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Abstract The field of meta-learning has as one of its primary goals the understanding of 
the interaction between the mechanism of learning and the concrete contexts in 
which that mechanism is applicable. The field has seen a continuous growth in 
the past years with interesting new developments in the construction of practical 
model-selection assistants, task-adaptive learners, and a solid conceptual frame- 
work. In this chapter we give an overview of different techniques necessary to 
build meta-learning systems. We begin by describing an idealized meta-learning 
architecture comprising a variety of relevant component techniques. We then 
look at how each technique has been studied and implemented by previous re- 
search. In addition we show how meta-learning has already been identified as an 
important component in real-world applications. 

Keywords: Meta-learning 

1. Introduction 
We are used to thinking of a learning system as a rational agent capable 

of adapting to a specific environment by exploiting knowledge gained through 
experience; encountering multiple and diverse scenarios sharpens the ability of 
the learning system to predict the effect produced from selecting a particular 
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course of action. In this case, learning is made manifest because the quality 
of the predictions normally improves with an increasing number of scenarios 
or examples. Nevertheless, if the predictive mechanism were to start afresh on 
different tasks, the learning system would find itself at a considerable disadvan- 
tage; learning systems capable of modifying their own predictive mechanism 
would soon outperform our base learner by being able to change their learning 
strategy according to the characteristics of the task under analysis. 

Meta-learning differs from base-learning in the scope of the level of adap- 
tation; whereas learning at the base-level is based on accumulating experience 
on a specific learning task (e.g., credit rating, medical diagnosis, mine-rock 
discrimination, fraud detection, etc.), learning at the meta-level is based on ac- 
cumulating experience on the performance of multiple applications of a learn- 
ing system. If a base-learner fails to perform efficiently, one would expect the 
learning mechanism itself to adapt in case the same task is presented again. 
Meta-learning is then important in understanding the interaction between the 
mechanism of learning and the concrete contexts in which that mechanism is 
applicable. Briefly stated, the field of meta-learning is focused on the relation 
between tasks or domains and learning strategies. In that sense, by learning or 
explaining what causes a learning system to be successful or not on a particu- 
lar task or domain, we go beyond the goal of producing more accurate learners 
to the additional goal of understanding the conditions (e.g., types of example 
distributions) under which a learning strategy is most appropriate. 

From a practical stance, meta-learning can solve important problems in the 
application of machine learning and Data Mining tools, particularly in the area 
of classification and regression. First, the successful use of these tools outside 
the boundaries of research (e.g., industry, commerce, government) is condi- 
tioned on the appropriate selection of a suitable predictive model (or combi- 
nations of models) according to the domain of application. Without any kind 
of assistance, model selection and combination can turn into stumbling blocks 
to the end-user who wishes to access the technology more directly and cost- 
effectively. End-users often lack not only the expertise necessary to select 
a suitable model, but also the availability of many models to proceed on a 
trial-and-error basis (e.g., by measuring accuracy via some re-sampling tech- 
nique such as n-fold cross-validation). A solution to this problem is attainable 
through the construction of meta-learning systems. These systems can pro- 
vide automatic and systematic user guidance by mapping a particular task to a 
suitable model (or combination of models). 

Second, a problem commonly observed in the practical use of ML and DM 
tools is how to profit from the repetitive use of a predictive model over similar 
tasks. The successful application of models in real-world scenarios requires a 
continuous adaptation to new needs. Rather than starting afresh on new tasks, 
we expect the learning mechanism itself to re-learn, taking into account pre- 
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vious experience (Thrun, 1998; Pratt et al., 1991; Caruana, 1997; Vilalta and 
Drissi, 2002). Again, meta-learning systems can help control the process of 
exploiting cumulative expertise by searching for patterns across tasks. 

Our goal in this chapter is to give an overview of different techniques nec- 
essary to build meta-learning systems. To impose some structure, we begin 
by describing an idealized meta-learning architecture comprising a variety of 
relevant component techniques. We then look at how each technique has been 
studied and implemented by previous research. We hope that by proceeding 
in this way the reader can not only learn from past work, but in addition gain 
some insight on how to construct meta-learning systems. 

We also hope to show how recent advances in meta-learning are increas- 
ingly filling the gaps in the construction of practical model-selection assistants 
and task-adaptive learners, as well as in the development of a solid conceptual 
framework (Baxter, 1998; Baxter, 2000; Giraud-Carrier et al., 2004). 

