Naïve Bayes Learning

Based on Raymond J. Mooney's slides University of Texas at Austin

Axioms of Probability Theory

All probabilities between 0 and 1

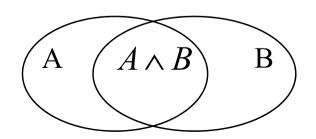
$$0 \le P(A) \le 1$$

• True proposition has probability 1, false has probability 0.

$$P(true) = 1$$
 $P(false) = 0.$

• The probability of disjunction is:

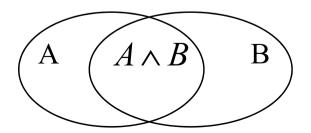
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$



Conditional Probability

- $P(A \mid B)$ is the probability of A given B
- Assumes that *B* is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$



Independence

• A and B are independent iff:

$$P(A \mid B) = P(A)$$
 These two constraints are logically equivalent $P(B \mid A) = P(B)$

• Therefore, if A and B are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

Joint Distribution

• The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values (an *n*-dimensional array with v^n values if all variables are discrete with v values, all v^n values must sum to 1): $P(X_1,...,X_n)$

positive

	circle	square
red	0.20	0.02
blue	0.02	0.01

negative

	circle	square
red	0.05	0.30
blue	0.20	0.20

• The probability of all possible conjunctions (assignments of values to some subset of variables) can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = 0.20 + 0.05 = 0.25$$

 $P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$

• Therefore, all conditional probabilities can also be calculated.

$$P(positive \mid red \land circle) = \frac{P(positive \land red \land circle)}{P(red \land circle)} = \frac{0.20}{0.25} = 0.80$$

Probabilistic Classification

- Let Y be the random variable for the class which takes values $\{y_1, y_2, \dots, y_m\}$.
- Let X be the random variable describing an instance consisting of a vector of values for n features $\langle X_1, X_2, ..., X_n \rangle$, let x_k be a possible value for X and x_{ij} a possible value for X_i .
- For classification, we need to compute $P(Y=y_i | X=x_k)$ for i=1...m
- However, given no other assumptions, this requires a table giving the probability of each category for each possible instance in the instance space, which is impossible to accurately estimate from a reasonably-sized training set.
 - Assuming Y and all X_i are binary, we need 2^n entries to specify $P(Y=pos | X=x_k)$ for each of the 2^n possible x_k 's since $P(Y=neg | X=x_k) = 1 P(Y=pos | X=x_k)$
 - Compared to $2^{n+1}-1$ entries for the joint distribution $P(Y,X_1,X_2...X_n)$

Bayes Theorem

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)}$$
 (Def. cond. prob.)

$$P(E \mid H) = \frac{P(H \land E)}{P(H)}$$
 (Def. cond. prob.)

$$P(H \land E) = P(E \mid H)P(H)$$

QED:
$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

Bayesian Categorization

• Determine category of x_k by determining for each y_i

$$P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$$

• $P(X=x_k)$ can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{m} P(Y = y_i \mid X = x_k) = \sum_{i=1}^{m} \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)} = 1$$

$$P(X = x_k) = \sum_{i=1}^{m} P(Y = y_i) P(X = x_k | Y = y_i)$$

Bayesian Categorization (cont.)

- Need to know:
 - Priors: $P(Y=y_i)$
 - Conditionals: $P(X=x_k | Y=y_i)$
- $P(Y=y_i)$ are easily estimated from data.
 - If n_i of the examples in D are in y_i then $P(Y=y_i) = n_i/|D|$
- Too many possible instances (e.g. 2^n for binary features) to estimate all $P(X=x_k \mid Y=y_i)$.
- Still need to make some sort of independence assumptions about the features to make learning tractable.

