
In the previous chapter we examined a vast array of machine learning methods:
decision trees, decision rules, linear models, instance-based schemes, numeric pre-
diction techniques, clustering algorithms, and Bayesian networks. All are sound,
robust techniques that are eminently applicable to practical data mining problems.

But successful data mining involves far more than selecting a learning algo-
rithm and running it over your data. For one thing, many learning methods
have various parameters, and suitable values must be chosen for these. In most
cases, results can be improved markedly by suitable choice of parameter values,
and the appropriate choice depends on the data at hand. For example, decision
trees can be pruned or unpruned, and in the former case a pruning parameter
may have to be chosen. In the k-nearest-neighbor method of instance-based
learning, a value for k will have to be chosen. More generally, the learning
scheme itself will have to be chosen from the range of schemes that are avail-
able. In all cases, the right choices depend on the data itself.

It is tempting to try out several learning schemes, and several parameter
values, on your data and see which works best. But be careful! The best choice
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is not necessarily the one that performs best on the training data. We have
repeatedly cautioned about the problem of overfitting, where a learned model
is too closely tied to the particular training data from which it was built. It is
incorrect to assume that performance on the training data faithfully represents
the level of performance that can be expected on the fresh data to which the
learned model will be applied in practice.

Fortunately, we have already encountered the solution to this problem in
Chapter 5. There are two good methods for estimating the expected true per-
formance of a learning scheme: the use of a large dataset that is quite separate
from the training data, in the case of plentiful data, and cross-validation
(Section 5.3), if data is scarce. In the latter case, a single 10-fold cross-
validation is typically used in practice, although to obtain a more reliable 
estimate the entire procedure should be repeated 10 times. Once suitable param-
eters have been chosen for the learning scheme, use the whole training set—all
the available training instances—to produce the final learned model that is to
be applied to fresh data.

Note that the performance obtained with the chosen parameter value during
the tuning process is not a reliable estimate of the final model’s performance,
because the final model potentially overfits the data that was used for tuning.
To ascertain how well it will perform, you need yet another large dataset that is
quite separate from any data used during learning and tuning. The same is true
for cross-validation: you need an “inner” cross-validation for parameter tuning
and an “outer” cross-validation for error estimation. With 10-fold cross-
validation, this involves running the learning scheme 100 times. To summarize:
when assessing the performance of a learning scheme, any parameter tuning
that goes on should be treated as though it were an integral part of the train-
ing process.

There are other important processes that can materially improve success
when applying machine learning techniques to practical data mining problems,
and these are the subject of this chapter. They constitute a kind of data engi-
neering: engineering the input data into a form suitable for the learning scheme
chosen and engineering the output model to make it more effective. You can
look on them as a bag of tricks that you can apply to practical data mining prob-
lems to enhance the chance of success. Sometimes they work; other times they
don’t—and at the present state of the art, it’s hard to say in advance whether
they will or not. In an area such as this where trial and error is the most reli-
able guide, it is particularly important to be resourceful and understand what
the tricks are.

We begin by examining four different ways in which the input can be mas-
saged to make it more amenable for learning methods: attribute selection,
attribute discretization, data transformation, and data cleansing. Consider the
first, attribute selection. In many practical situations there are far too many
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attributes for learning schemes to handle, and some of them—perhaps the over-
whelming majority—are clearly irrelevant or redundant. Consequently, the data
must be preprocessed to select a subset of the attributes to use in learning. Of
course, learning methods themselves try to select attributes appropriately and
ignore irrelevant or redundant ones, but in practice their performance can fre-
quently be improved by preselection. For example, experiments show that
adding useless attributes causes the performance of learning schemes such as
decision trees and rules, linear regression, instance-based learners, and cluster-
ing methods to deteriorate.

Discretization of numeric attributes is absolutely essential if the task involves
numeric attributes but the chosen learning method can only handle categorical
ones. Even methods that can handle numeric attributes often produce better
results, or work faster, if the attributes are prediscretized. The converse situa-
tion, in which categorical attributes must be represented numerically, also
occurs (although less often); and we describe techniques for this case, too.

Data transformation covers a variety of techniques. One transformation,
which we have encountered before when looking at relational data in Chapter
2 and support vector machines in Chapter 6, is to add new, synthetic attributes
whose purpose is to present existing information in a form that is suitable for
the machine learning scheme to pick up on. More general techniques that do
not depend so intimately on the semantics of the particular data mining pro-
blem at hand include principal components analysis and random projections.

Unclean data plagues data mining. We emphasized in Chapter 2 the neces-
sity of getting to know your data: understanding the meaning of all the differ-
ent attributes, the conventions used in coding them, the significance of missing
values and duplicate data, measurement noise, typographical errors, and the
presence of systematic errors—even deliberate ones. Various simple visualiza-
tions often help with this task. There are also automatic methods of cleansing
data, of detecting outliers, and of spotting anomalies, which we describe.

Having studied how to massage the input, we turn to the question of engi-
neering the output from machine learning schemes. In particular, we examine
techniques for combining different models learned from the data. There are
some surprises in store. For example, it is often advantageous to take the train-
ing data and derive several different training sets from it, learn a model from
each, and combine the resulting models! Indeed, techniques for doing this can
be very powerful. It is, for example, possible to transform a relatively weak 
learning method into an extremely strong one (in a precise sense that we will
explain). Moreover, if several learning schemes are available, it may be advan-
tageous not to choose the best-performing one for your dataset (using cross-
validation) but to use them all and combine the results. Finally, the standard,
obvious way of modeling a multiclass learning situation as a two-class one can
be improved using a simple but subtle technique.
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Many of these results are counterintuitive, at least at first blush. How can it
be a good idea to use many different models together? How can you possibly
do better than choose the model that performs best? Surely all this runs counter
to Occam’s razor, which advocates simplicity. How can you possibly obtain first-
class performance by combining indifferent models, as one of these techniques
appears to do? But consider committees of humans, which often come up with
wiser decisions than individual experts. Recall Epicurus’s view that, faced with
alternative explanations, one should retain them all. Imagine a group of spe-
cialists each of whom excels in a limited domain even though none is competent
across the board. In struggling to understand how these methods work,
researchers have exposed all sorts of connections and links that have led to even
greater improvements.

Another extraordinary fact is that classification performance can often be
improved by the addition of a substantial amount of data that is unlabeled, in
other words, the class values are unknown. Again, this seems to fly directly in
the face of common sense, rather like a river flowing uphill or a perpetual
motion machine. But if it were true—and it is, as we will show you in Section
7.6—it would have great practical importance because there are many situations
in which labeled data is scarce but unlabeled data is plentiful. Read on—and
prepare to be surprised.

7.1 Attribute selection
Most machine learning algorithms are designed to learn which are the most
appropriate attributes to use for making their decisions. For example,
decision tree methods choose the most promising attribute to split on at 
each point and should—in theory—never select irrelevant or unhelpful 
attributes. Having more features should surely—in theory—result in more 
discriminating power, never less. “What’s the difference between theory 
and practice?” an old question asks. “There is no difference,” the answer goes,
“—in theory. But in practice, there is.” Here there is, too: in practice, adding
irrelevant or distracting attributes to a dataset often “confuses” machine learn-
ing systems.

