive [10]. The results are shown in
Table 7.1. We used learners C4.5 [79], naive bayes and instance-based learner
IB1 [87] (column Orig.). Then 30 maximal patterns with frequency greater
than 10% were added to the original dataset (column All). In RAP we used
the integrated method of discretization in all experiments. The threshold
was set to 0.5 (splitting into two new intervals). For candidate selection in
the RAP-Main algorithm we used the entropy minimization heuristics. We
observed that the new features could improve accuracy of these learners. We
implemented also a simple wrapper [50] for feature selection. The wrapper
added new features to the data one by one and called a learner on a validation
set (a small subset of training set which was separated from the training set
before generation of patterns). Finally, we used the first N features for which
the classifier achieved the highest accuracy (column Fsel). We also tried to
use the test set as a validation set for feature selection. The results are in

49

50 CHAPTER 7. FEATURE CONSTRUCTION WITH RAP

Table 7.1: Predictive accuracy results of propositional learners on the
datasets with new features. In boldface the best accuracy is given. In italics
are those results for which the patterns selected with the wrapper were better
than all generated patterns. We omitted results of IB1 on letter dataset
since the MLC++ implementation can process only 10 000 examples while
this dataset is larger.

C4.5 Naive bayes IB1

Dataset Orig. All Best Fsel Orig. All Best Fsel Orig. All Best Fsel

australian 15.5 14.5 12.9 15.6 22.6 13.9 12.5 17.3 19.7 18.1 13.9 19.1

crx 13.1 12.9 11.2 13.3 21.9 15.3 13.7 17.6 17.4 17.1 13.3 16.3

diabetes 24.1 28.4 22.7 24.6 24.1 24.1 22.8 24.5 29.0 30.7 27.6 30.5

german 29.2 27.3 23.0 29.9 24.3 25.4 22.2 25.5 31.4 31.9 28.3 31.5

letter 12.2 12.8 11.5 12.4 35.6 36.1 34.5 35.0 – – – –

quisclas 37.5 38.3 35.9 38.0 60.2 44.9 44.8 45.2 41.2 42.2 39.8 42.0

tic-tac-toe 15.7 12.8 6.4 10.1 30.5 26.3 23.6 25.6 1.2 6.1 1.2 1.3

vehicle 26.5 25.3 21.6 27.3 53.1 37.6 36.6 38.0 30.6 31.0 27.6 31.5

vowel 21.8 20.9 18.0 20.6 32.5 33.4 29.8 33.2 0.8 10.6 0.7 0.9

yeast 43.6 44.9 41.4 44.7 47.6 47.6 46.3 47.4 47.7 48.1 46.5 47.5

Average 23.9 23.8 20.5 23.7 35.2 30.5 28.7 30.9 24.3 26.2 22.1 24.5

the column Best.

It can be seen that there are patterns which improve performance of all
mentioned learners. We must note that the good performance of naive bayes
can be due to discretization of continuous values in the process of pattern
generation.

In Table 7.2 we compare our results with the results of CBA classifier
[61] on the datasets common for our and Liu’s studies. The table contains
a dataset name, an error of C4.5, the best results achieved with CBA1, the
best results achieved with C4.5 and features generated with RAP (Best), the

1We have taken the minimal number from columns CARs+infreq., CARs with and
without pruning mentioned in Table 1 in [61].

7.3. FIRST-ORDER FEATURE CONSTRUCTION 51

Table 7.2: Comparison of the error rates achieved by CBA classifier and by
C4.5 with new features computed by RAP

Error rate Num. of candidates

Dataset C4.5 CBA C4.5
CBA

RAP(Best) C4.5
RAP

RAP(All) C4.5
RAP

CBA RAP CBA
RAP

australian 15.49 13.20 1.17 12.90 1.20 14.50 1.03 46 564 2 154 22

crx 13.08 14.10 0.93 11.20 1.17 12.90 1.01 42 877 2 924 15

diabetes 24.10 24.70 0.98 22.70 1.06 28.40 0.85 3 315 1 365 2

german 29.20 25.20 1.16 23.00 1.27 27.30 1.07 69 277 4 123 17

vehicle 26.49 31.20 0.85 21.60 1.23 25.30 1.07 23 446 7 843 3

Average 1.02 1.19 1.01 12

results after all 30 features (All), and the number of candidates generated
with the systems.

We took the datasets that appeared in both studies. C4.5/RAP beats
CBA for all 5 data sets when (Best) variant has been used. However, the
(Best) method is usable only in the case that the test set is known in advance.
This result only shows that RAP is capable of finding useful patterns. To
find a criterion for selection of the best set of maximal patterns is our future
work. For three datasets CBA performed better than C4.5/RAP when all
features generated by RAP have been added (see the column RAP(All)). We
must stress that RAP is more efficient than CBA. It generates in average 12-
times less number of candidates than CBA (see last three columns in Table
7.2).

7.3 First-order feature construction

We also evaluated performance of RAP on (multi-)relational data, namely on
two domains – the mutagenicity prediction [91] and carcinogenicity prediction
[22] (database used in PTE-1 challenge). We generated maximal patterns –
binary features for the propositional learner C4.5 [79]. As in experiments
above, all the results were obtained using 10-fold cross-validation.

52 CHAPTER 7. FEATURE CONSTRUCTION WITH RAP

7.3.1 Mutagenicity prediction.

We tested three types of background knowledge. B3 contains atoms, bonds,
charges, and values of logP and εLUMO. B3/4 is an extension of B3 with
2-D structures (rings). This hybrid background knowledge enables only to
test the occurrence of a structure in compounds. Finally, B4 comprises B3/4,
but allows for testing the connection between 2-D structures. The continuous
values of partial charges, logP , εLUMO were discretized by RAP into three
intervals. As the pruning criterion we employed just the testing for known
patterns. Each pattern subsumed by some frequent pattern was considered
as known, and therefore it was discarded. 10 patterns were generated for B3
and B3/4, whereas 60 patterns were generated for full B4, in average. The

Table 7.3: Predictive accuracy results for mutagenicity prediction domain.

