Naïve Bayes Learning

Based on Raymond J. Mooney's slides
University of Texas at Austin

Axioms of Probability Theory

- All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

- True proposition has probability 1 , false has probability 0.

$$
\mathrm{P}(\text { true })=1 \quad \mathrm{P}(\text { false })=0
$$

- The probability of disjunction is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes that B is all and only information known.
- Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Independence

- A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

- Therefore, if A and B are independent:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A) \\
& P(A \wedge B)=P(A) P(B)
\end{aligned}
$$

Joint Distribution

- The joint probability distribution for a set of random variables, $X_{1}, \ldots, X_{\mathrm{n}}$ gives the probability of every combination of values (an n dimensional array with v^{n} values if all variables are discrete with v values, all ν^{n} values must sum to 1$): ~ \mathrm{P}\left(X_{1}, \ldots, X_{\mathrm{n}}\right)$

positive		
circle square red 0.20 blue 0.02	0.01	

negative		
	circle	square
red	0.05	0.30
blue	0.20	0.20

- The probability of all possible conjunctions (assignments of values to some subset of variables) can be calculated by summing the appropriate subset of values from the joint distribution.

$$
\begin{gathered}
P(\text { red } \wedge \text { circle })=0.20+0.05=0.25 \\
P(\text { red })=0.20+0.02+0.05+0.3=0.57
\end{gathered}
$$

- Therefore, all conditional probabilities can also be calculated.

$$
P(\text { positive } \mid \text { red } \wedge \text { circle })=\frac{P(\text { positive } \wedge \text { red } \wedge \text { circle })}{P(\text { red } \wedge \text { circle })}=\frac{0.20}{0.25}=0.80
$$

Probabilistic Classification

- Let Y be the random variable for the class which takes values $\left\{y_{1}, y_{2}, \ldots y_{m}\right\}$.
- Let X be the random variable describing an instance consisting of a vector of values for n features $<X_{1}, X_{2} \ldots X_{\mathrm{n}}>$, let x_{k} be a possible value for X and $x_{i j}$ a possible value for X_{i}.
- For classification, we need to compute $\mathrm{P}\left(Y=y_{i} \mid X=x_{k}\right)$ for $i=1 \ldots m$
- However, given no other assumptions, this requires a table giving the probability of each category for each possible instance in the instance space, which is impossible to accurately estimate from a reasonably-sized training set.
- Assuming Y and all X_{i} are binary, we need 2^{n} entries to specify $\mathrm{P}\left(Y=\operatorname{pos} \mid X=x_{k}\right)$ for each of the 2^{n} possible $x_{\mathrm{k}}{ }^{\prime}$ s since $\mathrm{P}\left(Y=\operatorname{neg} \mid X=x_{k}\right)=1-\mathrm{P}\left(Y=\operatorname{pos} \mid X=x_{k}\right)$
- Compared to $2^{\mathrm{n}+1}-1$ entries for the joint distribution $\mathrm{P}\left(Y, X_{1}, X_{2} \ldots X_{\mathrm{n}}\right)$

Bayes Theorem

$P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
Simple proof from definition of conditional probability:

$$
\begin{gathered}
P(H \mid E)=\frac{P(H \wedge E)}{P(E)} \quad \text { (Def. cond. prob.) } \\
P(E \mid H)=\frac{P(H \wedge E)}{P(H)} \quad \text { (Def. cond. prob.) } \\
P(H \wedge E)=P(E \mid H) P(H) \\
\text { QED: } P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
\end{gathered}
$$

Bayesian Categorization

- Determine category of x_{k} by determining for each y_{i}

$$
P\left(Y=y_{i} \mid X=x_{k}\right)=\frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}
$$

- $\mathrm{P}\left(X=x_{k}\right)$ can be determined since categories are complete and disjoint.

$$
\begin{aligned}
& \sum_{i=1}^{m} P\left(Y=y_{i} \mid X=x_{k}\right)=\sum_{i=1}^{m} \frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}=1 \\
& P\left(X=x_{k}\right)=\sum_{i=1}^{m} P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)
\end{aligned}
$$

Bayesian Categorization (cont.)

