Support Vector Machines

Mikhail Bilenko

Machine Learning Group
Department of Computer Sciences
University of Texas at Austin

Linear Separators

- Binary classification can be viewed as the task of separating classes in feature space:

$$
f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}+b\right)
$$

Linear Separators

- Which of the linear separators is optimal?

Classification Margin

- Distance from example \mathbf{x}_{i} to the separator is $r=\frac{\mathbf{w}^{T} \mathbf{x}_{i}+b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are support vectors.
- Margin ρ of the separator is the distance between support vectors.

Maximum Margin Classification

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.

Linear SVM Mathematically

- Let training set $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 . . n}, \mathbf{x}_{i} \in \mathbf{R}^{d}, y_{i} \in\{-1,1\}$ be separated by a hyperplane with margin ρ. Then for each training example (\mathbf{x}_{i}, y_{i}):

$$
\begin{aligned}
& \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b \leq-\rho / 2 \quad \text { if } y_{i}=-1 \\
& \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b \geq \rho / 2 \quad \text { if } y_{i}=1
\end{aligned} \quad \Leftrightarrow \quad y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b\right) \geq \rho / 2
$$

- For every support vector \mathbf{x}_{s} the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho / 2$ in the equality, we obtain that distance between each \mathbf{x}_{s} and the hyperplane is $r=\frac{\mathrm{y}_{s}\left(\mathbf{w}^{T} \mathbf{x}_{s}+b\right)}{\|\mathbf{w}\|}=\frac{1}{\|\mathbf{w}\|}$
- Then the margin can be expressed through (rescaled) \mathbf{w} and b as:

$$
\rho=2 r=\frac{2}{\|\mathbf{w}\|}
$$

Linear SVMs Mathematically (cont.)

- Then we can formulate the quadratic optimization problem:

Find \mathbf{w} and b such that
$\rho=\frac{2}{\|\mathbf{w}\|}$ is maximized
and for all $\left(\mathbf{x}_{i}, y_{i}\right), i=1 . . n: \quad y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{i}+b\right) \geq 1$
Which can be reformulated as:
Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=\|\mathbf{w}\|^{2}=\mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\left(\mathbf{x}_{i}, y_{i}\right), i=1 . . n: \quad y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{i}+b\right) \geq 1$

Solving the Optimization Problem

Find \mathbf{w} and b such that $\boldsymbol{\Phi}(\mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\left(\mathbf{x}_{i}, y_{i}\right), i=1 . . n: \quad y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{i}+b\right) \geq 1$

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a dual problem where a Lagrange multiplier α_{i} is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_{1} \ldots \alpha_{n}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\sum \alpha_{i}-1 / 2 \sum \sum \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all α_{i}

The Optimization Problem Solution

- Given a solution $\alpha_{1} \ldots \alpha_{n}$ to the dual problem, solution to the primal is:

$$
\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i} \quad b=y_{k}-\sum \alpha_{i} y_{i} \mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{k} \quad \text { for any } \alpha_{k}>0
$$

- Each non-zero α_{i} indicates that corresponding \mathbf{x}_{i} is a support vector.
- Then the classifying function is (note that we don't need \mathbf{w} explicitly):

$$
f(\mathbf{x})=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}^{\mathbf{T}} \mathbf{x}+b
$$

- Notice that it relies on an inner product between the test point \mathbf{x} and the support vectors $\mathbf{x}_{i}-$ we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$ between all training points.

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Soft Margin Classification Mathematically

- The old formulation:

Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{W}$ is minimized and for all $\left(\mathbf{x}_{i}, y_{i}\right), i=1 . . n: \quad y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{i}+b\right) \geq 1$

- Modified formulation incorporates slack variables:

Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{w}+C \Sigma \xi_{i}$ is minimized
and for all $\left(\mathbf{x}_{i}, y_{i}\right), i=1 . . n: \quad y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i,}, \quad \xi_{i} \geq 0$

- Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification - Solution

- Dual problem is identical to separable case (would not be identical if the 2norm penalty for slack variables $C \Sigma \xi_{i}^{2}$ was used in primal objective, we would need additional Lagrange multipliers for slack variables):

Find $\alpha_{1} \ldots \alpha_{N}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-1 / 2 \sum \sum \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}{ }^{\mathrm{T}} \mathbf{x}_{j}$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $0 \leq \alpha_{i} \leq C$ for all α_{i}

