
PV213 EIS in Practice: 10 - Testing 1

Enterprise information systems in practise

SW TESTING

Ing. Daniel Mika, Ph.D. (daniel.mika@atos.net)

Two hours in the course

7 years of praxis in IT (ANF Data, SIS, Atos)

Area of interest: test and acceptance criteria, quality

Projects: IMS, WiMAX, ChargingSpot, sLIM

ISTQB certified tester – foundation level

PV213 EIS in Practice: 10 - Testing 2

Content (1)

Purpose of testing

Basic test principles

Test process

Multilevel testing

Static techniques

Blackbox vs. Whitebox testing

Test management (Test Plan)

PV213 EIS in Practice: 10 - Testing 3

Content (2)

Risk-based testing strategy

Test exit criteria

Test-driven development

Combinatorial testing

Test automation and regression testing

Test tools in praxis

PV213 EIS in Practice: 10 - Testing 4

Historical view

Show it works
(demonstration)

1950s view

Find defects
(detection)

1975s view

Measure quality
Evaluation
(prediction)

1980s view

Influence quality
Control quality
(prevention)

1990s view

Optimisation
Improvement
(process)

2000s view

Time

PV213 EIS in Practice: 10 - Testing 5

Cost Effort

Time

Release

Good testing

No testing

Until end of realization
No testing approach is cheaper

It’s no what it costs,
It’s what it saves.
 Rex Black

PV213 EIS in Practice: 10 - Testing 6

Tests as % of overall development

Internal survey of teams in UK (25%)

Internal survey (30%)

Microsoft, Borland, Novell, WordPerfect (33%)

Microsoft Windows (50%)

Lotus 1-2-3 (66%)

Aerospace, Nuclear Power Plants, … (90%)

0%

Testing @ Microsoft

 Nearly 10 000 Testers

 Tester to Developer ration – roughly 1:1

 Flagship projects 10’s of millions of lines code

 Millions of tests

 6.7 million automated tests in Vista

 Nearly 15 million entries into bug and project

management tool every year

PV213 EIS in Practice: 10 - Testing 7

PV213 EIS in Practice: 10 - Testing 8

Purpose of testing

Why testing ?

SW works unexpectly => many problems (loosing

money, time or bussines reputation

Cause injury or death !

Human activity -> error (mistake), which produces a defect

(fault,bug) int the program code or documentation

If defect is executed : system may fail (or do something it

shouldn’t)

Defects in software, system or document may result in

failures, but not all defect do so

PV213 EIS in Practice: 10 - Testing 9

Purpose of testing

Defect origin

Time pressure

Complex code

Complexity of infrastructure

Changing technologies

Failure origin

Environmental conditions (radiation, magnetism,

electronic fields, pollution …)

Change of HW conditions

PV213 EIS in Practice: 10 - Testing 10

Purpose of testing

Role of testing in Software Development, Maintenance and

Operations

Reduce risk of problems occuring during operation

Contribute to the quality of SW system

Requirement in contract, industry-specific standards

Quality assurance activity

How much testing needed ?

Depends on the level of risk (technical, business, safety) and

project constraints (time, budget)

Should provide sufficient information to stakeholders to make

decision about the release for the next development phase or

handover to the customers

PV213 EIS in Practice: 10 - Testing 11

Purpose of testing

What is TESTING (SW product) ???

Common understanding : execution of SW

Testing activities

Planning and control

Choosing test conditions

Designing and executin test cases

Checking results

Evaluating exit criteria

Reporting results

Tracking bugs

Review of documents, source code, ...

Conducting static/dynamic analysis

PV213 EIS in Practice: 10 - Testing 12

Basic Testing Principles

Principle 1 – Testing shows presence of defects

Principle 2 – Exhaustive testing is impossible

Principle 3 – Early testing

Principle 4 – Defect clustering

Principle 5 – Pesticide paradox

Principle 6 – Testing is context dependent

Principle 7 – Absence-of-errors fallacy

PV213 EIS in Practice: 10 - Testing 13

Test process

Test planning and control

Test analysis and design

Test implementation and execution

Evaluating exit criteria and reporting

Test closure activities

Although logically sequential, the activities in the process may overlap

or take place concurrently.

Tailoring these main activities within the context of the system and the

project is usually required.

PV213 EIS in Practice: 10 - Testing 14

Test process – Test planning and control

Planning

activity of defining the objectives of testing and the
specification of test activities in order to meet the objectives
and mission

Controlling

ongoing activity of comparing actual progress against the plan

reporting the status, including deviations from the plan

involves taking actions necessary to meet the mission and
objectives of the project

monitoring the testing activities throughout the project

Note: Test planning takes into account the feedback from
monitoring and control activities.