Experiments with a decision tree learner (C4.5) have shown that adding to
standard datasets a random binary attribute generated by tossing an unbiased
coin affects classification performance, causing it to deteriorate (typically by 5%
to 10% in the situations tested). This happens because at some point in the trees
that are learned the irrelevant attribute is invariably chosen to branch on,
causing random errors when test data is processed. How can this be, when deci-
sion tree learners are cleverly designed to choose the best attribute for splitting
at each node? The reason is subtle. As you proceed further down the tree, less
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and less data is available to help make the selection decision. At some point,
with little data, the random attribute will look good just by chance. Because the
number of nodes at each level increases exponentially with depth, the chance of
the rogue attribute looking good somewhere along the frontier multiplies up as
the tree deepens. The real problem is that you inevitably reach depths at which
only a small amount of data is available for attribute selection. If the dataset
were bigger it wouldn’t necessarily help—you’d probably just go deeper.

Divide-and-conquer tree learners and separate-and-conquer rule learners
both suffer from this effect because they inexorably reduce the amount of data
on which they base judgments. Instance-based learners are very susceptible to
irrelevant attributes because they always work in local neighborhoods, taking
just a few training instances into account for each decision. Indeed, it has been
shown that the number of training instances needed to produce a predeter-
mined level of performance for instance-based learning increases exponentially
with the number of irrelevant attributes present. Naïve Bayes, by contrast, does
not fragment the instance space and robustly ignores irrelevant attributes. It
assumes by design that all attributes are independent of one another, an assump-
tion that is just right for random “distracter” attributes. But through this very
same assumption, Naïve Bayes pays a heavy price in other ways because its oper-
ation is damaged by adding redundant attributes.

The fact that irrelevant distracters degrade the performance of state-of-the-
art decision tree and rule learners is, at first, surprising. Even more surprising
is that relevant attributes can also be harmful. For example, suppose that in a
two-class dataset a new attribute were added which had the same value as the
class to be predicted most of the time (65%) and the opposite value the rest of
the time, randomly distributed among the instances. Experiments with standard
datasets have shown that this can cause classification accuracy to deteriorate (by
1% to 5% in the situations tested). The problem is that the new attribute is (nat-
urally) chosen for splitting high up in the tree. This has the effect of fragment-
ing the set of instances available at the nodes below so that other choices are
based on sparser data.

Because of the negative effect of irrelevant attributes on most machine learn-
ing schemes, it is common to precede learning with an attribute selection stage
that strives to eliminate all but the most relevant attributes. The best way to
select relevant attributes is manually, based on a deep understanding of the
learning problem and what the attributes actually mean. However, automatic
methods can also be useful. Reducing the dimensionality of the data by delet-
ing unsuitable attributes improves the performance of learning algorithms. It
also speeds them up, although this may be outweighed by the computation
involved in attribute selection. More importantly, dimensionality reduction
yields a more compact, more easily interpretable representation of the target
concept, focusing the user’s attention on the most relevant variables.
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Scheme-independent selection
When selecting a good attribute subset, there are two fundamentally different
approaches. One is to make an independent assessment based on general char-
acteristics of the data; the other is to evaluate the subset using the machine
learning algorithm that will ultimately be employed for learning. The first is
called the filter method, because the attribute set is filtered to produce the 
most promising subset before learning commences. The second is the wrapper
method, because the learning algorithm is wrapped into the selection proce-
dure. Making an independent assessment of an attribute subset would be easy
if there were a good way of determining when an attribute was relevant to
choosing the class. However, there is no universally accepted measure of “rele-
vance,” although several different ones have been proposed.

One simple scheme-independent method of attribute selection is to use just
enough attributes to divide up the instance space in a way that separates all the
training instances. For example, if just one or two attributes are used, there will
generally be several instances that have the same combination of attribute
values. At the other extreme, the full set of attributes will likely distinguish the
instances uniquely so that no two instances have the same values for all attrib-
utes. (This will not necessarily be the case, however; datasets sometimes contain
instances with the same attribute values but different classes.) It makes intuitive
sense to select the smallest attribute subset that distinguishes all instances
uniquely. This can easily be found using exhaustive search, although at consid-
erable computational expense. Unfortunately, this strong bias toward consis-
tency of the attribute set on the training data is statistically unwarranted and
can lead to overfitting—the algorithm may go to unnecessary lengths to repair
an inconsistency that was in fact merely caused by noise.

Machine learning algorithms can be used for attribute selection. For instance,
you might first apply a decision tree algorithm to the full dataset, and then select
only those attributes that are actually used in the tree. Although this selection
would have no effect at all if the second stage merely built another tree, it will
have an effect on a different learning algorithm. For example, the nearest-
neighbor algorithm is notoriously susceptible to irrelevant attributes, and its
performance can be improved by using a decision tree builder as a filter for
attribute selection first. The resulting nearest-neighbor method can also
perform better than the decision tree algorithm used for filtering. As another
example, the simple 1R scheme described in Chapter 4 has been used to select
the attributes for a decision tree learner by evaluating the effect of branching
on different attributes (although an error-based method such as 1R may not be
the optimal choice for ranking attributes, as we will see later when covering the
related problem of supervised discretization). Often the decision tree performs
just as well when only the two or three top attributes are used for its construc-
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tion—and it is much easier to understand. In this approach, the user determines
how many attributes to use for building the decision tree.

Another possibility is to use an algorithm that builds a linear model—for
example, a linear support vector machine—and ranks the attributes based 
on the size of the coefficients. A more sophisticated variant applies the learning
algorithm repeatedly. It builds a model, ranks the attributes based on the 
coefficients, removes the highest-ranked one, and repeats the process until 
all attributes have been removed. This method of recursive feature elimination
has been found to yield better results on certain datasets (e.g., when iden-
tifying important genes for cancer classification) than simply ranking attrib-
utes based on a single model. With both methods it is important to ensure 
that the attributes are measured on the same scale; otherwise, the coefficients
are not comparable. Note that these techniques just produce a ranking;
another method must be used to determine the appropriate number of attrib-
utes to use.

Attributes can be selected using instance-based learning methods, too. You
could sample instances randomly from the training set and check neighboring
records of the same and different classes—“near hits” and “near misses.” If a
near hit has a different value for a certain attribute, that attribute appears to be
irrelevant and its weight should be decreased. On the other hand, if a near miss
has a different value, the attribute appears to be relevant and its weight should
be increased. Of course, this is the standard kind of procedure used for attrib-
ute weighting for instance-based learning, described in Section 6.4. After repeat-
ing this operation many times, selection takes place: only attributes with positive
weights are chosen. As in the standard incremental formulation of instance-
based learning, different results will be obtained each time the process is
repeated, because of the different ordering of examples. This can be avoided by
using all training instances and taking into account all near hits and near misses
of each.

A more serious disadvantage is that the method will not detect an attribute
that is redundant because it is correlated with another attribute. In the extreme
case, two identical attributes would be treated in the same way, either both
selected or both rejected. A modification has been suggested that appears to go
some way towards addressing this issue by taking the current attribute weights
into account when computing the nearest hits and misses.

Another way of eliminating redundant attributes as well as irrelevant ones is
to select a subset of attributes that individually correlate well with the class but
have little intercorrelation. The correlation between two nominal attributes A
and B can be measured using the symmetric uncertainty:
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where H is the entropy function described in Section 4.3. The entropies are
based on the probability associated with each attribute value; H(A,B), the joint
entropy of A and B, is calculated from the joint probabilities of all combina-
tions of values of A and B. The symmetric uncertainty always lies between 0 
and 1. Correlation-based feature selection determines the goodness of a set of
attributes using

where C is the class attribute and the indices i and j range over all attributes in
the set. If all m attributes in the subset correlate perfectly with the class and with
one another, the numerator becomes m and the denominator becomes ,
which is also m. Hence, the measure is 1, which turns out to be the maximum
value it can attain (the minimum is 0). Clearly this is not ideal, because we want
to avoid redundant attributes. However, any subset of this set will also have value
1. When using this criterion to search for a good subset of attributes it makes
sense to break ties in favor of the smallest subset.