B3 B3/4 B4

Acc. Size Time Acc. Size Time Acc. Size Time

Minfreq % sec. % sec. % sec.

0.15 84.02 5.6 306 86.24 11.0 182 85.19 12.8 775

0.20 84.02 5.0 207 87.30 11.0 127 85.18 12.6 826

0.25 84.02 5.0 145 87.30 11.0 126 87.83 11.0 828

results displayed in Table 7.3 are comparable to those published. In Table 7.3
we show the accuracy (column Acc.), the size of hypothesis (column Size)2

of C4.5 learner and the time consumed by 10-fold cross-validation.
The pruning criterion was so strong that in some folds the number of

constructed patterns was too small and these patterns did not cover the whole
training set. Sometimes the patterns covered the same portion of training
examples since we did not employ covering paradigm in our experiments.

We also tried to relax the pruning criterion in the following way. The
patterns shorter than 2 literals were not tested whether they were known.
For the minimal frequency of 15%, RAP found 88.2 patterns in average
whose average length was 5.1 literals. The execution took 18 311 seconds,
the resulting accuracy of C4.5 learner was 88.9% and the size of hypothesis
was 20.2.

2The size of a decision tree is defined as a number of its nodes.

7.4. COMPARISON WITH WARMR 53

7.3.2 Carcinogenicity prediction.

Here we also tested two versions of background knowledge. The first version
contained all predicates except the high-level (2-D) structures. The second
version comprised also these structures. We achieved the accuracy of 61.44%
for 65 patterns with the minimal frequency of 15% and the first version of
background knowledge.

7.3.3 Comparison with other work

All mentioned results can be compared with the results presented in [53].
On the mutagenicity domain, when C4.5 learner was used together with the
method which used only minimal frequency threshold, the resulting accuracy
was 90.4%. For the carcinogenesis domain and C4.5 learner they report the
best classification accuracy of 64.3%.

7.4 Comparison with Warmr

There are many interesting domains which contain very long patterns. The
systems based on a level-wise algorithm cannot be effectively used for pro-
cessing these datasets. In this section we shall show some advantages of the
system RAP against the level-wise system Warmr.

In order to compare the performance of RAP and Warmr, we carried
out an experiment on the mutagenicity domain. The minimum frequency
threshold was set to 15% for both systems. For candidate selection within
RAP we used the heuristics which minimized the value of V (Qe) (as described
in Section ??). Both systems used the same background knowledge: B4
without continuous values3. Other settings for RAP were the same as in
the second experiment with the mutagenicity domain and the background
knowledge B4.

We use three main criteria for the comparison: the count of candidates
processed and the time and memory consumed by the systems. The first
pattern found by RAP was a maximal pattern long 11 literals with the sup-
port of 16%. This pattern and its characteristics are shown below. Note
that this pattern contains two substructures. There are two rings connected
with a single bond and one sequence of atoms which looks like a part of

3The continuous values were excluded since Warmr cannot process them.

54 CHAPTER 7. FEATURE CONSTRUCTION WITH RAP

an aromatic ring. This pattern is interesting because it discriminates the
positive and negative examples very well (it covers 27 positive examples and
only 1 negative one). The system RAP evaluated 360 candidates before this
pattern was encountered. RAP found 56 maximal patterns and evaluated
9 082 candidates. The execution took 20 minutes and consumed less than
30MB of memory.

Query: key(A), has_ring(A,ring_size_5,B),

connected_to_ring(A,B,benzene,1,C), has_atom(A,c,D),

connected_to(A,D,c,E,1), connected_to(A,D,c,F,7),

connected_to(A,E,c,G,7), connected_to(A,F,c,H,7),

connected_to(A,F,h,I,1), connected_to(A,G,c,J,7),

connected_to(A,H,c,K,7), connected_to(A,H,h,L,1)

length: 11

frequency (relative/absolute): 0.17/28

class distribution: [(pos,27),(neg,1)]

Warmr processed 32 594 candidates and found 26 209 frequent patterns until
it reached a pattern long eleven literals. It consumed more than 320MB of
memory and the time required for finding all patterns of the length of 10
literals was greater than 30 hours.

Of course, the systems which employ a depth first search or a heuristics
search have some disadvantages, e.g. they cannot pass through a database
only once when processing all patterns on the same level. However, in this
section we showed that a heuristics search can be preferable when searching
for a subset of all maximal patterns.

7.5 Conclusion

We presented first results obtained with RAP for feature mining. We showed
that maximal patterns can be successfully used as new features for propo-
sitional learnes. We showed that usage of heuristics search together with
pruning known patterns can speed up propositionalization. The curent ver-
sion of RAP computes coverage inefficiently. It can be speeded up by using
e.g. query packs [14]. This is one of goals of our future work.

Part IV

Selective sampling

55

Chapter 8

Committee-Based Selective

Sampling

8.1 Committee-Based Selective Sampling

This work was motivated by the fact that for large datasets, which are be-
ing treated inside the MetaL project, the experiments took too much time.
Therefore, our primary goal was to decrease the learning time and perhaps
the model size while keeping the error rate as low as possible; a goal perfectly
addressed by selective sampling. Since we have been concerned with a simple
selective sampling technique which could be easily applied to many different
learning algorithms, we gave precedence to the committee-based approach.

The general scheme of selective sampling driven by committee of classifiers
is as follows. In the beginning, we build a set of several cheap classifiers –
members of the committee. Then, we let the committee make a decision
about each given training example, which means that each member has to
classify the example according to its own knowledge about the target concept.
Thus, we get several (possibly different) class predictions for each example.
Hence, the information content of the example is evaluated as a measure of
disagreement among the committee members. In the end, for final training
we select a subset of examples with high information content.