- Need to know:
- Priors: $\mathrm{P}\left(Y=y_{i}\right)$
- Conditionals: $\mathrm{P}\left(X=x_{k} \mid Y=y_{i}\right)$
- $\mathrm{P}\left(Y=y_{i}\right)$ are easily estimated from data.
- If n_{i} of the examples in D are in y_{i} then $\mathrm{P}\left(Y=y_{i}\right)=n_{i} /|D|$
- Too many possible instances (e.g. 2^{n} for binary features) to estimate all $\mathrm{P}\left(X=x_{k} \mid Y=y_{i}\right)$.
- Still need to make some sort of independence assumptions about the features to make learning tractable.

Generative Probabilistic Models

- Assume a simple (usually unrealistic) probabilistic method by which the data was generated.
- For categorization, each category has a different parameterized generative model that characterizes that category.
- Training: Use the data for each category to estimate the parameters of the generative model for that category.
- Maximum Likelihood Estimation (MLE): Set parameters to maximize the probability that the model produced the given training data.
- If M_{λ} denotes a model with parameter values λ and D_{k} is the training data for the k th class, find model parameters for class k $\left(\lambda_{\mathrm{k}}\right)$ that maximize the likelihood of D_{k} :

$$
\lambda_{k}=\underset{\lambda}{\operatorname{argmax}} P\left(D_{k} \mid M_{\lambda}\right)
$$

- Testing: Use Bayesian analysis to determine the category model that most likely generated a specific test instance.

Naïve Bayes Generative Model

Naïve Bayes Inference Problem

Naïve Bayesian Categorization

- If we assume features of an instance are independent given the category (conditionally independent).

$$
P(X \mid Y)=P\left(X_{1}, X_{2}, \cdots X_{n} \mid Y\right)=\prod_{i=1}^{n} P\left(X_{i} \mid Y\right)
$$

- Therefore, we then only need to know $\mathrm{P}\left(X_{i} \mid Y\right)$ for each possible pair of a feature-value and a category.
- If Y and all X_{i} and binary, this requires specifying only $2 n$ parameters:
- $\mathrm{P}\left(X_{\mathrm{i}}=\right.$ true $\mid Y=$ true $)$ and $\mathrm{P}\left(X_{i}=\right.$ true $\mid Y=$ false $)$ for each X_{i}
$-\mathrm{P}\left(X_{i}=\right.$ false $\left.\mid Y\right)=1-\mathrm{P}\left(X_{\mathrm{i}}=\right.$ true $\left.\mid Y\right)$
- Compared to specifying 2^{n} parameters without any independence assumptions.

Naïve Bayes Example

Probability	positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.4	0.4
$\mathrm{P}($ medium $\mid Y)$	0.1	0.2
$\mathrm{P}($ large $\mid Y)$	0.5	0.4
$\mathrm{P}($ red $\mid Y)$	0.9	0.3
$\mathrm{P}($ blue $\mid Y)$	0.05	0.3
$\mathrm{P}($ green $\mid Y)$	0.05	0.4
P (square $\mid Y)$	0.05	0.4
$\mathrm{P}($ triangle $\mid Y)$	0.05	0.3
$\mathrm{P}($ circle $\mid Y)$	0.9	0.3

Test Instance:
<medium ,red, circle>

Naïve Bayes Example

Probability	positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.1	0.2
$\mathrm{P}($ red $\mid Y)$	0.9	0.3
$\mathrm{P}($ circle $\mid Y)$	0.9	0.3

Test Instance:
<medium ,red, circle>
$\mathrm{P}($ positive $\mid X)=\mathrm{P}($ positive $) * \mathrm{P}($ medium \mid positive $) * \mathrm{P}($ red \mid positive $) * \mathrm{P}($ circle \mid positive $) / \mathrm{P}(X)$

$$
\begin{array}{ccccccc}
0.5 & * & 0.1 & * & 0.9 & * & 0.9
\end{array}
$$

$$
=0.0405 / \mathrm{P}(X)=0.0405 / 0.0495=0.8181
$$

$\mathrm{P}($ negative $\mid X)=\mathrm{P}($ negative $) * \mathrm{P}($ medium \mid negative $) * \mathrm{P}($ red \mid negative $) * \mathrm{P}($ circle \mid negative $) / \mathrm{P}(X)$