Searching the attribute space
Most methods for attribute selection involve searching the space of attributes
for the subset that is most likely to predict the class best. Figure 7.1 illustrates
the attribute space for the—by now all-too-familiar—weather dataset. The
number of possible attribute subsets increases exponentially with the number
of attributes, making exhaustive search impractical on all but the simplest 
problems.

Typically, the space is searched greedily in one of two directions, top to
bottom or bottom to top in the figure. At each stage, a local change is made to
the current attribute subset by either adding or deleting a single attribute. The
downward direction, where you start with no attributes and add them one at a
time, is called forward selection. The upward one, where you start with the full
set and delete attributes one at a time, is backward elimination.

In forward selection, each attribute that is not already in the current subset
is tentatively added to it and the resulting set of attributes is evaluated—using,
for example, cross-validation as described in the following section. This evalu-
ation produces a numeric measure of the expected performance of the subset.
The effect of adding each attribute in turn is quantified by this measure, the best
one is chosen, and the procedure continues. However, if no attribute produces
an improvement when added to the current subset, the search ends. This is a
standard greedy search procedure and guarantees to find a locally—but not nec-
essarily globally—optimal set of attributes. Backward elimination operates in
an entirely analogous fashion. In both cases a slight bias is often introduced
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toward smaller attribute sets. This can be done for forward selection by insist-
ing that if the search is to continue, the evaluation measure must not only
increase but also must increase by at least a small predetermined quantity. A
similar modification works for backward elimination.

More sophisticated search methods exist. Forward selection and backward
elimination can be combined into a bidirectional search; again one can either
begin with all the attributes or with none of them. Best-first search is a method
that does not just terminate when the performance starts to drop but keeps a
list of all attribute subsets evaluated so far, sorted in order of the performance
measure, so that it can revisit an earlier configuration instead. Given enough
time it will explore the entire space, unless this is prevented by some kind of
stopping criterion. Beam search is similar but truncates its list of attribute
subsets at each stage so that it only contains a fixed number—the beam width—
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of most promising candidates. Genetic algorithm search procedures are loosely
based on the principal of natural selection: they “evolve” good feature subsets
by using random perturbations of a current list of candidate subsets.

Scheme-specific selection
The performance of an attribute subset with scheme-specific selection is meas-
ured in terms of the learning scheme’s classification performance using just
those attributes. Given a subset of attributes, accuracy is estimated using the
normal procedure of cross-validation described in Section 5.3. Of course, other
evaluation methods such as performance on a holdout set (Section 5.3) or the
bootstrap estimator (Section 5.4) could equally well be used.

The entire attribute selection process is computation intensive. If each eval-
uation involves a 10-fold cross-validation, the learning procedure must be exe-
cuted 10 times. With k attributes, the heuristic forward selection or backward
elimination multiplies evaluation time by a factor of up to k2—and for more
sophisticated searches, the penalty will be far greater, up to 2k for an exhaustive
algorithm that examines each of the 2k possible subsets.

Good results have been demonstrated on many datasets. In general terms,
backward elimination produces larger attribute sets, and better classification
accuracy, than forward selection. The reason is that the performance measure
is only an estimate, and a single optimistic estimate will cause both of these
search procedures to halt prematurely—backward elimination with too many
attributes and forward selection with not enough. But forward selection is useful
if the focus is on understanding the decision structures involved, because it often
reduces the number of attributes with only a very small effect on classification
accuracy. Experience seems to show that more sophisticated search techniques
are not generally justified—although they can produce much better results in
certain cases.

One way to accelerate the search process is to stop evaluating a subset of
attributes as soon as it becomes apparent that it is unlikely to lead to higher
accuracy than another candidate subset. This is a job for a paired statistical sig-
nificance test, performed between the classifier based on this subset and all the
other candidate classifiers based on other subsets. The performance difference
between two classifiers on a particular test instance can be taken to be -1, 0, or
1 depending on whether the first classifier is worse, the same as, or better than
the second on that instance. A paired t-test (described in Section 5.5) can be
applied to these figures over the entire test set, effectively treating the results for
each instance as an independent estimate of the difference in performance. Then
the cross-validation for a classifier can be prematurely terminated as soon as it
turns out to be significantly worse than another—which, of course, may never
happen. We might want to discard classifiers more aggressively by modifying
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the t-test to compute the probability that one classifier is better than another
classifier by at least a small user-specified threshold. If this probability becomes
very small, we can discard the former classifier on the basis that it is very unlikely
to perform substantially better than the latter.

This methodology is called race search and can be implemented with differ-
ent underlying search strategies. When used with forward selection, we race all
possible single-attribute additions simultaneously and drop those that do not
perform well enough. In backward elimination, we race all single-attribute dele-
tions. Schemata search is a more complicated method specifically designed for
racing; it runs an iterative series of races that each determine whether or not a
particular attribute should be included. The other attributes for this race are
included or excluded randomly at each point in the evaluation. As soon as one
race has a clear winner, the next iteration of races begins, using the winner as
the starting point. Another search strategy is to rank the attributes first, using,
for example, their information gain (assuming they are discrete), and then race
the ranking. In this case the race includes no attributes, the top-ranked attrib-
ute, the top two attributes, the top three, and so on.

Whatever way you do it, scheme-specific attribute selection by no means
yields a uniform improvement in performance. Because of the complexity of
the process, which is greatly increased by the feedback effect of including a target
machine learning algorithm in the attribution selection loop, it is quite hard to
predict the conditions under which it will turn out to be worthwhile. As in many
machine learning situations, trial and error using your own particular source of
data is the final arbiter.

There is one type of classifier for which scheme-specific attribute selection is
an essential part of the learning process: the decision table. As mentioned in
Section 3.1, the entire problem of learning decision tables consists of selecting
the right attributes to include. Usually this is done by measuring the table’s
cross-validation performance for different subsets of attributes and choosing
the best-performing subset. Fortunately, leave-one-out cross-validation is very
cheap for this kind of classifier. Obtaining the cross-validation error from a deci-
sion table derived from the training data is just a matter of manipulating the
class counts associated with each of the table’s entries, because the table’s struc-
ture doesn’t change when instances are added or deleted. The attribute space is
generally searched by best-first search because this strategy is less likely to
become stuck in a local maximum than others, such as forward selection.

Let’s end our discussion with a success story. One learning method for which
a simple scheme-specific attribute selection approach has shown good results is
Naïve Bayes. Although this method deals well with random attributes, it has the
potential to be misled when there are dependencies among attributes, and par-
ticularly when redundant ones are added. However, good results have been
reported using the forward selection algorithm—which is better able to detect
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when a redundant attribute is about to be added than the backward elimina-
tion approach—in conjunction with a very simple, almost “naïve,” metric that
determines the quality of an attribute subset to be simply the performance of
the learned algorithm on the training set. As was emphasized in Chapter 5, train-
ing set performance is certainly not a reliable indicator of test-set performance.
Nevertheless, experiments show that this simple modification to Naïve Bayes
markedly improves its performance on those standard datasets for which it does
not do so well as tree- or rule-based classifiers, and does not have any negative
effect on results on datasets on which Naïve Bayes already does well. Selective
Naïve Bayes, as this learning method is called, is a viable machine learning tech-
nique that performs reliably and well in practice.