If we want to devise a particular variant of committee-based selective
sampling, several questions should be answered:

1. How many committee members do we need?

2. How to choose the committee members?

56

8.1. COMMITTEE-BASED SELECTIVE SAMPLING 57

3. How to measure the disagreement among committee members?

4. How to select the resulting subset of training examples?

Our parametric variant of committee-based selective sampling adopts the fol-
lowing solution. It presumes that we have a cheap (fast and simple) learning
algorithm Ainit which we use for training initial classifiers (committee mem-
bers) and a proper (slow and robust) learning algorithm Afinal which we use
for training the final classifier. Our method treats the number of committee
members as a fixed parameter N . The committee members are established
by learning on small subsets obtained by random sampling from the original
dataset. The size of these small subsets is given by another parameter I.
Our measure of disagreement is rather rough, since we distinguish only two
categories: a complete consensus and a dissension. Those examples on which
the committee came to a consensus are considered to be easy, while the oth-
ers are considered to be hard. The main idea of our method is to select the
resulting training subset in such a way that the ratio of easy to hard examples
in the resulting subset is computed as a function of the corresponding ratio
which was observed in the original dataset. As this function we simply took
a multiplication by a coefficient X. Another parameter F determines the size
of the final training subset. We can already see that our selective sampling
technique is parameterized by four numerical values:

N – a number of initial classifiers (members of the committee)

I – a size of the initial training subset used for learning initial classifiers

F – a size of the final training subset used for learning a final classifier

X – a coefficient for modifying the original ratio of easy to hard examples

More formally, our example selection works as follows:

1. The number of committee members is given by a parameter N ∈ N,
N ≥ 2.

2. We draw randomly an initial subset from the given training set. The
initial subset’s size is determined by a parameter I ∈ R, 0 < I < 1, as
a fraction of the original dataset. The initial subset is randomly split
into N blocks and each block is used for training one initial classifier
with a learning algorithm Ainit.

58 CHAPTER 8. COMMITTEE-BASED SELECTIVE SAMPLING

3. Each initial classifier is applied to the whole training set. Therefore,
we obtain N class predictions for each example. Those examples which
were classified consistently (it means that all N predictions were iden-
tical) are considered as easy ones while the others are considered as
hard ones. Let’s denote the ratio of easy to hard examples as e/h.

4. We select randomly a final training subset so that its ratio of easy to
hard examples is given by the expression X ∗ e/h where the coefficient
X ∈ R, 0 ≤ X ≤ 1, is another fixed parameter. The final subset’s size
is determined by a parameter F ∈ R, 0 < F < 1, as a fraction of the
original dataset. The final subset is used for training a final classifier
with a learning algorithm Afinal.

It is not difficult to guess that a particular setting of the parameters
presented above has an important impact on the method’s performance. The
appropriate parameter setting is not a trivial task since it depends not only
on properties of the dataset at hand, but also on our preferences with regard
to the learning time, the size, and the precision of learned model.

8.2 Experimental Results of Selective Sam-

pling

At first, we shall show that the selective sampling method really selects
representative subsets of the training data. A better quality of the dataset
obtained by selective sampling displays a better accuracy of the learned model
when compared to the random sampling. In our experiments we tried c50tree

algorithm as an initial learner. As final learners we tested c50boost algorithm
and c50rules algorithm: corresponding results are shown in Tables 8.1 and
8.2, respectively. These tables show results concerning the total time, the
size of learned model, and finally, its error rate on a test set. All numbers
were computed by 10-fold cross-validation.

We can see that the error rate achieved by selective sampling remains
in many cases close to the original error rate. For adult dataset it even
decreased, when c50boost has been used as a final learner. Furthermore, se-
lective sampling is always better than random sampling in terms of accuracy,
except for quisclas dataset (which has an excessive error rate on the whole
dataset, either). However, it should be noted that this singularity of quisclas

8.2. EXPERIMENTAL RESULTS OF SELECTIVE SAMPLING 59

Table 8.1: The comparison of results achieved on whole dataset (WD), by
selective sampling (SS), and by random sampling (RS). The initial algorithm
Ainit was c50tree and the final algorithm Afinal was c50boost. The parameters
of selective sampling were set as follows: N = 2, I = 0.2, F = 0.3, and
X = 0.1. The random sampling was set to select the same resulting fraction
of data (30 %).

Dataset Total Time (sec) Model Size Error Rate (%)

WD SS RS WD SS RS WD SS RS

adult 139.3 22.3 22.1 23768 5977 8751 14.49 14.40 15.33

letter 81.1 21.3 15.3 11691 6966 5484 4.69 7.85 9.73

optical 53.0 11.9 7.8 1771 1009 788 2.47 3.83 4.48

pendigits 32.0 8.8 6.2 1703 1122 904 1.15 1.49 2.27

quisclas 19.2 8.3 6.9 5447 1829 1713 35.24 36.77 36.04

satimage 51.9 12.5 8.5 2652 1346 959 9.54 9.88 11.31

Table 8.2: The similar experiment as above, but for the final algorithm
c50rules. The parameters of selective sampling were set here as follows: N =
2, I = 0.1, F = 0.3, and X = 0.2. The random sampling was set again to
select the same resulting fraction of data (30 %).