This chapter is organized as follows. In the next section we illustrate an ide- 
alized meta-learning architecture and detail on its constituent parts. In Section 
3 we describe previous research in meta-learning and its relation to our archi- 
tecture. Section 4 describes a meta-learning tool that has been instrumental as 
a decision support tool in real applications. Lastly, section 5 discusses future 
directions and provides our conclusions. 

2. A Meta-Learning Architecture 
In this section we provide a general view of a software architecture that will 

be used as a reference to describe many of the principles and current techniques 
in meta-learning. Though not every technique in meta-learning fits into this 
architecture, such a general view helps us understand the challenges we need 
to overcome before we can turn the technology into a set of useful and practical 
tools. 

2.1 Knowledge-Acquisition Mode 
To begin, we propose a meta-learning system that divides into two modes 

of operation. During the first mode, also known as the knowledge-acquisition 
mode, the main goal is to learn about the learning process itself. Figure 33.1 il- 
lustrates this mode of operation. We assume the input to the system is made of 
more than one dataset of examples (e.g., more than one set of pairs of feature 
vectors and classes; Figure 33.1A). Upon arrival of each dataset, the meta- 
learning system invokes a component responsible for extracting dataset char- 
acteristics or meta-features (Figure 33.1B). The goal of this component is to 
gather information that transcends the particular domain of application. We 
look for information that can be used to generalize to other example distribu- 
tions. Section 3.1 details current research pointing in this direction. 
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During the knowledge acquisition mode, the learning technique (Figure 
33.1C) does not exploit knowledge across different datasets or tasks. Each 
dataset is considered independently of the rest; the output to the system is a 
learning strategy (e.g., a classifier or combination of classifiers, Figure 33. ID). 
Statistics derived from the output model or its performance (Figure 33.1E) may 
also serve as a form of characterizing the task under analysis (Sections 3.1 and 
3.1.1). 

Information derived from the meta-feature generator and the performance 
evaluation module can be combined into a meta-knowledge base (Figure 
33.1F). This knowledge base is the main result of the knowledge-acquisition 
phase; it reflects experience accumulated across different tasks. Meta-learning 
is tightly linked to the process of acquiring and exploiting meta-knowledge. 
One can even say that advances in the field of meta-learning hinge around one 
specific question: how can we acquire and exploit knowledge about learning 
systems (i.e., meta-knowledge) to understand and improve their performance? 
As we describe current research in meta-learning we will be pointing out to 
different forms of meta-knowledge. 

2.2 Advisory Mode 
The efficiency of the meta-learner increases as it accumulates meta- 

knowledge. We assume the lack of experience at the beginning of the learner's 
life compels the meta-learner to use one or more learning strategies without 
a clear preference for one of them; experimenting with many different strate- 
gies becomes time consuming. However, as more training sets have been ex- 
amined, we expect the expertise of the meta-learner to dominate in deciding 
which learning strategy best suits the characteristics of the training set. 

In the advisory mode, meta-knowledge acquired in the exploratory mode is 
used to configure the learning system in a manner that exploits the character- 
istics of the new data distribution. Meta-features extracted from the dataset 
(Figure 33.2B) are matched with the meta-knowledge base (Figure 33.2F) to 
produce a recommendation regarding the best available learning strategy. At 
this point we move away from the use of static base learners to the ability to 
do model selection or combining base learners (Figure 33.2C). 

Two observations are worth considering at this point. First, the nature of 
the match between the set of meta-features and the meta-knowledge base can 
have several interpretations. The traditional view poses this problem as a learn- 
ing problem itself where a meta-learner is invoked to output an approximating 
function mapping meta-features to learning strategies (e.g., learning model). 
This view is problematic as the meta-learner is now a learning system subject 
to improvement through meta-learning (Schmidhuber, 1995; Vilalta, 2001). 
Second, the matching process is not intended to modify our set of available 
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learning techniques, but simply enables us to select one or more strategies that 
seem effective given the characteristics of the dataset under analysis. 

The final classifier (or combination of classifiers; Figure 33.2D) is selected 
based not only on its generalization performance over the current dataset, but 
also on information derived from exploiting past experience. In this case, the 
system has moved from using a single learning strategy to the ability of select- 
ing one dynamically from among a variety of different strategies. 