7.2 Discretizing numeric attributes
Some classification and clustering algorithms deal with nominal attributes only
and cannot handle ones measured on a numeric scale. To use them on general
datasets, numeric attributes must first be “discretized” into a small number of
distinct ranges. Even learning algorithms that do handle numeric attributes
sometimes process them in ways that are not altogether satisfactory. Statistical
clustering methods often assume that numeric attributes have a normal distri-
bution—often not a very plausible assumption in practice—and the standard
extension of the Naïve Bayes classifier to handle numeric attributes adopts the
same assumption. Although most decision tree and decision rule learners can
handle numeric attributes, some implementations work much more slowly
when numeric attributes are present because they repeatedly sort the attribute
values. For all these reasons the question arises: what is a good way to discretize
numeric attributes into ranges before any learning takes place?

We have already encountered some methods for discretizing numeric attrib-
utes. The 1R learning scheme described in Chapter 4 uses a simple but effective
technique: sort the instances by the attribute’s value and assign the value into
ranges at the points that the class value changes—except that a certain minimum
number of instances in the majority class (six) must lie in each of the ranges,
which means that any given range may include a mixture of class values. This
is a “global” method of discretization that is applied to all continuous attributes
before learning starts.

Decision tree learners, on the other hand, deal with numeric attributes on a
local basis, examining attributes at each node of the tree when it is being con-
structed to see whether they are worth branching on—and only at that point
deciding on the best place to split continuous attributes. Although the tree-
building method we examined in Chapter 6 only considers binary splits of con-
tinuous attributes, one can imagine a full discretization taking place at that
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7.2 DISCRETIZING NUMERIC AT TRIBUTES 2 9 7

point, yielding a multiway split on a numeric attribute. The pros and cons of
the local versus the global approach are clear. Local discretization is tailored to
the actual context provided by each tree node, and will produce different dis-
cretizations of the same attribute at different places in the tree if that seems
appropriate. However, its decisions are based on less data as tree depth increases,
which compromises their reliability. If trees are developed all the way out to
single-instance leaves before being pruned back, as with the normal technique
of backward pruning, it is clear that many discretization decisions will be based
on data that is grossly inadequate.

When using global discretization before applying a learning method, there
are two possible ways of presenting the discretized data to the learner. The most
obvious is to treat discretized attributes like nominal ones: each discretization
interval is represented by one value of the nominal attribute. However, because
a discretized attribute is derived from a numeric one, its values are ordered, and
treating it as nominal discards this potentially valuable ordering information.
Of course, if a learning scheme can handle ordered attributes directly, the solu-
tion is obvious: each discretized attribute is declared to be of type “ordered.”

If the learning method cannot handle ordered attributes, there is still a simple
way of enabling it to exploit the ordering information: transform each dis-
cretized attribute into a set of binary attributes before the learning scheme is
applied. Assuming the discretized attribute has k values, it is transformed into
k - 1 binary attributes, the first i - 1 of which are set to false whenever the ith
value of the discretized attribute is present in the data and to true otherwise.
The remaining attributes are set to false. In other words, the (i - 1)th binary
attribute represents whether the discretized attribute is less than i. If a decision
tree learner splits on this attribute, it implicitly uses the ordering information
it encodes. Note that this transformation is independent of the particular dis-
cretization method being applied: it is simply a way of coding an ordered attrib-
ute using a set of binary attributes.

Unsupervised discretization
There are two basic approaches to the problem of discretization. One is to quan-
tize each attribute in the absence of any knowledge of the classes of the instances
in the training set—so-called unsupervised discretization. The other is to take
the classes into account when discretizing—supervised discretization. The
former is the only possibility when dealing with clustering problems in which
the classes are unknown or nonexistent.

The obvious way of discretizing a numeric attribute is to divide its range into
a predetermined number of equal intervals: a fixed, data-independent yardstick.
This is frequently done at the time when data is collected. But, like any unsu-
pervised discretization method, it runs the risk of destroying distinctions that

P088407-Ch007.qxd  4/30/05  11:16 AM  Page 297



would have turned out to be useful in the learning process by using gradations
that are too coarse or by unfortunate choices of boundary that needlessly lump
together many instances of different classes.

Equal-interval binning often distributes instances very unevenly: some bins
contain many instances, and others contain none. This can seriously impair the
ability of the attribute to help to build good decision structures. It is often better
to allow the intervals to be of different sizes, choosing them so that the same
number of training examples fall into each one. This method, equal-frequency
binning, divides the attribute’s range into a predetermined number of bins based
on the distribution of examples along that axis—sometimes called histogram
equalization, because if you take a histogram of the contents of the resulting
bins it will be completely flat. If you view the number of bins as a resource, this
method makes best use of it.

However, equal-frequency binning is still oblivious to the instances’ classes,
and this can cause bad boundaries. For example, if all instances in a bin have
one class, and all instances in the next higher bin have another except for the
first, which has the original class, surely it makes sense to respect the class 
divisions and include that first instance in the previous bin, sacrificing the equal-
frequency property for the sake of homogeneity. Supervised discretization—
taking classes into account during the process—certainly has advantages.
Nevertheless, it has been found that equal-frequency binning can yield excellent
results, at least in conjunction with the Naïve Bayes learning scheme, when the
number of bins is chosen in a data-dependent fashion by setting it to the square
root of the number of instances. This method is called proportional k-interval
discretization.

Entropy-based discretization
Because the criterion used for splitting a numeric attribute during the forma-
tion of a decision tree works well in practice, it seems a good idea to extend it
to more general discretization by recursively splitting intervals until it is time
to stop. In Chapter 6 we saw how to sort the instances by the attribute’s value
and consider, for each possible splitting point, the information gain of the
resulting split. To discretize the attribute, once the first split is determined the
splitting process can be repeated in the upper and lower parts of the range, and
so on, recursively.

To see this working in practice, we revisit the example on page 189 for dis-
cretizing the temperature attribute of the weather data, whose values are

64 65 68 69 70 71 72 75 80 81 83 85
no yes

yes no yes yes yes no
yes yes

no yes yes no
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7.2 DISCRETIZING NUMERIC AT TRIBUTES 2 9 9

(Repeated values have been collapsed together.) The information gain for each
of the 11 possible positions for the breakpoint is calculated in the usual way.
For example, the information value of the test temperature < 71.5, which splits
the range into four yes’s and two no’s versus five yes’s and three no’s, is

This represents the amount of information required to specify the individual
values of yes and no given the split. We seek a discretization that makes the
subintervals as pure as possible; hence, we choose to split at the point where the
information value is smallest. (This is the same as splitting where the informa-
tion gain, defined as the difference between the information value without the
split and that with the split, is largest.) As before, we place numeric thresholds
halfway between the values that delimit the boundaries of a concept.

The graph labeled A in Figure 7.2 shows the information values at each pos-
sible cut point at this first stage. The cleanest division—smallest information
value—is at a temperature of 84 (0.827 bits), which separates off just the very
final value, a no instance, from the preceding list. The instance classes are written
below the horizontal axis to make interpretation easier. Invoking the algorithm
again on the lower range of temperatures, from 64 to 83, yields the graph labeled
B. This has a minimum at 80.5 (0.800 bits), which splits off the next two values,
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Figure 7.2 Discretizing the temperature attribute using the entropy method.
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both yes instances. Again invoking the algorithm on the lower range, now from
64 to 80, produces the graph labeled C (shown dotted to help distinguish it from
the others). The minimum is at 77.5 (0.801 bits), splitting off another no
instance. Graph D has a minimum at 73.5 (0.764 bits), splitting off two yes
instances. Graph E (again dashed, purely to make it more easily visible), for the
temperature range 64 to 72, has a minimum at 70.5 (0.796 bits), which splits
off two nos and a yes. Finally, graph F, for the range 64 to 70, has a minimum
at 66.5 (0.4 bits).