Dataset Total Time (sec) Model Size Error Rate (%)

WD SS RS WD SS RS WD SS RS

adult 89.3 16.2 12.8 327 218 215 13.67 14.34 14.80

letter 231.5 29.1 20.3 1177 721 548 11.03 18.37 19.56

optical 16.0 3.3 1.6 209 108 95 8.64 11.17 13.49

pendigits 18.1 3.6 2.1 188 121 106 3.22 4.80 5.99

quisclas 16.9 3.5 2.8 475 179 180 35.34 37.48 37.16

satimage 24.0 3.9 1.9 281 138 108 13.36 14.65 15.77

dataset does not mean that the selective sampling is not useful for it at all.
If we use c50boost as the final learner and choose a different setting, namely
N = 4, I = 0.3, F = 0.3, and X = 0.3, then we get the following results:
Total Time 9.1, Model Size 1831, and Error Rate 35.58. Thus, the accuracy
of selective sampling is better than of random sampling for quisclas as well,

60 CHAPTER 8. COMMITTEE-BASED SELECTIVE SAMPLING

but we must hit the correct parameter setting.
As for the reduction of model size, often the selective sampling is almost

as successful as the random sampling, even thought our method employs no
noise handling. For adult dataset with c50boost as a final learner and quisclas

dataset with c50rules as a final learner, the selective sampling produced even
smaller model than random sampling did.

Nevertheless, the most significant is the reduction of total time. The total
time comprises the time taken by sampling, training and testing together. It
means that in the case of selective sampling the total time subsumes also the
time spent on learning and application of initial classifiers. Consequently,
the random sampling is a bit faster, but the extra time spent on selective
sampling seems to be really useful, considering the better preserved accuracy.
The main asset of time reduction does not rest in the fact that we are able
to shrink the total time from 51.9 to 12.5 seconds, but the important thing is
that 1/5-time reduction with no considerable decrease in accuracy can help
the learning algorithm to scale up to significantly larger datasets.

Chapter 9

Meta-Learning for Parameter

Setting

9.1 Motivation

As we could see in the previous chapter, particularly in the discussion about
“abnormal” quisclas dataset, the performance of our selective sampling method
strongly depends on the setting of its parameters. Table 9.1 demonstrates
the impact of parameter X (the coefficient for modifying the original ratio
of easy to hard examples) on the performance criteria. The table shows that
the demand on a fast processing and small model goes against the demand
on a high accuracy.

Therefore, it is clear that a search for the best parameter setting needs to
take into consideration not only the properties (the meta-characterizations)
of the particular dataset, but also our preferences with regard to some per-
formance criteria (time, size, accuracy). This observation naturally leads to
ranking techniques. Considering our experimental purposes we have resorted
to very simple ranking function:

R(K, Ts/Tw, Es/Ew) = K ∗ (Ts/Tw) + (1 − K) ∗ (Es/Ew)

where Ts and Tw are the total times achieved by learning from a sample and
by learning from a whole dataset, respectively. Similarly, Es and Ew are the
error rates achieved by learning from a sample and by learning from a whole
dataset, respectively. And finally, K ∈ R, 0 ≤ K ≤ 1 is a balance parameter:
K = 0 means that we are interested in nothing else than the accuracy and,

61

62 CHAPTER 9. META-LEARNING FOR PARAMETER SETTING

Table 9.1: The impact of parameter X on the resulting time, model size and
error rate, shown on satimage dataset with c50tree as an initial learner and
c50boost as a final learner. The resting parameters are fixed to these values:
N = 2, I = 0.2, and F = 0.3. The expression e1/h1 denotes the original
(observed) ratio of easy to hard examples whereas the expression e2/h2 refers
to the resulting (computed) ratio. The following time values are listed: T1

– sampling time, T2 – training time, T3 – testing time, and T – total time.
Selective sampling with the setting X = 1.0 corresponds to random sampling,
therefore the sampling time is set to zero.

X e1/h1 e2/h2 T1 T2 T3 T Size Error

0.1 1389/348 495/1186 1.9 10.5 0.1 12.5 1346 9.88

0.2 1389/348 771/965 1.7 10.0 0.1 11.8 1259 10.46

0.3 1389/348 946/790 1.5 9.4 0.1 11.1 1176 10.57

0.4 1389/348 1067/668 1.4 9.0 0.1 10.5 1124 10.41

0.5 1389/348 1157/577 1.4 8.9 0.1 10.4 1094 10.69

0.6 1389/348 1225/505 1.3 8.3 0.1 9.7 1056 10.86

0.7 1389/348 1279/456 1.2 8.4 0.1 9.8 1025 11.31

0.8 1389/348 1322/410 1.2 8.1 0.1 9.4 1010 11.20

0.9 1389/348 1358/370 1.2 8.1 0.1 9.4 971 11.73

1.0 1389/348 1389/348 0.0 8.4 0.1 8.5 959 11.31

9.1. MOTIVATION 63

Table 9.2: A construction of meta-examples.

Tp Sp Ep N I F X K R(K, 22.3/139.3, 14.40/14.49)

0.56 72 0.152 2 0.2 0.3 0.1 0.0 0.994

0.56 72 0.152 2 0.2 0.3 0.1 0.1 0.911

0.56 72 0.152 2 0.2 0.3 0.1 0.2 0.827
...

...
...

...
...

...
...

...
...

on the contrary, K = 1 means that we regard the total time only. Of course,
we always want to minimize this ranking function’s value.

We have run the selective sampling on several datasets with different
settings to acquire a corresponding values of total time Ts and error rate
Es for a particular setting. Then, those parameter settings together with
the corresponding values of the ranking function R(K, Ts/Tw, Es/Ew) served
us as examples for learning a meta-model capable of predicting the right
setting for our selective sampling method, given the balance parameter and
some data characterizations. As the data characteristics we have exploited a
learning time Tp, a model size Sp, and an error rate Ep of a pilot classifier. The
pilot classifier was a classifier attained by learning with the initial algorithm
Ainit from a random sample of a small, fixed size (10 %).

Let’s assume that we have run the selective sampling with c50tree and
c50boost as an initial and a final learner, respectively, and with the setting
N = 2, I = 0.2, F = 0.3, X = 0.1, on adult dataset. Then, we get the follow-
ing performance: total time Ts = 22.3 and error rate Es = 14.40. Further, we
know that the total time and the error rate by learning from the whole adult

dataset is Tw = 139.3 and Ew = 14.49, respectively. Finally, we run c50tree

pilot learner on adult dataset to get its meta-characterizations. Results of
the pilot classifier are: time Tp = 0.56, size Sp = 72, error Ep = 15.2 %.
¿From these findings we can construct, for instance, the meta-examples for
parameter setting which are shown in Table 9.2.