- Again, \mathbf{x}_{i} with non-zero α_{i} will be support vectors.
- Solution to the dual problem is:

$$
\begin{aligned}
& \mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}\left(1-\xi_{k}\right)-\sum \alpha_{i} y_{i} \mathbf{x}_{i}^{\mathbf{T}} \mathbf{x}_{k} \quad \text { for any } k \text { s.t. } \alpha_{k}>0
\end{aligned}
$$

Again, we don't need to compute \mathbf{w} explicitly for classification:

$$
f(\mathbf{x})=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}^{\mathbf{T}} \mathbf{x}+b
$$

Theoretical Justification for Maximum Margins

- Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as

$$
h \leq \min \left\{\left[\frac{D^{2}}{\rho^{2}}\right], m_{0}\right\}+1
$$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_{0} is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m_{0} we can minimize the VC dimension by maximizing the margin ρ.
- Thus, complexity of the classifier is kept small regardless of dimensionality.

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_{i} are support vectors with non-zero Lagrangian multipliers α_{i}.
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $\alpha_{1} \ldots \alpha_{N}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-1 / 2 \Sigma \Sigma \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $0 \leq \alpha_{i} \leq C$ for all α_{i}

$$
f(\mathbf{x})=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}^{\mathbf{T} \mathbf{x}}+b
$$

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{\mathbf{T}} \mathbf{x}_{j}$
- If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$, the inner product becomes:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\varphi}\left(\mathbf{x}_{j}\right)
$$

- A kernel function is a function that is eqiuvalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$; let $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}\right)^{2}$,
Need to show that $K\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right)=\boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)^{\mathbf{T}} \boldsymbol{\varphi}\left(\mathbf{x}_{j}\right)$:

$$
\begin{aligned}
& K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i} \mathbf{T}_{j}\right)^{2}=1+x_{i 1}{ }^{2} x_{j 1}{ }^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}{ }^{2} x_{j 2}{ }^{2}+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2}= \\
& \quad=\left[\begin{array}{llll}
1 & x_{i 1}{ }^{2} \sqrt{ } 2 & x_{i 1} x_{i 2} & x_{i 2}{ }^{2} \sqrt{ } 2 x_{i 1} \sqrt{ } 2 x_{i 2}
\end{array}\right]^{\mathbf{T}}\left[\begin{array}{lll}
1 & x_{j 1}^{2} & \sqrt{ } 2 x_{j 1} x_{j 2} \\
x_{j 2}{ }^{2} \sqrt{ } 2 x_{j 1} \sqrt{ } 2 x_{j 2}
\end{array}\right]= \\
& \quad=\boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)^{\mathbf{T}} \boldsymbol{\varphi}\left(\mathbf{x}_{j}\right), \quad \text { where } \boldsymbol{\varphi}(\mathbf{x})=\left[\begin{array}{llll}
1 & x_{1}{ }^{2} \sqrt{ } 2 & x_{1} x_{2} & x_{2}{ }^{2} \\
& \sqrt{ } 2 x_{1} & \sqrt{ } 2 x_{2}
\end{array}\right]
\end{aligned}
$$

- Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to compute each $\boldsymbol{\varphi}(\mathbf{x})$ explicitly).

What Functions are Kernels?

- For some functions $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ checking that $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\varphi\left(\mathbf{x}_{i}\right)^{\mathbf{T}} \varphi\left(\mathbf{x}_{j}\right)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

- Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

$\mathrm{K}=$| $K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ | $K\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)$ | \ldots | $K\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $K\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$ | $K\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ | | $K\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right)$ |
| | | | | |
| \ldots | \ldots | \ldots | \ldots | \ldots |
| $K\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right)$ | $K\left(\mathbf{x}_{n}, \mathbf{x}_{3}\right)$ | \ldots | $K\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$ |

Examples of Kernel Functions

- Linear: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$
- Mapping $\Phi: \quad \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$, where $\boldsymbol{\varphi}(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power $p: K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}\right)^{p}$
- Mapping $\Phi: \quad \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$, where $\boldsymbol{\varphi}(\mathbf{x})$ has $\binom{d+p}{p}$ dimensions
- Gaussian (radial-basis function): $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}}$
- Mapping $\Phi: \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$, where $\boldsymbol{\varphi}(\mathbf{x})$ is infinite-dimensional: every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space.

Non-linear SVMs Mathematically

- Dual problem formulation:

Find $\alpha_{1} \ldots \alpha_{n}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\sum \alpha_{i}-1 / 2 \sum \sum \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all α_{i}

- The solution is:

$$
f(\mathbf{x})=\sum \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+b
$$

- Optimization techniques for finding α_{i} 's remain the same!

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs use decomposition to hillclimb over a subset of α_{i} 's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