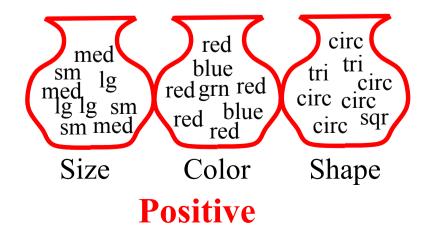
Generative Probabilistic Models

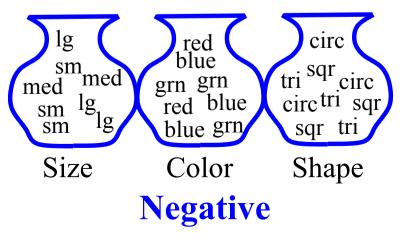
- Assume a simple (usually unrealistic) probabilistic method by which the data was generated.
- For categorization, each category has a different parameterized generative model that characterizes that category.
- Training: Use the data for each category to estimate the parameters of the generative model for that category.
 - Maximum Likelihood Estimation (MLE): Set parameters to maximize the probability that the model produced the given training data.
 - If M_{λ} denotes a model with parameter values λ and D_k is the training data for the kth class, find model parameters for class k (λ_k) that maximize the likelihood of D_k :

$$\lambda_k = \operatorname*{argmax} P(D_k \mid M_{\lambda})$$

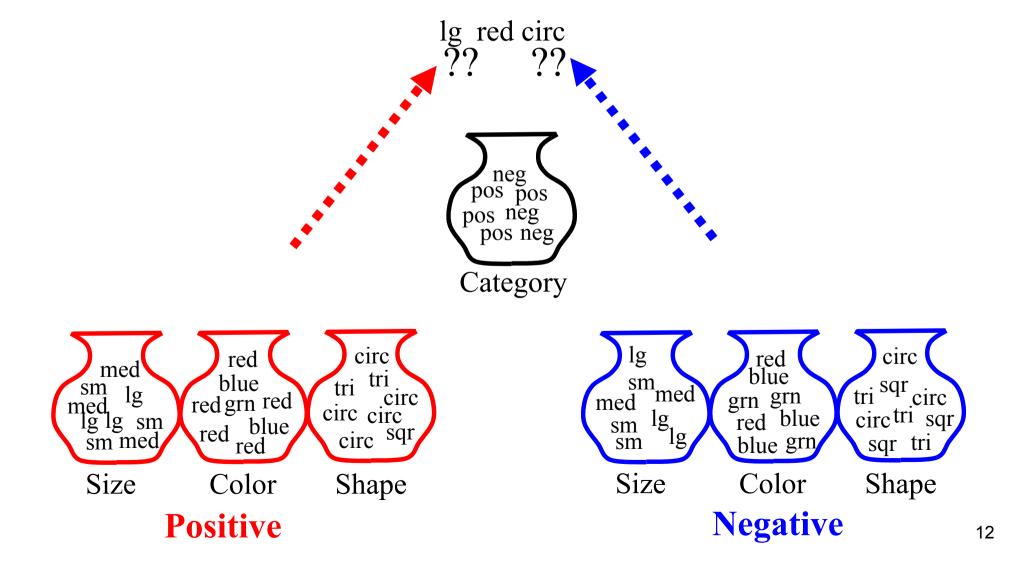
• Testing: Use Bayesian analysis to determine the category model that most likely generated a specific test instance.

Naïve Bayes Generative Model





Naïve Bayes Inference Problem



Naïve Bayesian Categorization

• If we assume features of an instance are independent given the category (conditionally independent).

$$P(X | Y) = P(X_1, X_2, \dots X_n | Y) = \prod_{i=1}^{n} P(X_i | Y)$$

- Therefore, we then only need to know $P(X_i \mid Y)$ for each possible pair of a feature-value and a category.
- If Y and all X_i and binary, this requires specifying only 2n parameters:
 - $P(X_i=true \mid Y=true)$ and $P(X_i=true \mid Y=false)$ for each X_i
 - $P(X_i = \text{false} \mid Y) = 1 P(X_i = \text{true} \mid Y)$
- Compared to specifying 2^n parameters without any independence assumptions.