In fact, the number of meta-examples which can be constructed this way
is not limited and depends just on the desired variability of the balance pa-
rameter K. As an algorithm for learning the meta-model we utilized the
system RT4.1 [96] which generates regression trees. The RT4.1 system pro-
vided us with a regression model capable of predicting the best (or close to
the best) setting by finding the minimal value of the ranking function for

64 CHAPTER 9. META-LEARNING FOR PARAMETER SETTING

some of the attributes given (namely the meta-attributes Tp, Sp, Ep and the
balance parameter K) and the others unknown (those were the parameters
of selective sampling: N , I, F , X).

9.2 Experimental Results of Meta-Learning

Table 9.3 presents the results of our regression meta-model. Ranking Devi-
ation is a relative deviation of the predicted ranked minimum from the real
ranked minimum (an average ratio of ratios), Hit Rate is a percentage of
those settings which were predicted exactly right, Time Deviation is a rela-
tive deviation of the total time of the predicted setting from the total time
of the best ranked setting and, similarly, Error Deviation is a relative devia-
tion of the error rate of the predicted setting from the error rate of the best
ranked setting. The Total Dev. is negative and Error Dev. is positive, which
means that our regression model tends to predict settings resulting in faster
processing, but worse error rate. All numbers were computed from leave-
-one-out validation on six different datasets: adult, letter, optical, pendigits,
quisclas, satimage.

As we can see in Table 9.3, the meta-attributes Tp, Sp, Ep made the
parameter prediction surprisingly worse. We obtained more accurate meta-
-model (especially for c50boost) by not using those meta-attributes. This
is probably due to the fact that the ranking function has a very similiar
curve for different datasets and thus the meta-characteristics do not bring
additional information – they mislead the regression model instead. On the
other hand, it should be noted that we have learned our regression model
from relatively small amount of datasets. In fact, the training set in each
fold of the leave-one-out validation consisted of five datasets. However, the
presence of meta-attributes in the case of c50rules final algorithm led to a
significant increase in hit rate, whereas the ranking deviation stayed at almost
the same level. Therefore, we suppose that exploitation of meta-attributes
promising.

9.3 Conclusion

We have presented a new parametric variant of committee-based selective
sampling and a meta-learning technique for setting its parameters. The se-

9.3. CONCLUSION 65

Table 9.3: The results of meta-learning for selective sampling with c50tree

as an initial algorithm and c50boost and c50rules as final algorithms.

Algorithm Meta Att. Ranking Dev. Hit Rate Time Dev. Error Dev.

c50boost absent 7.1257% 27.3% -0.5651% 9.7485%

c50boost present 9.9497% 19.7% -6.9764% 13.5287%

c50rules absent 5.9469% 21.2% -3.1301% 7.3770%

c50rules present 5.9957% 30.3% -10.6430% 8.0315%

lective sampling has been proven useful in reducing the learning time while
keeping the accuracy at a better level than random selection does. The main
contribution of the meta-learning is that its ranking error is fairly low (7.13%
for c50boost and 5.95% for c50rules) which is sufficient for a reliable and im-
mediate prediction of the right parameters setting for selective sampling.

Part V

Concluding remarks

66

Bibliography

[1] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth
First Generation of Long Patterns. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 108–118. ACM Press, 2000.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining As-
sociation Rules between Sets of Items in Large Databases. In Peter
Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pages
207–216, Washington, D.C., 26–28 1993.

[3] Mohammed Javeed aki. Generating non-redundant association rules.
In Proceedings of ACM SIGKDD Conf., 2000.

[4] E. Alphonse and C. Rouveirol. Selective propositionalization for rela-
tional learning. In Jan M. Zytkow and Jan Rauch, editors, Principles
of Data Mining and Knowledge Discovery, Third European Conference,
PKDD ’99, Prague, Czech Republic, September 15-18, 1999, Proceed-
ings, volume 1704 of Lecture Notes in Computer Science, pages 271–
276. Springer, 1999.

[5] E. Alphonse and C. Rouveirol. Lazy propositionalization for relational
learning. In W. Horn, editor, Proc. of the 14th European Conference on
Artificial Intelligence (ECAI’2000), pages 256–260. IOS Press, 2000.

[6] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–
342, 1988.

[7] Wnek J. Bala J.W., Michalski R.S. The principal axes method for con-
structive induction. In Sleeman D. and Edwards P., editors, Machine

67

68 BIBLIOGRAPHY

Learning: Proceedings of the Ninth International Workshop (ML92),
pages 20–29. Morgan Kaufmann, Los Altos/Palo Alto/San Francisco,
1992.

[8] Roberto J. Bayardo, Jr. Brute-Force Mining of High-Confidence Clas-
sification Rules. In Proceedings of the Third Int’l Conf. on Knowledge
Discovery and Data Mining, KDD’97, pages 123–126, 1997.

[9] Roberto J. Bayardo, Jr. Efficiently Mining Long Patterns from
Databases. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pages 85–93. ACM Press, 1998.

[10] C. L. Blake and C. J. Merz. UCI repository of machine learning
databases, 1998.

[11] J. Blaťák, L. Popeĺınský, and M. Nepil. RAP: Framework for Mining
Frequent Datalog Patterns. In Proceedings of the first KDID workshop
at ECML/PKDD 2002, pages 85–86, 2002.

[12] J. Blaťák, L. Popeĺınský, and M. Nepil. ??? In Works in Progress,
pages 1–2, 2003.