Figure 33.2. The Advisory Mode 
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We will show how the constituent components conforming our two-mode 
meta-learning architecture can be studied and utilized through a variety of dif- 
ferent methodologies: 

1. The characterization of datasets can be performed under a variety of 
statistical, information-theoretic, and model-based approaches (Section 
3.1). 

2. Matching meta-features to predictive model(s) can be used for model 
selection or model ranking (Section 3.1.1). 

3. Information collected from the performance of a set of learning algo- 
rithms at the base level can be combined through a meta-learner (Section 
3.1.2). 

4. Within the learning-to-learn paradigm, a continuous learner can extract 
knowledge across domains or tasks to accelerate the rate of learning con- 
vergence (Section 3.1.3). 

5. The learning strategy can be modified in an attempt to shift this strategy 
dynamically (Section 3.2). A meta-learner in effect explores not only the 
space of hypotheses within a fixed family set, but the space of families 
of hypotheses. 

3. Techniques in Meta-Learning 
In this section we describe how previous research has tackled the implemen- 

tation and application of various methodologies in meta-learning. 

3.1 Dataset Characterization 
First, a critical component of any meta-learning system is in charge of ex- 

tracting relevant information about the task under analysis (Figure 33.1B). The 
central idea is that high-quality dataset characteristics or meta-features provide 
some information to differentiate the performance of a set of given learning 
strategies. We describe a representative set of techniques in this area. 

3.1.1 Statistical and Information-Theoretic Characterization. 
Much work in dataset characterization has concentrated on extracting statisti- 
cal and information-theoretic parameters estimated from the training set (Aha, 
1992; Michie et al., 1994; Gama and Brazdil, 1995; Brazdil, 1998) (Engels and 
Theusinger, 1998; Sohn, 1999). Measures include number of classes, number 
of features, ratio of examples to features, degree of correlation between fea- 
tures and target concept, average class entropy and class-conditional entropy, 



738 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

skewness, kurtosis, signal to noise ratio, etc. This work has produced a num- 
ber of research projects with positive and tangible results (e.g., ESPRIT Statlog 
and METAL). 

3.1.2 Model-Based Characterization. In addition to statistical mea- 
sures, a different form of dataset characterization exploits properties of the 
induced hypothesis as a form of representing the dataset itself. This has sev- 
eral advantages: 1) the dataset is summarized into a data structure that can 
embed the complexity and performance of the induced hypothesis (and thus 
is not limited to the example distribution); 2) the resulting representation can 
serve as a basis to explain the reasons behind the performance of the learn- 
ing algorithm. As an example, one can build a decision tree from a dataset 
and collect properties of the tree (e.g., nodes per feature, maximum tree depth, 
shape, tree imbalance, etc.), as a means to characterize the dataset (Bensusan, 
1998; Bensusan and Giraud-Carrier, 2000b; Hilario and Kalousis, 2000; Peng 
et al., 1995). 

3.1.3 Landmarking. Another source of characterization falls within 
the concept of landmarking (Bensusan and Giraud-Carrier, 2000a; Pfahringer 
et al., 2000). The idea is to exploit information obtained from the performance 
of a set of simple learners (i.e., learning systems with low capacity) that ex- 
hibit significant differences in their learning mechanism. The accuracy (or 
error rate) of these landmarkers is used to characterize a dataset. The goal is 
to identify areas in the input space where each of the simple learners can be 
regarded as an expert. This meta-knowledge can be subsequently exploited to 
produce more accurate learners. 

Another idea related to landmarking is to exploit information obtained on 
simplified versions of the data (e.g. small samples). Accuracy results on these 
samples serve to characterise individual datasets and are referred to as sam- 
pling landmarks. This information is subsequently used to select a learning 
algorithm (Furnkranz, 1997; Soares et al., 2001). 

3.2 Mapping Datasets to Predictive Models 
An important and practical use of meta-learning is the construction of an 

engine that maps an input space composed of datasets or applications to an 
output space composed of predictive models. Criteria such as accuracy, stor- 
age space, and running time can be used for performance assessment (Giraud- 
Carrier, 1998). Several approaches have been developed in this area. 

