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Linear Separators 

• Binary classification can be viewed as the task of 

separating classes in feature space:separating classes in feature space:

wTx + b = 0w x + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)f(x) = sign(wTx + b)
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Linear Separators

• Which of the linear separators is optimal? 
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Classification Margin

xw bT +
• Distance from example xi to the separator is 

• Examples closest to the hyperplane are support vectors. 
w

xw b
r i

T +=

• Examples closest to the hyperplane are support vectors. 

• Margin ρ of the separator is the distance between support vectors.

ρ
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Maximum Margin Classification

• Maximizing the margin is good according to intuition and • Maximizing the margin is good according to intuition and 

PAC theory.

• Implies that only support vectors matter; other training 

examples are ignorable. 
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Linear SVM Mathematically

• Let training set {(x , y )} , x∈∈∈∈Rd, y ∈∈∈∈ {-1, 1} be separated by a • Let training set {(xi, yi)}i=1..n, xi∈∈∈∈Rd, yi ∈∈∈∈ {-1, 1} be separated by a 

hyperplane with margin ρ. Then for each training example (xi, yi):

wTxi + b ≤ - ρ/2 if yi = -1

wTxi + b ≥ ρ/2 if yi = 1
yi(w

Txi + b) ≥ ρ/2⇔⇔⇔⇔

• For every support vector xs the above inequality is an equality.    

wTxi + b ≥ ρ/2 if yi = 1 ⇔⇔⇔⇔

• For every support vector xs the above inequality is an equality.    

After rescaling w and b by ρ/2 in the equality, we obtain that 

distance between each xs and the hyperplane is 
ww

xw 1)(y =+= b
r s

T
s

s 

• Then the margin can be expressed through (rescaled) w and b as:

ww

• Then the margin can be expressed through (rescaled) w and b as:

w

2
2 == rρ
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Linear SVMs Mathematically (cont.)

• Then we can formulate the quadratic optimization problem: 

Find w and b such thatFind w and b such that

is maximized 
w

2=ρ

Which can be reformulated as: 

and for all (xi, yi), i=1..n :     yi(w
Txi + b) ≥ 1

w

Which can be reformulated as: 

Find w and b such thatFind w and b such that

Φ(w) = ||w||2=wTw is minimized 

and for all (xi, yi), i=1..n :    yi (wTxi + b) ≥ 1
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Solving the Optimization Problem

Find w and b such that

Φ(w) =wTw is minimized 

and for all (x , y ), i=1..n :       y (wTx + b) ≥ 1

• Need to optimize a quadratic function subject to linear constraints.

and for all (xi, yi), i=1..n :       yi (wTxi + b) ≥ 1

• Need to optimize a quadratic function subject to linear constraints.

• Quadratic optimization problems are a well-known class of mathematical 

programming problems for which several (non-trivial) algorithms exist.

• The solution involves constructing a dual problem where a Lagrange 
multiplier αi is associated with every inequality constraint in the primal 

(original) problem:(original) problem:

Find α1…αn such that

Q(α) =Σα - ½ΣΣα α y y x Tx is maximized and Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2) αi ≥ 0 for all αi
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The Optimization Problem Solution

• Given a solution α1…αn to the dual problem, solution to the primal is: 

Σ Σw =Σαiyixi b = yk - Σαiyixi
Txk for any αk > 0

• Each non-zero αi indicates that corresponding xi is a support vector.

• Then the classifying function is (note that we don’t need w explicitly):

f(x) = Σαiyixi
Tx + b

• Notice that it relies on an inner product between the test point x and the 

support vectors xi – we will return to this later.support vectors xi – we will return to this later.

• Also keep in mind that solving the optimization problem involved 

computing the inner products xi
Txj between all training points.
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Soft Margin Classification  

• What if the training set is not linearly separable?

• Slack variables ξi can be added to allow misclassification of difficult or 

noisy examples, resulting margin called soft.noisy examples, resulting margin called soft.

ξξi

ξi
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Soft Margin Classification Mathematically

• The old formulation:

Find w and b such that

Φ(w) =wTw is minimized 

and for all (xi ,yi), i=1..n :       yi (wTxi + b) ≥ 1

• Modified formulation incorporates slack variables:

Find w and b such that

Φ(w) =wTw + CΣξi   is minimized 

• Parameter C can be viewed as a way to control overfitting:  it “trades off” 

Φ(w) =w w + CΣξi   is minimized 

and for all (xi ,yi), i=1..n :       yi (wTxi + b) ≥ 1 – ξi, ,    ξi ≥ 0

• Parameter C can be viewed as a way to control overfitting:  it “trades off” 

the relative importance of maximizing the margin and fitting the training 

data.
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Soft Margin Classification – Solution

• Dual problem is identical to separable case (would not be identical if the 2-

norm penalty for slack variables CΣξi
2 was used in primal objective, we 

would need additional Lagrange multipliers for slack variables):would need additional Lagrange multipliers for slack variables):

Find α1…αN such that

Q(α) =Σα - ½ΣΣα α y y x Tx is maximized and Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2)  0 ≤ α ≤ C for all α

• Again, xi with non-zero αi will be support vectors.

(2)  0 ≤ αi ≤ C for all αi

• Again, xi with non-zero αi will be support vectors.