[13] Jan Blaťák. Časté vzory a předzpracováńı dat. Technical report,
Fakulta informatiky, Masarykova univerzita v Brně, December 2002.

[14] Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan
Ramon, and Henk Vandecasteele. Executing query packs in ILP. Lec-
ture Notes in Computer Science, 1866:60+, 2000.

[15] Michalski R.S. Bloedorn E., Wnek J. Multistrategy constructive in-
duction: Aq17-mci. In Michalski R.S. and Tecuci G., editors, Proceed-
ings of the Second International Workshop on Multistrategy Learning
(MSL-93), pages 188–206. Harpers Ferry, W.VA., 1993.

[16] Tom Brijs and Koen Vanhoof. Cost Sensitive Discretization of Numeric
Attributes. In Principles of Data Mining and Knowledge Discovery,
pages 102–110, 1998.

[17] Doug Burdick, Manuel Calimlim, and J. E. Gehrke. MAFIA: A Maxi-
mal Frequent Itemset Algorithm for Transactional Databases. In Pro-
ceedings of the 17th International Conference on Data Engineering,
April 2001.

BIBLIOGRAPHY 69

[18] Burdick D. and Calimlim M.and Gehrke J. Mafia: a maximal frequent
itemset algorithm for transactional databases. In Proceedings of Int.
Conf. on Data Engineering, April 2001.

[19] Ido Dagan and Sean P. Engelson. Selective sampling in natural lan-
guage learning. In Proceedings of the Workshop on New Approaches
to Learning for Natural Language Processing at IJCAI 1995, Montreal,
Canada, 1995. Morgan Kaufmann.

[20] M. Dash and H. Liu. Feature selection for classification. Intelligent
Data Analysis, 1(3), 1997.

[21] L. Dehaspe and H. Toivonen. Frequent query discovery: a unifying ilp
approach to association rule mining, 1998.

[22] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent sub-
structures in chemical compounds. In R. Agrawal, P. Stolorz, and
G. Piatetsky-Shapiro, editors, 4th International Conference on Knowl-
edge Discovery and Data Mi ning, pages 30–36. AAAI Press., 1998.

[23] Luc Dehaspe and Hannu Toivonen. Discovery of Relational Association
Rules. In Sašo Džeroski and Nada Lavrač, editors, Relational Data
Mining, pages 189–212. Springer-Verlag, 2001.

[24] Mukund Deshpande and George Karypis. Using Conjunction of At-
tribute Values for Classification.

[25] Guozhu Dong and Jinyan Li. Efficient Mining of Emerging Patterns:
Discovering Trends and Differences. In Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 43–52. ACM Press, 1999.

[26] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. CAEP:
Classification by aggregating emerging patterns. In Discovery Science,
pages 30–42, 1999.

[27] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and
Unsupervised Discretization of Continuous Features. In International
Conference on Machine Learning, pages 194–202, 1995.

70 BIBLIOGRAPHY

[28] Z. Duszak and W. W. Koczkodaj. Principal components and the ac-
curacy of machine learning. In DEXA, pages 421–426, 1992.

[29] Z. Duszak and W.W. Koczkodaj. Using principal component transfor-
mation in machine learning. In Proceedings of ICSRIC, Baden-Baden
Germany, pages 125–129, 1994.

[30] S. Džeroski, L. De Raedt, and H. Blockeel. Relational reinforcement
learning. In D. Page, editor, Proceedings of the 8th International Con-
ference on Inductive Logic Programming, volume 1446 of Lecture Notes
in Artificial Intelligence, pages 11–22. Springer-Verlag, 1998.

[31] Sašo Džeroski. Inductive Logic Programming and Knowledge Discovery
in Databases. In Fayyad, U. and Piatetsky-Shapiro, G. and Smyth, P.
and Uthurusamy, R., editor, Advances in Knowledge Discovery and
Data Mining, pages 118–152. MIT Press, 1996.

[32] Sašo Džeroski and Nada Lavrač, editors. Relational Data Mining.
Springer-Verlag, Berlin, September 2001.

[33] A. Famili, Wei-Min Shen, Richard Weber, and Evangelos Simoudis.
Data Preprocessing and Intelligent Data Analysis. Intelligent Data
Analysis Journal, 1(1), 1997.

[34] Usama M. Fayyad and Keki B. Irani. On the Handling of Continuous-
Valued Attributes in Decision Tree Generation. Machine Learning,
8(1):87–102, 1992.

[35] Usama M. Fayyad and Keki B. Irani. Multi-Interval Discretization
of Continuous-Valued Attributes for Classification Learning. In Pro-
ceegings of the 13th International Joint Conference of Artificial Intel-
ligence, pages 1022–1027, Chambery, France, 1993.

[36] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
From Data Mining to Knowledge Discovery in Databases. AI Magazine,
17(3):37–54, 1996.

[37] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
Knowledge Discovery and Data Mining: Towards a Unifying Frame-
work. In Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining (KDD-96), page 82, 1996.

BIBLIOGRAPHY 71

[38] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby.
Selective sampling using the query by committee algorithm. Machine
Learning, 28(2):133–168, 1997.

[39] Dragan Gamberger and Nada Lavrac. Filtering noisy instances and
outliers. In H. Liu and H. Motoda, editors, Instance Selection and
Construction for Data Mining, pages 375–394. Kluwer Academic Pub-
lishers, Boston/Dordrecht/London, February 2001.

[40] Karam Gouda and Mohammed Javeed Zaki. Efficiently Mining Maxi-
mal Frequent Itemsets. In ICDM, pages 163–170, 2001.

[41] Dimitrios Gunopulos, Heikki Mannila, and Sanjeev Saluja. Discover-
ing all Most Specific Sentences by Randomized Algorithms. Research
Report MPI-I-96-1-023, Max-Planck-Institut für Informatik, Im Stadt-
wald, D-66123 Saarbrücken, Germany, September 1996.