3.2.1 Hand-Crafting Meta Rules. First, using human expertise and 
empirical evidence, a number of meta-rules matching domain characteristics 
with learning techniques may be crafted manually (Brodley, 1993; Brodley, 
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1994). For example, in decision tree learning, a heuristic rule can be used 
to switch from univariate tests to linear tests if there is a need to construct 
non-orthogonal partitions over the input space. Crafting rules manually has 
the disadvantage of failing to identify many important rules. As a result most 
research has focused on learning these meta-rules automatically as explained 
next. 

3.2.2 Learning at the Meta-Level. The characterization of a dataset 
is a form of meta-knowledge (Figure 33.1F) that is commonly embedded in a 
meta-dataset as follows. After learning from several tasks, one can construct a 
meta-dataset where each element pair is made up of the characterization of a 
dataset (meta-feature vector) and a class label corresponding to the model with 
best performance on that dataset. A learning algorithm can then be applied 
to this well-defined learning task to induce a hypothesis mapping datasets to 
predictive models. 

As in base-learning, the hand-crafting and the learning approach can be 
combined; in this case the hand-crafted rules can serve as background knowl- 
edge to the meta-learner. 

3.2.3 Mapping Query Examples to Models. Instead of mapping a 
task or dataset to a predictive model, a different approach consists of selecting 
a model for each individual query example. The idea is similar to the nearest- 
neighbour approach: select the model displaying best performance around the 
neighbourhood of the query example (Merz, 1995A; Merz, 1995B). Model 
selection is done according to best-accuracy performance using a re-sampling 
technique (e.g., cross-validation). 

A variation to the approach above is to look at the neighbourhood of a query 
example in the space of meta-features. When a new training set arrives, the 
k-nearest neighbour instances (i.e., datasets) around the query example (i.e., 
query dataset) are gathered to select the model with best average performance 
(Keller et al., 2000). 

3.2.4 Ranking. Rather than mapping a dataset to a single predictive 
model, one may also produce a ranking over a set of different models. One 
can argue that such rankings are more flexible and informative for users. In a 
practical scenario, users should not be limited to a single kind of advice; this is 
important if the suggested final model turns unsatisfactory. Rankings provide 
alternative solutions to users who may wish to incorporate their own exper- 
tise or any other criterion (e.g., financial constraints) on their decision-making 
process. Multiple approaches have been suggested attacking the problem of 
ranking predictive models (Gama and Brazdil, 1995; Nakhaeizadeh et al., 
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2002; Berrer et al., 2000; Brazdil and Soares, 2000; Keller et al., 2000; Soares 
and Brazdil, 2000; Brazdil and Soares, 2003). 

3.3 Learning from Base-Learners 
Another approach to meta-learning consists of learning from base learners. 

The idea is to make explicit use of information collected from the performance 
a set of learning algorithms at the base level; such information is then incorpo- 
rated into the meta-learning process. 

3.3.1 Stacked Generalization. Meta-knowledge (Figure 33.1F) can 
incorporate predictions of base learners, a process known as stacked general- 
ization (Wolpert, 1997). The process works under a layered architecture as 
follows. Each of a set of base-classifiers is trained on a dataset; the original 
feature representation is then extended to include the predictions of these clas- 
sifiers. Successive layers receive as input the predictions of the immediately 
preceding layer and the output is passed on to the next layer. A single classifier 
at the topmost level produces the final prediction. Most research in this area 
focuses on a two-layer architecture (Wolpert, 1997; Breiman, 1996; Chan and 
Stolfo, 1998; Ting, 1994). 

Stacked generalization is considered a form of meta-learning because the 
transformation of the training set conveys information about the predictions 
of the base-learners (i.e., conveys meta-knowledge). Research in this area in- 
vestigates what base-learners and meta-learners produce best empirical results 
(Chan and Stolfo, 1993; Chan and Stolfo, 1996; Gama and Brazdil, 2000); how 
to represent class predictions (class labels versus class-posterior probabilities; 
('Iing, 1994); what higher-level learners can be invoked (Gama and Brazdil, 
2000; Dzeroski, 2002); and what are novel definitions of meta-features (Brod- 
ley, 1996; Ali and Pazzani, 1995). 

