An Introduction to Graph Mining

Hossein Rahmani

hrahmani@liacs.nl

8 December 2009

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

Outline

From Data Mining To Graph Mining

- Graph Algorithms
- Function Prediction in PPI Networks

© Original Artist

Burt discovers his life's path.

From Data Mining To Graph Mining

Data Mining

- Classification
- Clustering
- Association rule learning
- Graph Mining
 - Powerful way to represent data
 - output: expressed as graphs

4 D N 4 B N 4 B N 4 B

Graph Mining Domains

- Internet Movie Database
- Web Data
- Social Networks Analysis
- Bio-Informatics

Lawrence B. Holder

Diane J. Cook

< ロ > < 同 > < 回 > < 回 >

Internet Movie Database

- Movie Recommendation
- Community Detection
- Prediction: \$2 million in opening weekend

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

-

Web Mining

Web Content Mining

 Topic Prediction

 Web Structure Mining

 Community Mining

 Web Usage Mining

 Website Roadmap

< 17 ▶

4 3 > 4 3

Social Networks

- Relationships and flows between people
- Technologies
 - Email, Blogs
 - Social Networking Software like Orkut, FaceBook
- Questions:
 - Who has control over what flows in the Network?
 - Who has best visibility of what is happening in the Network?
 - Customer Network Value

Protein-Protein Interaction(PPI) Network

- Nodes: Proteins
- Edges: Interaction among the Proteins
- Open Problems:
 - Function Prediction
 - Drug Discovery

Function Prediction in PPI Networks

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

Drug Discovery in PPI Networks

Known Protein Targets

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

8 December 2009 10 / 49

< ロ > < 同 > < 回 > < 回 >

Outline

From Data Mining To Graph Mining

Graph Algorithms

- Some Definitions
- Graph Matching
- Graph Compression
- Graph based Decision Tree

Function Prediction in PPI Networks

© Original Artist Reproduction rights obtainable from www.CartoonStock.com

Burt discovers his life's path.

Graph Definition

Graph: G = (V ,E, μ, ν)

- V : finite set of nodes.
- $E \subseteq V \times V$ denotes a set of edges.
- $\mu: V \rightarrow L_V$ denotes a node labeling function.
- $v: E \rightarrow L_E$ denotes an edge labeling function.
- Let G₁ = (V₁, E₁, µ1, v₁) and G₂ = (V₂, E₂, µ₂, v₂)
 Graph G₁ is a subgraph of G₂, written G₁ ⊆ G₂, if:

•
$$V_1 \subseteq V_2$$

• $E_1 \subseteq E_2$
• $\mu_1(u) = \mu_2(u)$ for all $u \in V_1$.
• $v_1(u, v) = v_2(u, v)$ for all $(u, v) \in E_1$

Graph Definition

- Let $G_1 = (V_1, E_1, \mu_1, v_1)$ and $G_2 = (V_2, E_2, \mu_2, v_2)$,
- A graph isomorphism between G_1 and G_2 is a bijective function $f: V_1 \rightarrow V_2$ satisfying
 - $\mu_1(u) = \mu_2(f(u))$ for all nodes $u \in V_1$.
 - For every edge $e_1 = (u, v) \in E_1$, there exists an edge $e_2 = (f(u), f(v)) \in E_2$ such that $v_1(e_1) = v_2(e_2)$.

Graph (b) is isomorphic to (a) and (c) is isomorphic to a subgraph of (a)

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

8 December 2009 13 / 49

Graph Definition

- Let G1 = (V_1, E_1, μ_1, v_1) and $G_2 = (V_2, E_2, \mu_2, v_2)$
- Any bijective function $f : \hat{V}_1 \to \hat{V}_2$, where $\hat{V}_1 \subseteq V_1$ and $\hat{V}_2 \subseteq V_2$ is called edit path from G_1 to G_2 .
- Example: $f = \{u_1 \rightarrow v_3, u_2 \rightarrow \epsilon, ..., \epsilon \rightarrow v_6\}$
- $u_1 \rightarrow v_3$: Substitution of node $u_1 \in V_1$ by node $v_3 \in V_2$
- $u_2 \rightarrow \epsilon$: Deletion of node $u_2 \in V_1$
- $\epsilon \rightarrow v_6$: Insertion of $v_6 \in V_2$