[42] Dimitrios Gunopulos, Heikki Mannila, and Sanjeev Saluja. Discovering
all Most Specific Sentences by Randomized Algorithms. In ICDT, pages
215–229, 1997.

[43] J. Han and M. Kamber. Data Mining. Concepts and Techniques. Mor-
gan Kaufmann Publishers, 2001.

[44] Kaoru Hirota and Witold Pedrycz. Implicitly-supervised learning and
its application to fuzzy pattern classifiers. Information Sciences, 106(1-
2):71–85, 1998.

[45] L. Hirschman and R. Gaizauskas. Natural language question answer-
ing: The view from here. Natural Language Engineering, 7(4):275–300,
December 2001 2001.

[46] H.Manilla and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining nad Knowledge Discovery Journal,
1(4):319–342, 1987.

[47] Gama J. Probabilistic linear tree. In D. Fisher, editor, Proceedings
of the 14th Int. Conf. on Machine Learning (ICML’97). Morgan Kauf-
man, 1997.

72 BIBLIOGRAPHY

[48] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant Features and
the Subset Selection Problem. In International Conference on Machine
Learning, pages 121–129, 1994.

[49] Ross D. King, Ashwin Srinivasan, and Luc DeHaspe. Warmr: A data
mining tool for chemical data. Journal of Computer-Aided Molecular
Design, 15(2):173–181, 2001.

[50] Ron Kohavi and George H. John. Wrappers for Feature Subset Selec-
tion. Artificial Intelligence, 97(1-2):273–324, 1997.

[51] P. Kotsek and J. Zendulka. Describing the data mining process with
dmsl. In Advances in Database and Information Systems. Vol. 2: Re-
search Communications., pages 131–140. STUBA, Bratislava, 2002.

[52] S. Kramer, B. Pfahringer, and C. Helma. Stochastic propositional-
ization of non-determinate background knowledge. In D. Page, edi-
tor, Proceedings of the 8th International Conference on Inductive Logic
Programming, volume 1446 of Lecture Notes in Artificial Intelligence,
pages 80–94. Springer-Verlag, 1998.

[53] Stefan Kramer and Luc De Raedt. Feature construction with ver-
sion spaces for biochemical applications. In Carla E. Brodley and An-
drea Pohoreckyj Danyluk, editors, Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML 2001), pages 258–
265. Morgan Kaufmann, 2001.

[54] Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization
approaches to relational data mining. In Sašo Džeroski and Nada
Lavrač, editors, Relational Data Mining, pages 262–291. Springer-
Verlag, September 2001.

[55] Nada Lavrač, Filip Železný, and Peter Flach. Rsd: Relational subgroup
discovery through first-order feature construction. In Stan Matwin
and Claude Sammut, editors, The Twelfth International Conference
on Inductive Logic Programming ILP 2002, July 2002.

[56] David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling
for supervised learning. In William W. Cohen and Haym Hirsh, edi-
tors, Proceedings of 11th International Conference on Machine Learn-
ing, pages 148–156. Morgan Kaufmann, 1994.

BIBLIOGRAPHY 73

[57] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Making use
of the most expressive jumping emerging patterns for classification.
In Takao Terano, Huan Liu, and Arbee L. P. Chen, editors, PADKK
2000, volume 1805 of Lecture Notes in Computer Science, pages 220–
232. Springer-Verlag, 2000.

[58] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Making use
of the most expressive jumping emerging patterns for classification. In
Takao Terano, Huan Liu, and Arbee L. P. Chen, editors, Knowledge
Discovery and Data Mining, Current Issues and New Applications, 4th
Pacific-Asia Conference, PADKK 2000, Kyoto, Japan, April 18-20,
2000, Proceedings, volume 1805 of Lecture Notes in Computer Science,
pages 220–232. Springer-Verlag, 2000.

[59] Jinyan Li, Kotagiri Ramamohanarao, and Guozhu Dong. The space
of jumping emerging patterns and its incremental maintenance algo-
rithms. In Pat Langley, editor, Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML 2000), Stanford Uni-
versity, Standord, CA, USA, June 29 - July 2, 2000, pages 551–558.
Morgan Kaufmann, 2000.

[60] Jinyan Li and Limsoon Wong. Geography of differences between two
classes of data. In Tapio Elomaa, Heikki Mannila, and Hannu Toivo-
nen, editors, Principles of Data Mining and Knowledge Discovery, 6th
European Conference, PKDD 2002, Helsinki, Finland, August 19-23,
2002, Proceedings, volume 2431 of Lecture Notes in Computer Science,
pages 325–337. Springer, 2002.

[61] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and
association rule mining. In Knowledge Discovery and Data Mining,
pages 80–86, 1998.

[62] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An En-
abling Technique. Data Mining and Knowledge Discovery, 6(4):393–
423, Oct 2002.

[63] Heikki Mannila and Hannu Toivonen. Levelwise Search and Borders
of Theories in Knowledge Discovery. Data Mining and Knowledge Dis-
covery, 1(3):241–258, 1997.

74 BIBLIOGRAPHY

[64] MetaL Project.

[65] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[66] S. Muggleton and L. De Raedt. Inductive logic programming: Theory
and methods. Journal of Logic Programming, 19/20:629–679, 1994.

[67] F. Murtagh and A. Heck. Multivariate Data Analysis. Kluwer Aca-
demic, Dordrecht, 1987.

[68] M. Nepil and L. Popelnsk. Part-of-speech tagging by means of ilp and
active learning. In In Proc. of ECML/PKDD2001 Ws on Active Learn-
ing, Database Sampling, Experimental Design. University of Freiburg,
Germany, 2001.

[69] Tim Oates and David Jensen. Large datasets lead to overly complex
models: An explanation and a solution. In Proceedings of The Fourth
International Conference on Knowledge Discovery and Data Mining,
pages 294–298, 1998.