The final discretization of the temperature attribute is shown in Figure 7.3.
The fact that recursion only ever occurs in the first interval of each split is an
artifact of this example: in general, both the upper and the lower intervals will
have to be split further. Underneath each division is the label of the graph in
Figure 7.2 that is responsible for it, and below that is the actual value of the split
point.

It can be shown theoretically that a cut point that minimizes the informa-
tion value will never occur between two instances of the same class. This leads
to a useful optimization: it is only necessary to consider potential divisions that
separate instances of different classes. Notice that if class labels were assigned to
the intervals based on the majority class in the interval, there would be no guar-
antee that adjacent intervals would receive different labels. You might be
tempted to consider merging intervals with the same majority class (e.g., the
first two intervals of Figure 7.3), but as we will see later (pages 302–304) this is
not a good thing to do in general.

The only problem left to consider is the stopping criterion. In the tempera-
ture example most of the intervals that were identified were “pure” in that all
their instances had the same class, and there is clearly no point in trying to split
such an interval. (Exceptions were the final interval, which we tacitly decided
not to split, and the interval from 70.5 to 73.5.) In general, however, things are
not so straightforward.
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Figure 7.3 The result of discretizing the temperature attribute.
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A good way to stop the entropy-based splitting discretization procedure turns
out to be the MDL principle that we encountered in Chapter 5. In accordance
with that principle, we want to minimize the size of the “theory” plus the size
of the information necessary to specify all the data given that theory. In this
case, if we do split, the “theory” is the splitting point, and we are comparing the
situation in which we split with that in which we do not. In both cases we assume
that the instances are known but their class labels are not. If we do not split, the
classes can be transmitted by encoding each instance’s label. If we do, we first
encode the split point (in log2[N - 1] bits, where N is the number of instances),
then the classes of the instances below that point, and then the classes of those
above it. You can imagine that if the split is a good one—say, all the classes below
it are yes and all those above are no—then there is much to be gained by split-
ting. If there is an equal number of yes and no instances, each instance costs 1
bit without splitting but hardly more than 0 bits with splitting—it is not quite
0 because the class values associated with the split itself must be encoded, but
this penalty is amortized across all the instances. In this case, if there are many
examples, the penalty of having to encode the split point will be far outweighed
by the information saved by splitting.

We emphasized in Section 5.9 that when applying the MDL principle, the
devil is in the details. In the relatively straightforward case of discretization, the
situation is tractable although not simple. The amounts of information can be
obtained exactly under certain reasonable assumptions. We will not go into the
details, but the upshot is that the split dictated by a particular cut point is worth-
while if the information gain for that split exceeds a certain value that depends
on the number of instances N, the number of classes k, the entropy of the
instances E, the entropy of the instances in each subinterval E1 and E2, and the
number of classes represented in each subinterval k1 and k2:

The first component is the information needed to specify the splitting point;
the second is a correction due to the need to transmit which classes correspond
to the upper and lower subintervals.

When applied to the temperature example, this criterion prevents any split-
ting at all. The first split removes just the final example, and as you can imagine
very little actual information is gained by this when transmitting the classes—
in fact, the MDL criterion will never create an interval containing just one
example. Failure to discretize temperature effectively disbars it from playing any
role in the final decision structure because the same discretized value will be
given to all instances. In this situation, this is perfectly appropriate: the temper-
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ature attribute does not occur in good decision trees or rules for the weather
data. In effect, failure to discretize is tantamount to attribute selection.

Other discretization methods
The entropy-based method with the MDL stopping criterion is one of the best
general techniques for supervised discretization. However, many other methods
have been investigated. For example, instead of proceeding top-down by recur-
sively splitting intervals until some stopping criterion is satisfied, you could
work bottom-up, first placing each instance into its own interval and then con-
sidering whether to merge adjacent intervals. You could apply a statistical crite-
rion to see which would be the best two intervals to merge, and merge them if
the statistic exceeds a certain preset confidence level, repeating the operation
until no potential merge passes the test. The c2 test is a suitable one and has
been used for this purpose. Instead of specifying a preset significance threshold,
more complex techniques are available to determine an appropriate level 
automatically.

A rather different approach is to count the number of errors that a dis-
cretization makes when predicting each training instance’s class, assuming that
each interval receives the majority class. For example, the 1R method described
earlier is error based—it focuses on errors rather than the entropy. However,
the best possible discretization in terms of error count is obtained by using the
largest possible number of intervals, and this degenerate case should be avoided
by restricting the number of intervals in advance. For example, you might ask,
what is the best way to discretize an attribute into k intervals in a way that min-
imizes the number of errors?

The brute-force method of finding the best way of partitioning an attribute
into k intervals in a way that minimizes the error count is exponential in k and
hence infeasible. However, there are much more efficient schemes that are based
on the idea of dynamic programming. Dynamic programming applies not just
to the error count measure but also to any given additive impurity function, and
it can find the partitioning of N instances into k intervals in a way that mini-
mizes the impurity in time proportional to kN 2. This gives a way of finding the
best entropy-based discretization, yielding a potential improvement in the
quality of the discretization (but in practice a negligible one) over the recursive
entropy-based method described previously. The news for error-based dis-
cretization is even better, because there is a method that minimizes the error
count in time linear in N.

Entropy-based versus error-based discretization
Why not use error-based discretization, since the optimal discretization can be
found very quickly? The answer is that there is a serious drawback to error-based
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discretization: it cannot produce adjacent intervals with the same label (such as
the first two of Figure 7.3). The reason is that merging two such intervals will
not affect the error count but it will free up an interval that can be used else-
where to reduce the error count.

Why would anyone want to generate adjacent intervals with the same label?
The reason is best illustrated with an example. Figure 7.4 shows the instance
space for a simple two-class problem with two numeric attributes ranging from
0 to 1. Instances belong to one class (the dots) if their first attribute (a1) is less
than 0.3 or if it is less than 0.7 and their second attribute (a2) is less than 0.5.
Otherwise, they belong to the other class (triangles). The data in Figure 7.4 has
been artificially generated according to this rule.

Now suppose we are trying to discretize both attributes with a view to learn-
ing the classes from the discretized attributes. The very best discretization splits
a1 into three intervals (0 through 0.3, 0.3 through 0.7, and 0.7 through 1.0) and
a2 into two intervals (0 through 0.5 and 0.5 through 1.0). Given these nominal
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Figure 7.4 Class distribution for a two-class, two-attribute problem.

P088407-Ch007.qxd  4/30/05  11:16 AM  Page 303



attributes, it will be easy to learn how to tell the classes apart with a simple deci-
sion tree or rule algorithm. Discretizing a2 is no problem. For a1, however, the
first and last intervals will have opposite labels (dot and triangle, respectively).
The second will have whichever label happens to occur most in the region from
0.3 through 0.7 (it is in fact dot for the data in Figure 7.4). Either way, this label
must inevitably be the same as one of the adjacent labels—of course this is true
whatever the class probability happens to be in the middle region. Thus this dis-
cretization will not be achieved by any method that minimizes the error counts,
because such a method cannot produce adjacent intervals with the same label.

The point is that what changes as the value of a1 crosses the boundary at 0.3
is not the majority class but the class distribution. The majority class remains
dot. The distribution, however, changes markedly, from 100% before the bound-
ary to just over 50% after it. And the distribution changes again as the bound-
ary at 0.7 is crossed, from 50% to 0%. Entropy-based discretization methods
are sensitive to changes in the distribution even though the majority class does
not change. Error-based methods are not.