3.3.2 Boosting. A popular approach to combining base learners is 
called boosting (Freund and Schapire, 1995; Friedman, 1997; Hastie et al., 
2001). The basic idea is to generate a set of base learners by generating vari- 
ants of the training set. Each variant is generated by sampling with replacement 
under a weighted distribution. This distribution is modified for every new vari- 
ant by giving more attention to those examples incorrectly classified by the 
most recent hypothesis. 

Boosting is considered a form of meta-learning because it takes into con- 
sideration the predictions of each hypothesis over the original training set to 
progressively improve the classification of those examples for which the last 
hypothesis failed. 
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3.3.3 Landmarking Meta-Learning. We mentioned before how land- 
marking can be used as a form of dataset characterization by exploiting the 
accuracy (or error rate) of a set of base (simple) learners called landmarkers. 
Meta-learning based on landmarking may be viewed as a form of learning from 
base learners; these base learners provide a new representation of the dataset 
that can be used in finding areas of learning expertise. Here we assume there 
is a second set of advanced learners (i.e., learning systems with high capac- 
ity), one of which must be selected for the current task under analysis. Under 
this framework, meta-learning is the process of correlating areas of expertise 
as dictated by simple learners, with the performance of other -more advanced- 
learners. 

3.3.4 Meta-Decision Trees. Another approach in the field of learning 
from base learners consists of combining several inductive models by means of 
induction of meta-decision trees (Todorovski and Dzeroski, 1999; Todorovski 
and Dzeroski, 2000; Todorovski and Dzeroski, 2003). The general idea is to 
build a decision tree where each internal node is a meta-feature that measures 
a property of the class probability distributions predicted for a given example 
by a set of given models. Each leaf node corresponds to a predictive model. 
Given a new example, a meta-decision tree indicates the model that appears 
most suitable in predicting its class label. 

3.4 Inductive Transfer and Learning to Learn 
We have mentioned above how learning is not an isolated task that starts 

from scratch on every new task. As experience accumulates, a learning mech- 
anism is expected to perform increasingly better. One approach to simulate the 
accumulation of experience is by transferring meta-knowledge across domains 
or tasks; a process known as inductive transfer (Pratt et al., 1991). The goal 
here is not to match meta-features with a meta-knowledge base (Figure 33.2), 
but simply to incorporate the meta-knowledge into the new learning task. 

A review of how neural networks can learn from related tasks is provided by 
(Pratt et al., 1991). Caruana (1997) shows the reasons explaining why learn- 
ing works well in the context of neural networks using backpropagation. In 
essence, training with many domains in parallel on a single neural network 
induces information that accumulates in the training signals; a new domain 
can then benefit from such past experience. Thrun (1998) proposes a learn- 
ing algorithm that groups similar tasks into clusters. A new task is assigned 
to the most related cluster; inductive transfer takes place when generalization 
exploits information about the selected cluster. 

3.4.1 A Theoretical Framework of Learning-to-Learn. Several 
studies have provided a theoretical analysis of the learning-to-learn paradigm 



742 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

within a Bayesian view (Baxter, 1998), and within a Probably Approximately 
Correct or PAC view (Baxter, 2000). In the PAC view, meta-learning takes 
place because the learner is not only looking for the right hypothesis in a hy- 
pothesis space, but in addition is searching for the right hypothesis space in a 
family of hypothesis spaces. Both the VC dimension and the size of the family 
of hypothesis spaces can be used to derive bounds on the number of tasks, and 
the number of examples on each task, required to ensure with high probability 
that we will find a solution having low error on new training tasks. 

3.5 Dynamic-Bias Selection 
A field related to the idea of learning-to-learn is that of dynamic-bias selec- 

tion. This can be understood as the search for the right hypothesis space or 
concept representation as the learning system encounters new tasks. The idea, 
however, departs slightly from our architecture; meta-learning is not divided 
into two modes (i.e., knowledge-acquisition and advisory), but rather occurs 
on a single step. In essence, the performance of a base learner (Figure 33.1E) 
can trigger the need to explore additional hypothesis spaces, normally through 
small variations of the current hypothesis space. 

As an example, DesJardins and Gordon (1 995) develop a framework for the 
study of dynamic bias as a search in different tiers. Whereas the first tier refers 
to a search over a hypothesis space, additional tiers search over families of 
hypothesis spaces. Other approaches to dynamic-bias selection are based on 
changing the representation of the feature space by adding or removing features 
(Utgoff, 1986; Gordon, 1989; Gordon, 1990). Alternatively, Baltes (1992) 
describes a framework for dynamic selection of bias as a case-based meta- 
learning system; concepts displaying some similarity to the target concept are 
retrieved from memory and used to define the hypothesis space. 