Naïve Bayes Example

Probability	positive	negative
P(Y)	0.5	0.5
P(small <i>Y</i>)	0.4	0.4
P(medium Y)	0.1	0.2
P(large Y)	0.5	0.4
P(red <i>Y</i>)	0.9	0.3
P(blue <i>Y</i>)	0.05	0.3
P(green Y)	0.05	0.4
P(square Y)	0.05	0.4
P(triangle <i>Y</i>)	0.05	0.3
P(circle Y)	0.9	0.3

Test Instance: <medium ,red, circle>

Naïve Bayes Example

Probability	positive	negative
P(Y)	0.5	0.5
P(medium Y)	0.1	0.2
P(red <i>Y</i>)	0.9	0.3
P(circle Y)	0.9	0.3

Test Instance: <medium ,red, circle>

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)

$$0.5 * 0.1 * 0.9 * 0.9$$

= $0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181$

P(negative |
$$X$$
) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5 * 0.2 * 0.3 * 0.3
= 0.009 / P(X) = 0.009 / 0.0495 = 0.1818

P(positive
$$| X)$$
 + P(negative $| X)$ = 0.0405 / P(X) + 0.009 / P(X) = 1

$$P(X) = (0.0405 + 0.009) = 0.0495$$

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_k examples in category y_k , and n_{ijk} of these n_k examples have the jth value for feature X_i , x_{ij} , then:

$$P(X_i = x_{ij} | Y = y_k) = \frac{n_{ijk}}{n_k}$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, X_i , is always false in the training data, $\forall y_k : P(X_i = \text{true} \mid Y = y_k) = 0$.
- If X_i =true then occurs in a test example, X, the result is that $\forall y_k$: $P(X | Y=y_k) = 0$ and $\forall y_k$: $P(Y=y_k | X) = 0$

Probability Estimation Example

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(small Y)	0.5	0.5
P(medium Y)	0.0	0.0
P(large Y)	0.5	0.5
P(red <i>Y</i>)	1.0	0.5
P(blue <i>Y</i>)	0.0	0.5
P(green Y)	0.0	0.0
P(square Y)	0.0	0.0
P(triangle Y)	0.0	0.5
P(circle Y)	1.0	0.5

Test Instance *X*: <medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 / P(X) = 0

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.

$$P(X_i = x_{ij} | Y = y_k) = \frac{n_{ijk} + mp}{n_k + m}$$

• For binary features, p is simply assumed to be 0.5.

Laplace Smothing Example

- Assume training set contains 10 positive examples:
 - 4: small
 - 0: medium
 - 6: large
- Estimate parameters as follows (if m=1, p=1/3)
 - P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394
 - P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
 - P(large | positive) = (6 + 1/3) / (10 + 1) = 0.576
 - P(small or medium or large | positive) = 1.0

Continuous Attributes

- If X_i is a continuous feature rather than a discrete one, need another way to calculate $P(X_i | Y)$.
- Assume that X_i has a Gaussian distribution whose mean and variance depends on Y.
- During training, for each combination of a continuous feature X_i and a class value for Y, y_k , estimate a mean, μ_{ik} , and standard deviation σ_{ik} based on the values of feature X_i in class y_k in the training data.
- During testing, estimate $P(X_i | Y=y_k)$ for a given example, using the Gaussian distribution defined by μ_{ik} and σ_{ik} .

$$P(X_i \mid Y = y_k) = \frac{1}{\sigma_{ik} \sqrt{2\pi}} \exp\left(\frac{-(X_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right)$$

Comments on Naïve Bayes

- Tends to work well despite strong assumption of conditional independence.
- Experiments show it to be quite competitive with other classification methods on standard UCI datasets.
- Although it does not produce accurate probability estimates when its independence assumptions are violated, it may still pick the correct maximum-probability class in many cases.
 - Able to learn conjunctive concepts in any case
- Does not perform any search of the hypothesis space. Directly constructs a hypothesis from parameter estimates that are easily calculated from the training data.
 - Strong bias
- Not guarantee consistency with training data.
- Typically handles noise well since it does not even focus on completely fitting the training data.