Converting discrete to numeric attributes
There is a converse problem to discretization. Some learning algorithms—
notably the nearest-neighbor instance-based method and numeric prediction
techniques involving regression—naturally handle only attributes that are
numeric. How can they be extended to nominal attributes?

In instance-based learning, as described in Section 4.7, discrete attributes can
be treated as numeric by defining the “distance” between two nominal values
that are the same as 0 and between two values that are different as 1—regard-
less of the actual values involved. Rather than modifying the distance function,
this can be achieved using an attribute transformation: replace a k-valued
nominal attribute with k synthetic binary attributes, one for each value indi-
cating whether the attribute has that value or not. If the attributes have equal
weight, this achieves the same effect on the distance function. The distance is
insensitive to the attribute values because only “same” or “different” informa-
tion is encoded, not the shades of difference that may be associated with the
various possible values of the attribute. More subtle distinctions can be made if
the attributes have weights reflecting their relative importance.

If the values of the attribute can be ordered, more possibilities arise. For a
numeric prediction problem, the average class value corresponding to each
value of a nominal attribute can be calculated from the training instances and
used to determine an ordering—this technique was introduced for model 
trees in Section 6.5. (It is hard to come up with an analogous way of ordering
attribute values for a classification problem.) An ordered nominal attribute 
can be replaced with an integer in the obvious way—but this implies not just
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an ordering but also a metric on the attribute’s values. The implication of
a metric can be avoided by creating k - 1 synthetic binary attributes for a 
k-valued nominal attribute, in the manner described on page 297. This encod-
ing still implies an ordering among different values of the attribute—adjacent
values differ in just one of the synthetic attributes, whereas distant ones 
differ in several—but it does not imply an equal distance between the attribute
values.

7.3 Some useful transformations
Resourceful data miners have a toolbox full of techniques, such as discretiza-
tion, for transforming data. As we emphasized in Section 2.4, data mining is
hardly ever a matter of simply taking a dataset and applying a learning algo-
rithm to it. Every problem is different. You need to think about the data and
what it means, and examine it from diverse points of view—creatively!—to
arrive at a suitable perspective. Transforming it in different ways can help you
get started.

You don’t have to make your own toolbox by implementing the techniques
yourself. Comprehensive environments for data mining, such as the one
described in Part II of this book, contain a wide range of suitable tools for you
to use. You do not necessarily need a detailed understanding of how they are
implemented. What you do need is to understand what the tools do and how
they can be applied. In Part II we list, and briefly describe, all the transforma-
tions in the Weka data mining workbench.

Data often calls for general mathematical transformations of a set of attrib-
utes. It might be useful to define new attributes by applying specified mathe-
matical functions to existing ones. Two date attributes might be subtracted to
give a third attribute representing age—an example of a semantic transforma-
tion driven by the meaning of the original attributes. Other transformations
might be suggested by known properties of the learning algorithm. If a linear
relationship involving two attributes, A and B, is suspected, and the algorithm
is only capable of axis-parallel splits (as most decision tree and rule learners
are), the ratio A/B might be defined as a new attribute. The transformations are
not necessarily mathematical ones but may involve world knowledge such as
days of the week, civic holidays, or chemical atomic numbers. They could be
expressed as operations in a spreadsheet or as functions that are implemented
by arbitrary computer programs. Or you can reduce several nominal attributes
to one by concatenating their values, producing a single k1 ¥ k2-valued attrib-
ute from attributes with k1 and k2 values, respectively. Discretization converts a
numeric attribute to nominal, and we saw earlier how to convert in the other
direction too.
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As another kind of transformation, you might apply a clustering procedure
to the dataset and then define a new attribute whose value for any given instance
is the cluster that contains it using an arbitrary labeling for clusters. Alterna-
tively, with probabilistic clustering, you could augment each instance with its
membership probabilities for each cluster, including as many new attributes as
there are clusters.

Sometimes it is useful to add noise to data, perhaps to test the robustness of
a learning algorithm. To take a nominal attribute and change a given percent-
age of its values. To obfuscate data by renaming the relation, attribute names,
and nominal and string attribute values—because it is often necessary to
anonymize sensitive datasets. To randomize the order of instances or produce a
random sample of the dataset by resampling it. To reduce a dataset by remov-
ing a given percentage of instances, or all instances that have certain values for
nominal attributes, or numeric values above or below a certain threshold. Or to
remove outliers by applying a classification method to the dataset and deleting
misclassified instances.

Different types of input call for their own transformations. If you can input
sparse data files (see Section 2.4), you may need to be able to convert datasets
to a nonsparse form, and vice versa. Textual input and time series input call for
their own specialized conversions, described in the subsections that follow. But
first we look at two general techniques for transforming data with numeric
attributes into a lower-dimensional form that may be more useful for data
mining.

Principal components analysis
In a dataset with k numeric attributes, you can visualize the data as a cloud of
points in k-dimensional space—the stars in the sky, a swarm of flies frozen in
time, a two-dimensional scatter plot on paper. The attributes represent the co-
ordinates of the space. But the axes you use, the coordinate system itself, is arbi-
trary. You can place horizontal and vertical axes on the paper and represent the
points of the scatter plot using those coordinates, or you could draw an arbi-
trary straight line to represent the X-axis and one perpendicular to it to repre-
sent Y. To record the positions of the flies you could use a conventional
coordinate system with a north–south axis, an east–west axis, and an up–down
axis. But other coordinate systems would do equally well. Creatures such as flies
don’t know about north, south, east, and west—although, being subject to
gravity, they may perceive up–down as being something special. As for the stars
in the sky, who’s to say what the “right” coordinate system is? Over the centuries
our ancestors moved from a geocentric perspective to a heliocentric one to a
purely relativistic one, each shift of perspective being accompanied by turbu-
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lent religious–scientific upheavals and painful reexamination of humankind’s
role in God’s universe.

Back to the dataset. Just as in these examples, there is nothing to stop you
transforming all the data points into a different coordinate system. But unlike
these examples, in data mining there often is a preferred coordinate system,
defined not by some external convention but by the very data itself. Whatever
coordinates you use, the cloud of points has a certain variance in each direc-
tion, indicating the degree of spread around the mean value in that direction.
It is a curious fact that if you add up the variances along each axis and then
transform the points into a different coordinate system and do the same there,
you get the same total variance in both cases. This is always true provided that
the coordinate systems are orthogonal, that is, each axis is at right angles to the
others.

The idea of principal components analysis is to use a special coordinate
system that depends on the cloud of points as follows: place the first axis in the
direction of greatest variance of the points to maximize the variance along that
axis. The second axis is perpendicular to it. In two dimensions there is no
choice—its direction is determined by the first axis—but in three dimensions
it can lie anywhere in the plane perpendicular to the first axis, and in higher
dimensions there is even more choice, although it is always constrained to be
perpendicular to the first axis. Subject to this constraint, choose the second axis
in the way that maximizes the variance along it. Continue, choosing each axis
to maximize its share of the remaining variance.

How do you do this? It’s not hard, given an appropriate computer program,
and it’s not hard to understand, given the appropriate mathematical tools. Tech-
nically—for those who understand the italicized terms—you calculate the
covariance matrix of the original coordinates of the points and diagonalize it to
find the eigenvectors. These are the axes of the transformed space, sorted in order
of eigenvalue—because each eigenvalue gives the variance along its axis.