• Solution to the dual problem is:

Σ

Again, we don’t need to 

compute w explicitly for 
w =Σαiyixi

b= yk(1- ξk) - Σαiyixi
Txk for any k s.t. αk>0

f(x) = Σαiyixi
Tx + b

compute w explicitly for 

classification:
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Theoretical Justification for Maximum Margins

• Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from 
above as above as 

where ρ is the margin, D is the diameter of the smallest sphere that can 

1,min 02

2

+
















≤ m

D
h

ρ
where ρ is the margin, D is the diameter of the smallest sphere that can 
enclose all of the training examples, and m0 is the dimensionality.

• Intuitively, this implies that regardless of dimensionality m0 we can 

minimize the VC dimension by maximizing the margin ρ.minimize the VC dimension by maximizing the margin ρ.

• Thus, complexity of the classifier is kept small regardless of • Thus, complexity of the classifier is kept small regardless of 

dimensionality.
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Linear SVMs:  Overview

• The classifier is a separating hyperplane.

• Most “important” training points are support vectors; they define the 

hyperplane.

• Quadratic optimization algorithms can identify which training points xi are 

support vectors with non-zero Lagrangian multipliers αi.support vectors with non-zero Lagrangian multipliers αi.

• Both in the dual formulation of the problem and in the solution training • Both in the dual formulation of the problem and in the solution training 

points appear only inside inner products: 

Find α1…αN such that f(x) = Σα y x Tx + bFind α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2)  0 ≤ α ≤ C for all α

f(x) = Σαiyixi
Tx + b
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Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

0 x

• But what are we going to do if the dataset is just too hard? 

0 x

• How about… mapping data to a higher-dimensional space:

0 x

x2
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Non-linear SVMs:  Feature spaces

• General idea:   the original feature space can always be mapped to some 

higher-dimensional feature space where the training set is separable:

Φ:  x→ φ(x)Φ:  x→ φ(x)
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The “Kernel Trick”

• The linear classifier relies on inner product between vectors K(xi,xj)=xi
Txj

• If every datapoint is mapped into high-dimensional space via some 

transformation Φ:  x→ φ(x), the inner product becomes:transformation Φ:  x→ φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

• A kernel function is a function that is eqiuvalent to an inner product in • A kernel function is a function that is eqiuvalent to an inner product in 

some feature space.

• Example: • Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] == [1  xi1 √2 xi1xi2  xi2 √2xi1  √2xi2] [1  xj1 √2 xj1xj2  xj2 √2xj1  √2xj2] =

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]

• Thus, a kernel function implicitly maps data to a high-dimensional space 
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• Thus, a kernel function implicitly maps data to a high-dimensional space 

(without the need to compute each φ(x) explicitly).
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What Functions are Kernels?

• For some functions K(xi,xj) checking that K(xi,xj)= φ(xi)
Tφ(xj) can be 

cumbersome. 

• Mercer’s theorem:  • Mercer’s theorem:  

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive • Semi-positive definite symmetric functions correspond to a semi-positive 

definite symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xn)

K(x ,x ) K(x ,x ) K(x ,x ) K(x ,x )K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xn)

K=

… … … … … 

K(xn,x1) K(xn,x2) K(xn,x3) … K(xn,xn)
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Examples of Kernel Functions

• Linear: K(xi,xj)= xi
Txj

– Mapping Φ:    x → φ(x), where φ(x) is x itself

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p• Polynomial of power p: K(xi,xj)= (1+ xi xj)

– Mapping Φ:    x → φ(x), where φ(x) has           dimensions 

2
xx −








 +
p

pd

• Gaussian (radial-basis function): K(xi,xj) =

– Mapping Φ:  x→  φ(x), where φ(x) is infinite-dimensional: every point is 

2

2

2σ
ji

e
xx −

−

– Mapping Φ:  x→  φ(x), where φ(x) is infinite-dimensional: every point is 
mapped to a function (a Gaussian); combination of functions for support 
vectors is the separator.

• Higher-dimensional space still has intrinsic dimensionality d (the mapping 
is not onto), but linear separators in it correspond to non-linear separators 
in original space.
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in original space.
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Non-linear SVMs Mathematically

• Dual problem formulation:

Find α1…αn such thatFind α1…αn such that

Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 

(1) Σαiyi = 0

• The solution is:

Σ i i

(2) αi ≥ 0 for all αi

• The solution is:

f(x) = ΣαiyiK(xi, xj)+ b

• Optimization techniques for finding α ’s remain the same!

f(x) = ΣαiyiK(xi, xj)+ b

• Optimization techniques for finding αi’s remain the same!
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SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 

gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of classification 

tasks ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, • SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, 

sequences, relational data) by designing kernel functions for such data.

• SVM techniques have been extended to a number of tasks such as regression • SVM techniques have been extended to a number of tasks such as regression 

[Vapnik et al. ’97], principal component analysis [Schölkopf et al. ’99], etc. 

• Most popular optimization algorithms for SVMs use decomposition to hill-• Most popular optimization algorithms for SVMs use decomposition to hill-

climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and [Joachims ’99]

• Tuning SVMs remains a black art:  selecting a specific kernel and parameters is 

usually done in a try-and-see manner. usually done in a try-and-see manner. 
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