Frequent Subgraph

Frequent subgraphs:

support (subgraph) >= minimum support

Usage:

- Graph Classification
- Graph Clustering
- Graph Indexing
- Detection Algorithms:
 - Apriori-Based Approach
 - Pattern Growth Approach

< ロ > < 同 > < 回 > < 回 >

Apriori-Based Approach

```
1: S_{k+1} \leftarrow \emptyset;

2: for each frequent g_i \in S_k do

3: for each frequent g_j \in S_k do

4: for each size (k+1) graph g formed by the merge of

g_i and g_j do

5: if g is frequent in D and g \notin S_{k+1} then

6: insert g to S_{k+1};

7: if s_{k+1} \neq \emptyset then

8: call Apriori(D, min_support, S_{k+1});

9: return;
```


An Introduction to Graph Mining

Pattern Growth Approach

- A graph *G* is extended by adding new edge *e*.
- Edge *e* may or may not introduce a new node to *G*.

Graph Compression

2

3 > 4 3

< 🗇 >

Graph Compression

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

Graph Compression

- *S_i* compresses the input DNA.
- Cluster hierarchy

• • • • • • • • • • • • •

- Decision Tree
 - Each branch corresponds to attribute value
 - Each leaf node assigns a classification

A B F A B F

< 6 b

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

2

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

イロト イヨト イヨト イヨト

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

Outline

From Data Mining To Graph Mining
 Graph Algorithms
 Function Prediction in PPI Networks

© Original Artist

Burt discovers his life's path.

Function Prediction in PPI Networks

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

8 December 2009 26 / 49

Formal Description of PPI Networks

Represented as an undirected graph

- Node set $V \rightarrow$ Proteins
- Edge set $E \rightarrow$ Direct interaction
- $\forall v \in V$ is described by a description $d(v) \in D$
 - d(v) derived from the network structure
 - No additional information, such as the protein structure is available
- $\forall v \in V$ optionally is annotated with a label $I(v) \in L$
 - Labels *I(v)* are sets of protein functions
 - E.g., metabolism, transcription, protein synthesis and etc
- We assume there is a true labeling function λ that is $l(v) = \lambda(v)$ where l(v) is defined
- Task: Find a suitable $\lambda(v)$ where I(v) is not defined

Related Works

Transductive approaches

- Local: Majority Rule and its extensions
- Global: Global Optimization and Functional Clustering
- Inductive approaches
 - Local: Topological Redundancies
 - Global: ? → Our Method

Schwikowski,B

przulj,N

< 回 > < 回 > < 回 >

Majority Rule

- Local transductive method
- Assumption: Two Interacting proteins have something in common (e.g., same function)
- Predicted function: Most common function(s) among classified partners

4 6 1 1 4

Majority Rule

- Problem: Links unclassified-unclassified proteins completely neglected
- Solution: Global optimization methods

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

< ロ > < 同 > < 回 > < 回 >

Functional Clustering

- Global transductive method
- Assumption: Dense regions are a sign of the common involvement in biological process
- Predict the function of unclassified protein based on the cluster they belong to

Our Method: A Global Description of Proteins

- Global inductive approach
- Node description
 - N nodes in the network numbered from 1 to N
 - Each node is described by an *n*-dimensional vector
 - i'th component in the vector of node v gives the length of shortest path between v and node i
 - Probelm: Large Graph → very high dimensional descriptions
 - Solution: Reduce dimensionality by focusing on shortest-path distance to a few "important" nodes
 - Feature selection problem

Rahmani, H

Blockeel, H

Bender, A

Important Proteins

- Definition: Node *i* is important if the shortest-path distance of some node *v* to node *i* is likely to be relevant for *v*'s classification
- Feature f_i denotes the shortest-path distance to node i
- Anova based feature selection
 - For each function *j*, let *G_j* be the set of all proteins that have that function *j*
 - Let \overline{f}_{ij} be the average f_i value in G_j
 - Let $var(f_{ij})$ the variance of the f_i in G_j
 - Anova (analysis of variance) based relevancy measure:

$$A_{i} = \frac{Var_{i}[\bar{f}_{ij}]}{Mean_{j}[var(f_{ij})]}$$
(1)