Figure 7.5 shows the result of transforming a particular dataset with 10
numeric attributes, corresponding to points in 10-dimensional space. Imagine
the original dataset as a cloud of points in 10 dimensions—we can’t draw it!
Choose the first axis along the direction of greatest variance, the second per-
pendicular to it along the direction of next greatest variance, and so on. The
table gives the variance along each new coordinate axis in the order in which
the axes were chosen. Because the sum of the variances is constant regardless of
the coordinate system, they are expressed as percentages of that total. We call
axes components and say that each one “accounts for” its share of the variance.
Figure 7.5(b) plots the variance that each component accounts for against the
component’s number. You can use all the components as new attributes for data
mining, or you might want to choose just the first few, the principal components,
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and discard the rest. In this case, three principal components account for 84%
of the variance in the dataset; seven account for more than 95%.

On numeric datasets it is common to use principal components analysis
before data mining as a form of data cleanup and attribute generation. For
example, you might want to replace the numeric attributes with the principal
component axes or with a subset of them that accounts for a given proportion—
say, 95%—of the variance. Note that the scale of the attributes affects the
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Figure 7.5 Principal components transform of a dataset: (a) variance of each compo-
nent and (b) variance plot.
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outcome of principal components analysis, and it is common practice to stan-
dardize all attributes to zero mean and unit variance first.

Another possibility is to apply principal components analysis recursively in
a decision tree learner. At each stage an ordinary decision tree learner chooses
to split in a direction that is parallel to one of the axes. However, suppose a prin-
cipal components transform is performed first, and the learner chooses an axis
in the transformed space. This equates to a split along an oblique line in the
original space. If the transform is performed afresh before each split, the result
will be a multivariate decision tree whose splits are in directions that are not
parallel with the axes or with one another.

Random projections
Principal components analysis transforms the data linearly into a lower-
dimensional space. But it’s expensive. The time taken to find the trans-
formation (which is a matrix comprising the eigenvectors of the covariance
matrix) is cubic in the number of dimensions. This makes it infeasible for
datasets with a large number of attributes. A far simpler alternative is to use a
random projection of the data into a subspace with a predetermined number
of dimensions. It’s very easy to find a random projection matrix. But will it be
any good?

In fact, theory shows that random projections preserve distance relationships
quite well on average. This means that they could be used in conjunction with
kD-trees or ball trees to do approximate nearest-neighbor search in spaces with
a huge number of dimensions. First transform the data to reduce the number
of attributes; then build a tree for the transformed space. In the case of nearest-
neighbor classification you could make the result more stable, and less depend-
ent on the choice of random projection, by building an ensemble classifier that
uses multiple random matrices.

Not surprisingly, random projections perform worse than ones carefully
chosen by principal components analysis when used to preprocess data for a
range of standard classifiers. However, experimental results have shown that the
difference is not too great—and that it tends to decrease as the number of
dimensions increase. And of course, random projections are far cheaper 
computationally.

Text to attribute vectors
In Section 2.4 we introduced string attributes that contain pieces of text and
remarked that the value of a string attribute is often an entire document. String
attributes are basically nominal, with an unspecified number of values. If they
are treated simply as nominal attributes, models can be built that depend on
whether the values of two string attributes are equal or not. But that does not
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capture any internal structure of the string or bring out any interesting aspects
of the text it represents.

You could imagine decomposing the text in a string attribute into paragraphs,
sentences, or phrases. Generally, however, the word is the most useful unit. The
text in a string attribute is usually a sequence of words, and is often best repre-
sented in terms of the words it contains. For example, you might transform the
string attribute into a set of numeric attributes, one for each word, that repre-
sent how often the word appears. The set of words—that is, the set of new attrib-
utes—is determined from the dataset and is typically quite large. If there are
several string attributes whose properties should be treated separately, the new
attribute names must be distinguished, perhaps by a user-determined prefix.

Conversion into words—tokenization—is not such a simple operation as it
sounds. Tokens may be formed from contiguous alphabetic sequences with non-
alphabetic characters discarded. If numbers are present, numeric sequences may
be retained too. Numbers may involve + or - signs, may contain decimal points,
and may have exponential notation—in other words, they must be parsed
according to a defined number syntax. An alphanumeric sequence may be
regarded as a single token. Perhaps the space character is the token delimiter;
perhaps white space (including the tab and new-line characters) is the delim-
iter, and perhaps punctuation is, too. Periods can be difficult: sometimes they
should be considered part of the word (e.g., with initials, titles, abbreviations,
and numbers), but sometimes they should not (e.g., if they are sentence delim-
iters). Hyphens and apostrophes are similarly problematic.

All words may be converted to lowercase before being added to the diction-
ary. Words on a fixed, predetermined list of function words or stopwords—such
as the, and, and but—could be ignored. Note that stopword lists are language
dependent. In fact, so are capitalization conventions (German capitalizes all
nouns), number syntax (Europeans use the comma for a decimal point), punc-
tuation conventions (Spanish has an initial question mark), and, of course, char-
acter sets. Text is complicated!

Low-frequency words such as hapax legomena3 are often discarded, too.
Sometimes it is found beneficial to keep the most frequent k words after stop-
words have been removed—or perhaps the top k words for each class.

Along with all these tokenization options, there is also the question of
what the value of each word attribute should be. The value may be the word
count—the number of times the word appears in the string—or it may simply
indicate the word’s presence or absence. Word frequencies could be normalized to
give each document’s attribute vector the same Euclidean length. Alternatively,

3 1 0 CHAPTER 7 | TRANSFORMATIONS: ENGINEERING THE INPUT AND OUTPUT

3 A hapax legomena is a word that only occurs once in a given corpus of text.
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the frequencies fij for word i in document j can be transformed in various stan-
dard ways. One standard logarithmic term frequency measure is log (1 + fij). A
measure that is widely used in information retrieval is TF ¥ IDF, or “term fre-
quency times inverse document frequency.” Here, the term frequency is modu-
lated by a factor that depends on how commonly the word is used in other
documents. The TF ¥ IDF metric is typically defined as

The idea is that a document is basically characterized by the words that appear
often in it, which accounts for the first factor, except that words used in every
document or almost every document are useless as discriminators, which
accounts for the second. TF ¥ IDF is used to refer not just to this particular
formula but also to a general class of measures of the same type. For example,
the frequency factor fij may be replaced by a logarithmic term such as log 
(1 + fij).

Time series
In time series data, each instance represents a different time step and the attrib-
utes give values associated with that time—such as in weather forecasting 
or stock market prediction. You sometimes need to be able to replace an
attribute’s value in the current instance with the corresponding value in 
some other instance in the past or the future. It is even more common to replace
an attribute’s value with the difference between the current value and the 
value in some previous instance. For example, the difference—often called the
Delta—between the current value and the preceding one is often more 
informative than the value itself. The first instance, in which the time-shifted
value is unknown, may be removed, or replaced with a missing value. The Delta
value is essentially the first derivative scaled by some constant that depends 
on the size of the time step. Successive Delta transformations take higher 
derivatives.

In some time series, instances do not represent regular samples, but the time
of each instance is given by a timestamp attribute. The difference between time-
stamps is the step size for that instance, and if successive differences are taken
for other attributes they should be divided by the step size to normalize the
derivative. In other cases each attribute may represent a different time, rather
than each instance, so that the time series is from one attribute to the next rather
than from one instance to the next. Then, if differences are needed, they must
be taken between one attribute’s value and the next attribute’s value for each
instance.

f
i

ij log .
number of documents

number of documents that include word

P088407-Ch007.qxd  4/30/05  11:16 AM  Page 311



7.4 Automatic data cleansing
A problem that plagues practical data mining is poor quality of the data. Errors
in large databases are extremely common. Attribute values, and class values too,
are frequently unreliable and corrupted. Although one way of addressing this
problem is to painstakingly check through the data, data mining techniques
themselves can sometimes help to solve the problem.