0.5	$*$	0.2	$*$	0.3	$*$

$\mathrm{P}($ positive $\mid X)+\mathrm{P}($ negative $\mid X)=0.0405 / \mathrm{P}(X)+0.009 / \mathrm{P}(X)=1$

$$
\mathrm{P}(X)=(0.0405+0.009)=0.0495
$$

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_{k} examples in category y_{k}, and $n_{i j k}$ of these n_{k} examples have the j th value for feature $X_{i}, x_{i j}$, then:

$$
P\left(X_{i}=x_{i j} \mid Y=y_{k}\right)=\frac{n_{i j k}}{n_{k}}
$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, X_{i}, is always false in the training data, $\forall y_{k}: \mathrm{P}\left(X_{i}=\right.$ true $\left.\mid Y=y_{k}\right)=0$.
- If $X_{i}=$ true then occurs in a test example, X, the result is that $\forall \mathrm{y}_{k}: \mathrm{P}\left(X \mid Y=\mathrm{y}_{k}\right)=0$ and $\forall \mathrm{y}_{k}: \mathrm{P}\left(Y=\mathrm{y}_{k} \mid X\right)=0$

Probability Estimation Example

Ex	Size	Color	Shape	Category	Probability	positive	negative
					$\mathrm{P}(Y)$	0.5	0.5
1	small	red	circle	positive	$\mathrm{P}($ small $\mid Y)$	0.5	0.5
					$\mathrm{P}($ medium \| Y)	0.0	0.0
2	large	red	circle	positive	P (large $\mid Y$)	0.5	0.5
3	small	red	triangle	negitive	$\mathrm{P}(\mathrm{red} \mid Y)$	1.0	0.5
					P (blue \| Y)	0.0	0.5
4	large	blue	circle	negitive	$\mathrm{P}($ green $\mid Y)$	0.0	0.0
Test Instance X :medium, red, circle>					P(square \| Y)	0.0	0.0
					$\mathrm{P}($ triangle $\mid Y)$	0.0	0.5
					$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

$\mathrm{P}($ positive $\mid X)=0.5 * 0.0 * 1.0 * 1.0 / \mathrm{P}(\mathrm{X})=0$
$\mathrm{P}($ negative $\mid X)=0.5 * 0.0 * 0.5 * 0.5 / \mathrm{P}(\mathrm{X})=0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an m-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a "virtual" sample of size m.

$$
P\left(X_{i}=x_{i j} \mid Y=y_{k}\right)=\frac{n_{i j k}+m p}{n_{k}+m}
$$

- For binary features, p is simply assumed to be 0.5 .

Laplace Smothing Example

- Assume training set contains 10 positive examples:
- 4: small
- 0: medium
- 6: large
- Estimate parameters as follows (if $m=1, p=1 / 3$)
$-\mathrm{P}($ small \mid positive $)=(4+1 / 3) /(10+1)=0.394$
$-\mathrm{P}($ medium \mid positive $)=(0+1 / 3) /(10+1)=0.03$
$-\mathrm{P}($ large \mid positive $)=(6+1 / 3) /(10+1)=\frac{0.576}{1.0}$
$-\mathrm{P}($ small or medium or large \mid positive $)=\frac{1}{2}$

Continuous Attributes

- If X_{i} is a continuous feature rather than a discrete one, need another way to calculate $\mathrm{P}\left(X_{i} \mid Y\right)$.
- Assume that X_{i} has a Gaussian distribution whose mean and variance depends on Y.
- During training, for each combination of a continuous feature X_{i} and a class value for Y, y_{k}, estimate a mean, $\mu_{i k}$, and standard deviation $\sigma_{i k}$ based on the values of feature X_{i} in class y_{k} in the training data.
- During testing, estimate $\mathrm{P}\left(X_{i} \mid Y=y_{k}\right)$ for a given example, using the Gaussian distribution defined by $\mu_{i k}$ and $\sigma_{i k}$.

$$
P\left(X_{i} \mid Y=y_{k}\right)=\frac{1}{\sigma_{i k} \sqrt{2 \pi}} \exp \left(\frac{-\left(X_{i}-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}\right)
$$

Comments on Naïve Bayes

- Tends to work well despite strong assumption of conditional independence.
- Experiments show it to be quite competitive with other classification methods on standard UCI datasets.
- Although it does not produce accurate probability estimates when its independence assumptions are violated, it may still pick the correct maximum-probability class in many cases.
- Able to learn conjunctive concepts in any case
- Does not perform any search of the hypothesis space. Directly constructs a hypothesis from parameter estimates that are easily calculated from the training data.
- Strong bias
- Not guarantee consistency with training data.
- Typically handles noise well since it does not even focus on completely fitting the training data.

