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Assumptions on graphs 

• Undirected 

• Connected 

• Labeled vertices and edges (not necessarily 
uniquely) 



Graph isomorphism 

• Subgraph isomorphism 

– Given two graphs G1 = (V1, E1) and G2 = (V2, E2), 
find an isomorphism between G2 and a subgraph 
of G1 (≈ determine whether or not G2 is included 
in G1) 



Graph isomorphism 

• Canonical labeling 

– Unique code for the set of graphs with the same 
topological structure and the same labeling 

– In most cases: 

• Flattened representation of the adjacency matrix 

• Try all permutations in order to find minimum (or 
maximum) according to lexicographic ordering 



Graph isomorphism 

• Simple examples of codes and canonical 
adjacency matrices (from FSG): 



Graph isomorphism 

• Both problems are not known to be either in P 
or in NP-complete 

– In practice: complexity of canonical labeling is 
reduced by using various heuristics and properties 
in set of graphs 

 



Two forms of the input 

• Graph-transaction setting 

– Set of relatively small graphs (transactions) 

– Frequency (of a pattern): number of graph 
transactions that the pattern occurs in  



Two forms of the input 

• Single-graph setting 
– One large graph 

– Frequency: number of pattern occurrences in the 
single graph. 

– Counting the frequency of edge-disjoint embeddings 
(using maximum independent set) 

– Algorithms can be adapted to solve the first group 

– Examples of algorithms: SUBDUE, SEuS, GREW, 
SIGRAM, GBI 

– Not discussed further 

 



Two forms of the input 

Example: 

 

 

 

 

 
Overlapped embeddings: (a) subgraph, (b) input graph,     
(c) embedding 1, (d) embedding 2, (e) embedding 3 



Completeness of algorithms 

• Complete algorithms 

– All frequent patterns that satisfy a given 
specification (e.g. minimum support threshold) 

– May become unfeasible 

• Heuristic algorithms 

– Return only a subset of all frequent patterns 
(approximate solution) 



Apriori-based algorithms 

• FSG [3] 

– Complete 

– Transactional setting, connected graphs 

– Level-by-level expansion as in Apriori 

– Features: 

1. Sparse graph representation 

2. Adding one edge at a time 

3. Using canonical labeling and graph isomorphism 

4. Scales (linearly) with the database size 



Apriori-based algorithms 

• FFSM (Fast Frequent Subgraph Mining) [4] 

– Canonical form: appended columns from 
adjacency matrix 

– Competitive with gSpan 

– Algebraic graph framework 



Apriori-based algorithms 

• AGM (Apriori-based Graph Mining) [5] 
– Code of Adjacency Matrix 

 

 

 

 

• AcGM [6] 
• Complete search of frequent connected (induced) subgraphs 

in a massive labeled graph dataset within highly practical 
time 



Apriori-based algorithms 

• Warmr [7] 

– ILP data mining algorithm 

– Datalog to represent both data and patterns 

– Patterns can reflect one-to-many and many-to-
many relationships 

 

 



Pattern growth algorithms 

• gSpan (graph-based Substructure pattern 
mining) [8] 

– Without candidate generation 

– Adopts depth-first search strategy to mine 
frequent connected subgraphs 

– Canonical labeling based on DFS traversing of 
graph 

– Outperforms FSG 

 

 



Pattern growth algorithms 

• GASTON (GrAph/Sequence/Tree extractiON) [9] 

– “Quickstart principle” 

• Various substructures are contained in each other 

• First consider paths, then transform them to trees and finally 
transform trees to graphs 

• More efficient algorithms for simple substructures, advanced 
algorithms only when really needed 

– Observation: most frequent substructures in practical 
graph databases are free trees (trees with no vertex 
designated as a root) 
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