Improving decision trees
It is a surprising fact that decision trees induced from training data can often
be simplified, without loss of accuracy, by discarding misclassified instances
from the training set, relearning, and then repeating until there are no misclas-
sified instances. Experiments on standard datasets have shown that this hardly
affects the classification accuracy of C4.5, a standard decision tree induction
scheme. In some cases it improves slightly; in others it deteriorates slightly. The
difference is rarely statistically significant—and even when it is, the advantage
can go either way. What the technique does affect is decision tree size. The result-
ing trees are invariably much smaller than the original ones, even though they
perform about the same.

What is the reason for this? When a decision tree induction method prunes
away a subtree, it applies a statistical test that decides whether that subtree is
“justified” by the data. The decision to prune accepts a small sacrifice in classi-
fication accuracy on the training set in the belief that this will improve test-set
performance. Some training instances that were classified correctly by the
unpruned tree will now be misclassified by the pruned one. In effect, the deci-
sion has been taken to ignore these training instances.

But that decision has only been applied locally, in the pruned subtree. Its
effect has not been allowed to percolate further up the tree, perhaps resulting
in different choices being made of attributes to branch on. Removing the mis-
classified instances from the training set and relearning the decision tree is just
taking the pruning decisions to their logical conclusion. If the pruning strategy
is a good one, this should not harm performance. It may even improve it by
allowing better attribute choices to be made.

It would no doubt be even better to consult a human expert. Misclassified
training instances could be presented for verification, and those that were found
to be wrong could be deleted—or better still, corrected.

Notice that we are assuming that the instances are not misclassified in any
systematic way. If instances are systematically corrupted in both training and
test sets—for example, one class value might be substituted for another—it is
only to be expected that training on the erroneous training set would yield better
performance on the (also erroneous) test set.
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Interestingly enough, it has been shown that when artificial noise is added to
attributes (rather than to classes), test-set performance is improved if the same
noise is added in the same way to the training set. In other words, when attrib-
ute noise is the problem it is not a good idea to train on a “clean” set if per-
formance is to be assessed on a “dirty” one. A learning method can learn to
compensate for attribute noise, in some measure, if given a chance. In essence,
it can learn which attributes are unreliable and, if they are all unreliable, how
best to use them together to yield a more reliable result. To remove noise from
attributes for the training set denies the opportunity to learn how best to combat
that noise. But with class noise (rather than attribute noise), it is best to train
on noise-free instances if possible.

Robust regression
The problems caused by noisy data have been known in linear regression for
years. Statisticians often check data for outliers and remove them manually. In
the case of linear regression, outliers can be identified visually—although it is
never completely clear whether an outlier is an error or just a surprising, but
correct, value. Outliers dramatically affect the usual least-squares regression
because the squared distance measure accentuates the influence of points far
away from the regression line.

Statistical methods that address the problem of outliers are called robust. One
way of making regression more robust is to use an absolute-value distance
measure instead of the usual squared one. This weakens the effect of outliers.
Another possibility is to try to identify outliers automatically and remove them
from consideration. For example, one could form a regression line and then
remove from consideration those 10% of points that lie furthest from the line.
A third possibility is to minimize the median (rather than the mean) of the
squares of the divergences from the regression line. It turns out that this esti-
mator is very robust and actually copes with outliers in the X-direction as 
well as outliers in the Y-direction—which is the normal direction one thinks of
outliers.

A dataset that is often used to illustrate robust regression is the graph of inter-
national telephone calls made from Belgium from 1950 to 1973, shown in Figure
7.6. This data is taken from the Belgian Statistical Survey published by the Min-
istry of Economy. The plot seems to show an upward trend over the years, but
there is an anomalous group of points from 1964 to 1969. It turns out that
during this period, results were mistakenly recorded in the total number of
minutes of the calls. The years 1963 and 1970 are also partially affected. This
error causes a large fraction of outliers in the Y-direction.

Not surprisingly, the usual least-squares regression line is seriously affected
by this anomalous data. However, the least median of squares line remains
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remarkably unperturbed. This line has a simple and natural interpretation. Geo-
metrically, it corresponds to finding the narrowest strip covering half of the
observations, where the thickness of the strip is measured in the vertical direc-
tion—this strip is marked gray in Figure 7.6; you need to look closely to see it.
The least median of squares line lies at the exact center of this band. Note that
this notion is often easier to explain and visualize than the normal least-squares
definition of regression. Unfortunately, there is a serious disadvantage to
median-based regression techniques: they incur a high computational cost,
which often makes them infeasible for practical problems.

Detecting anomalies
A serious problem with any form of automatic detection of apparently incor-
rect data is that the baby may be thrown out with the bathwater. Short of con-
sulting a human expert, there is really no way of telling whether a particular
instance really is an error or whether it just does not fit the type of model that
is being applied. In statistical regression, visualizations help. It will usually be
visually apparent, even to the nonexpert, if the wrong kind of curve is being
fitted—a straight line is being fitted to data that lies on a parabola, for example.
The outliers in Figure 7.6 certainly stand out to the eye. But most problems
cannot be so easily visualized: the notion of “model type” is more subtle than a
regression line. And although it is known that good results are obtained on most
standard datasets by discarding instances that do not fit a decision tree model,
this is not necessarily of great comfort when dealing with a particular new
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Figure 7.6 Number of international phone calls from Belgium, 1950–1973.
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dataset. The suspicion will remain that perhaps the new dataset is simply
unsuited to decision tree modeling.

One solution that has been tried is to use several different learning schemes—
such as a decision tree, and a nearest-neighbor learner, and a linear discrimi-
nant function—to filter the data. A conservative approach is to ask that all three
schemes fail to classify an instance correctly before it is deemed erroneous and
removed from the data. In some cases, filtering the data in this way and using
the filtered data as input to a final learning scheme gives better performance
than simply using the three learning schemes and letting them vote on the
outcome. Training all three schemes on the filtered data and letting them vote
can yield even better results. However, there is a danger to voting techniques:
some learning algorithms are better suited to certain types of data than others,
and the most appropriate method may simply get out-voted! We will examine
a more subtle method of combining the output from different classifiers, called
stacking, in the next section. The lesson, as usual, is to get to know your data
and look at it in many different ways.

One possible danger with filtering approaches is that they might con-
ceivably just be sacrificing instances of a particular class (or group of classes) 
to improve accuracy on the remaining classes. Although there are no general
ways to guard against this, it has not been found to be a common problem in
practice.

Finally, it is worth noting once again that automatic filtering is a poor sub-
stitute for getting the data right in the first place. If this is too time consuming
and expensive to be practical, human inspection could be limited to those
instances that are identified by the filter as suspect.

7.5 Combining multiple models
When wise people make critical decisions, they usually take into account the
opinions of several experts rather than relying on their own judgment or that
of a solitary trusted adviser. For example, before choosing an important new
policy direction, a benign dictator consults widely: he or she would be ill advised
to follow just one expert’s opinion blindly. In a democratic setting, discussion
of different viewpoints may produce a consensus; if not, a vote may be called
for. In either case, different expert opinions are being combined.

In data mining, a model generated by machine learning can be regarded as
an expert. Expert is probably too strong a word!—depending on the amount
and quality of the training data, and whether the learning algorithm is appro-
priate to the problem at hand, the expert may in truth be regrettably ignorant—
but we use the term nevertheless. An obvious approach to making decisions
more reliable is to combine the output of different models. Several machine
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