• A high A_i denotes a high relevance of feature f_i

Important Proteins

Hossein Rahmani (LIACS)

Comparison of Learners

- Random Forest performs best among all the learners in 13 out of 17 cases
- Other 4 cases are all characterized by a very high class skew
- Random Forest: Best candidate for learning from this type of data

Hossein Rahmani (LIACS)

Different Number of Important Proteins

- We select the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200 and 300 most important proteins.
- Describe each protein using its distance to the *n* most important proteins.
- Using random forest for function prediction and record precision, recall, F-measure and AUC.
- In 4 Datasets for 17 functions.
- The shape of the curves is qualitatively very similar in all cases.
Less than 10 Important Proteins

- Bad Bad predictive performance.
- They do not reach their maximum.

Hossein Rahmani (LIACS)

10-50 Important Proteins

There is usually a major improvement in all four metrics.

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

8 December 2009 38 / 49

50-70 Important Proteins

For most of the functions, selecting 50-70 important proteins is enough to obtain good classication results.

Hossein Rahmani (LIACS)

< ロ > < 同 > < 回 > < 回 >

Conclusions

- Graph Mining Domains
- Introduction to Graph Algorithms
 - Graph Matching
 - Graph Compression
 - Graph based Decision Tree
- Protein Function prediction

< 6 b

The second se

Thanks!

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

æ

- Cook, D. J. and Holder, L. B. 2006 Mining Graph Data. John Wiley & Sons.
- Rahmani, H., Blockeel, H. and Bender, A., Proc. 3rd Int. Workshop in Machine Learn. Syst. Biol. (MLSB09) 2009 85 – 94.

3

Transductive Learning

- Task: Predict the label of all the nodes
- Input: G = (V, E, d, I) with I a partial function
- Output: Complete version G' = (V, E, d, l') with l' a complete function that is consistent with l
- I' should approximates λ by optimization criterion o
- o expresses our assumption about λ
 - E.g., directly connected nodes tend to have similar labels
 - Number of {v₁, v₂} edges where l'(v₁) ≠ l'(v₂) edges should be minimal
- Our assumption about λ is called bias of transductive learner

Inductive Learning

- Task: Learn a function $f : D \rightarrow L$ that maps a node description d(v) onto its label I(v)
- Input: G = (V, E, d, I) with I a partial function
- Output: $f: D \rightarrow L$ such that f(d(v)) = I(v)
- Note: f differs from I in that it maps D, not V, onto L
 - It can make prediction for node v that is not in the original network, as long as d(v) is known
- Biases
 - Transductive bias: Assumption expressed by optimization criterion o
 - Description bias D
 - Inductive bias: Choice of learning algorithm that is used to learn f from (d(v), l(v)) couples

Global Optimization

- Global transductive method
- Links unclassified/unclassified proteins also taken into account
- Any probable function assignment to the whole set of unclassified proteins is considered
 - Counting number of interacting pairs with no common functions
 - Select the function assignment with lowest value

不同 トイモトイモ

Local inductive method

- Node description d(v) is built based on the local neighborhood
- Count number of patterns (e.g., graphlet) around the proteins
- Make the signature vector for each protein
- Assumption: Proteins with high similar signature vector have same functions

3

イロト イポト イラト イラト

Some topological patterns (Number of considered patterns = 73)

- Orbit: One of the previous patterns
- Same orbit frequency → same function

Signatures of proteins with similarities above 0.90

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

8 December 2009 47 / 49

Local inductive method

- Node description d(v) is built based on the local neighborhood
- Count number of patterns (e.g., graphlet) around the proteins
- Make the signature vector for each protein
- Assumption: Proteins with high similar signature vector have same functions

3

イロト イポト イラト イラト

Some topological patterns (Number of considered patterns = 73)

- Orbit: One of the previous patterns
- Same orbit frequency → same function

Signatures of proteins with similarities above 0.90

Hossein Rahmani (LIACS)

An Introduction to Graph Mining

8 December 2009 49 / 49