A slightly different approach is to look at dynamic-bias selection as a form 
of data variation, but as a time-dependent feature (Widmer, 1996A; Widmer, 
1996B; Widmer, 1997). The idea is to perform online detection of concept drift 
with a single base-level classifier. The meta-learning task consists of identify- 
ing contextual clues, which are used to make the base-level classifier more 
selective with respect to training instances for prediction. Features that are 
characteristic of a specific context are identified and contextual features are 
used to focus on relevant examples (i.e., only those instances that match the 
context of the incoming training example are used as a basis for prediction). 
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4. Tools and Applications 

4.1 METAL DM Assistant 
The METAL DM Assistant (DMA) is the result of an ambitious European 

Research and Development project broadly aimed at the development of meth- 
ods and tools for providing support to users of machine learning and Data 
Mining technology. DMA is a web-enabled prototype assistant system that 
supports users with model selection and model combination. The project has 
as its main goal improving the utility of Data Mining tools and in particular to 
provide significant savings in experimentation time. 

DMA follows a ranking strategy as the basis for its advice in model selection 
(Section 3.1.1). Instead of delivering a single model candidate, the software 
assistant produces an ordered list of models, sorted from best to worst, based on 
a weighted combination of parameters such as accuracy and training time. The 
task characterisation is based on statistical and information-theoretic measures 
(Section 3.1). DMA incorporates more than one ranking method. One of them 
exploits a ratio of accuracies and times (Brazdil and Soares, 2003). Another, 
referred to as DCRanker (Keller et al., 1999), is based on a technique known 
as Data Envelopment Analysis (Andersen and Petersen, 1993; Paterson, 2000). 

DMA is the result of a long and consistent effort in providing a practical and 
effective tool to users in need for assistance in model selection and guidance 
(Metal, 1998). In addition to a large number of controlled experiments on 
synthetic datasets and real-world datasets, DMA has been instrumental as a 
decision support tool within DaimlerChrysler and in the field of Computer- 
Aided Engineering Design (Keller et al., 2000). 

5. Future Directions and Conclusions 
One important research direction in meta-learning consists of searching for 

alternative meta-features in the characterization of datasets (Section 3.1). A 
proper characterization of datasets can elucidate the interaction between the 
learning mechanism and the task under analysis. Current work has only started 
to unveil relevant meta-features; clearly much work lies ahead. For example, 
many statistical and information-theoretic measures adopt a global view of the 
example distribution under analysis; meta-features are obtained by averaging 
results over the entire training set, implicitly smoothing the actual example 
distribution (e.g., class-conditional entropy is estimated by projecting all train- 
ing examples over a single feature dimension.). There is a need for alternative 
-more detailed- descriptors of the example distribution in a form that can be 
related to learning performance. 

Another interesting path for future work is to understand the difference be- 
tween the nature of the meta-learner and that of the base-learners. In particular, 
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our general architecture assumes a meta-learner (i.e., a high-level generaliza- 
tion method) performing a form of model selection, mapping a training set into 
a learning strategy (Figure 33.2). Commonly we look at the problem as a learn- 
ing problem itself where a meta-learner is invoked to output an approximating 
function mapping meta-features to learning strategies (e.g., learning model). 
This opens many questions, such as how can we improve the meta-learner 
which can now be regarded as a base learner? (Schmidhuber, 1995; Vilalta, 
2001). Future research should investigate how the nature of the meta-learner 
can differ from the base-learners to improve the learning performance as we 
extract knowledge across domains or tasks. 

We conclude this chapter by emphasizing the important role of meta- 
learning as an assistant tool in the tasks of model selection and combination 
(Section 4). Classification and regression tasks are common in daily business 
practice across a number of sectors. Hence, any form of decision support of- 
fered by a meta-learning assistant has the potential of bearing a strong impact 
for Data Mining practitioners. In particular, since prior expert knowledge is 
often expensive, not always readily available, and subject to bias and personal 
preferences, meta-learning can serve as a promising complement to this form 
of advice through the automatic accumulation of experience based on the per- 
formance of multiple applications of a learning system. 
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