[70] Claudia Perlich and Foster Provost. Aggregation-based feature inven-
tion and relational concept classes. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 167–176. ACM Press, 2003.

[71] L. Popeĺınský. Data Mining: Hledáńı znalost́ı v databáźıch. In 15.
ročńık databázové konference DATASEM’95, pages 211–219, ı́jen 1995.

[72] L. Popeĺınský. Quo vadis, data mining? In 17. ročńık databázové
konference DATASEM’97 Brno, pages 87–94, ı́jen 1997.

[73] L. Popeĺınský. Combining the principal components method differ-
ent learning algorithms. In C Giraud-Carier et al., editor, Proceedings
of ECML/PKDD2001 Workshop on Integrating Aspects of Data Min-
ing, Decision Support and Meta-Learning, IDDM-01, pages 119–128,
Freiburg, Germany, August 2001.

[74] L. Popeĺınský. Combining the Principal Components Method with
Different Learning Algorithms. In Proc. of ECML/PKDD2001 IDDM
Workshop (Integrating Aspects of Data Mining, Decision Support and
Meta-Learning), Freiburg, 2001.

BIBLIOGRAPHY 75

[75] L. Popeĺınský and P. B. Brazdil. Combining the principal components
method with decision tree learning. In R. S Michalski and P. B. Brazdil,
editors, Proceedings of Multistrategy Learning Workshop MSL-2000,
pages 105–114, Guimarães, Portugal, June 2000. LIACC UP Porto.

[76] L. Popeĺınský and P. B. Brazdil. The principal components method
as a pre-processing stage for decision tree learning. In P. Brazdil
and A. Jorge, editors, Proceedings of PKDD2000 Workshop on Data
Mining, Decision Support, Meta-learning and ILP, DDMI 2000, Lyon,
France, September 2000.

[77] PTE2 Challenge.

[78] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Pub-
lishers, 1999.

[79] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[80] J. Ross Quinlan. Improved Use of Continuous Attributes in C4.5. Jour-
nal of Artificial Intelligence Research, 4:77–90, 1996.

[81] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, 1996.

[82] Bayrado R.J. Efficienlty mining long patterns from databases. In
Proceedings of ACM SIGMOD Conference, June 1998.

[83] Gunopulos D.and Manilla H.and Saluja S. Discovering all the most
specific sentences by randomized algorithm. In Proceedings of Int. Conf.
on Database Theory IDBT, January 1997.

[84] G. Sapporta. Some simple rules for interpreting outputs of principal
components and correspondence analysis. In In: Bacelar-Nicolau H.,
Nicolau F.C., Janssen J.(eds.): Proceedings of 9th Intl.Symp. on Ap-
plied Stochastic Models and Data Analysis ASMDA-99, University of
Lisbon, Portugal, 1999.

[85] R. Sedláček and P. Smrž. Automatic processing of czech inflectional
and derivative morphology. In Proceedings of the Fourth International
Conference TSD 2001, 2001.

76 BIBLIOGRAPHY

[86] Masakazu Seno and George Karypis. LPMiner: An Algorithm for Find-
ing Frequent Itemsets Using Length-Decreasing Support Constraint. In
1st IEEE Conference on Data Mining, 2001.

[87] SGI. MLC++: Machine Learning Library in C++.

[88] SICStus Prolog.

[89] A. Srinivasan. A study of two sampling methods for analysing large
datasets with ILP. Data Mining and Knowledge Discovery, 3(1):95–
123, 1999.

[90] A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg. Theo-
ries for mutagenecity: A study of first-order and feature based induci-
ton. Technical report, PRG-TR-8-95 Oxford University Computing
Laboratory, 1995.

[91] S Srinivasan, R.D. King, and M. Sternberg. Theories for mutagenicity:
a study of first-order and feature based induction. Artifical Intelligence,
85(1-2):277–299, 1996.

[92] D.J. Stracuzzi and P.E. Utgoff. Feature compilation. Technical report,
TR-8-95 Amherst, MA: University of Massachusetts, Computer Science
Department., 2000.

[93] Masahiro Terabe, Osamu Katai, Tetsuo Sawaragi, Takashi Washio, and
Hiroshi Motoda. Attribute Generation Based on Association Rules.
Knowledge and Information Systems, 4, July 2002.

[94] Cynthia A. Thompson, Mary Elaine Califf, and Raymond J. Mooney.
Active learning for natural language parsing and information extrac-
tion. In Proceedings of 16th International Conference on Machine
Learning, ICML 1999, pages 406–414, Bled, Slovenia, 1999. Morgan
Kaufmann.

[95] M. Tomita. Efficient parsing for natural language. Kluwer Academic
Publishers, 1986.

[96] L. Torgo. Inductive Learning of Tree-based Regression Models. PhD
thesis, Faculty of Science University of Porto, 1999.

BIBLIOGRAPHY 77

[97] O. tpnkov, P. Aubrecht, Z. Kouba, and P. Mikovsk. Preprocessing for
data mining and decision support. In To appear in Data Mining and
Decision Support:Integration and Collaboration. Kluwer, 2003.

[98] Paul Utgoff. Feature construction for large domains. Invited talk at
ICML-2000, Stanford, CA., July 2000.

[99] Agrawal R.and Aggarwal C.and Prasad V. Depth first generation of
long patterns. In Proceedings of ACM SIGMOD Conference, August
2000.

[100] E. Žačková. Parciálńı syntakická analýza češtiny. PhD thesis, Masaryk
University, 2002.

[101] E. Žáčková, M. Nepil, and L. Popeĺınský. Automatic tagging of com-
pound verb groups in Czech corpora. In Text, Speech and Dialogue:
Proceedings of TSD’2000 Workshop, LNAI, 2000.

[102] Zijian Zhang. Constructing conjunctive attributes using production
rules. Journal of Research and Practice in Information Technology,
32(1):13–38, 2000.