PV213 EIS in Practice: 10 - Testing 15

Test process – Test implementation and execution

Test implementation and execution has the following major tasks:

Finalizing, implementing and prioritizing test cases (including the
identification of test data)

Developing and prioritizing test procedures, creating test data
and, optionally, preparing test harnesses and writing automated
test scripts

Creating test suites from the test procedures for efficient test
execution

Verifying that the test environment has been set up correctly

Verifying and updating bi-directional traceability between the
test basis and test cases

Executing test procedures either manually or by using test
execution tools, according to the planned sequence

PV213 EIS in Practice: 10 - Testing 16

Test process – Test implementation and execution

Test implementation and execution has the following major tasks:

Logging the outcome of test execution and recording the identities and
versions of the software under test, test tools and testware

Comparing actual results with expected results

Reporting discrepancies as incidents and analyzing them in order to
establish their cause (e.g. a defect in the code, in specified test data, in
the test document, or a mistake in the way the test was executed)

Repeating test activities as a result of action taken for each
discrepancy, for example, re-execution of a test that previously failed
in order to confirm a fix (confirmation testing), execution of a corrected
test and/or execution of tests in order to ensure that defects have not
been introduced in unchanged are as of the software or that defect
fixing did not uncover other defects (regression testing)

PV213 EIS in Practice: 10 - Testing 17

Test process – Evaluating exit criteria and reporting

Evaluating exit criteria has the following major tasks:

Checking test logs against the exit criteria specified in

test planning

Assessing if more tests are needed or if the exit

criteria specified should be changed

Writing a test summary report for stakeholders

PV213 EIS in Practice: 10 - Testing 18

Test process – Test closure activities

Test closure activities include thee following major tasks:

Checking which planned deliverables have been delivered

Closing incident reports or raising change records for any that
remain open

Documenting the acceptance of the system

Finalizing and archiving testware, the test environment and the
test infrastructure for later reuse

Handing over the testware to the maintenance organization

Analyzing lessons learned to determine changes needed for
future releases and projects

Using the information gathered to improve test maturity

PV213 EIS in Practice: 10 - Testing 19

Multilevel testing

A common type off V-model uses four test levels,
corresponding to the four development levels.

Component (unit) testing

Integration testing

System testing

Acceptance testing

PV213 EIS in Practice: 10 - Testing 20

Multilevel testing – testing within a life cycle model

In any life cycle model, there are several characteristics of good

testing:

For every development activity there is a corresponding testing

activity

Each test level has test objectives specific to that level

The analysis and design of tests for a given test level should

begin during the corresponding development activity

Testers should be involved inn reviewing documents as soon as

drafts are available in the development life cycle

PV213 EIS in Practice: 10 - Testing 21

Multilevel testing – Component Testing

Test basis:

Component requirements

Detailed design

Code

Typical test objects:

Components

Programs

Data conversion / migration programs

Database modules

PV213 EIS in Practice: 10 - Testing 22

Multilevel testing – Integration Testing

Test basis:

Software and system design

Architecture

Workflows

Use cases

Typical test objects:

Subsystems

Database implementation

Infrastructure

Interfaces

System configuration and configuration data

PV213 EIS in Practice: 10 - Testing 23

Multilevel testing – System Testing

Test basis:

System and software requirement specification

Use cases

Functional specificaton

Risk analysis reports

Typical test objects:

System, user and operation manuals

System configuration and configuration data

PV213 EIS in Practice: 10 - Testing 24

Multilevel testing – Acceptance Testing

Test basis:

User requirements

System requirements

Use cases

Business processes

Risk analysis reports

Typical test objects:

Business processes on fully integrated system

Operational and maintenance processes

User procedures

Forms

Reports

Configuration data

PV213 EIS in Practice: 10 - Testing 25

Multilevel testing – Alpha and Beta testing

Developers of market, software often want to get feedback

from potential or existing customers in their market

before the software product is put up for sale

commercially.

Alpha testing is performed at the developing organization’s

site but not by the developing team.

Beta testing, or field-testing, is performed by customers or

potential customers at their own locations.

PV213 EIS in Practice: 10 - Testing 26

Statique techniques

Unlike dynamic testing, which requires the execution of software, static testing techniques rely on

the manual examination (reviews) and automated analysis (static analysis) of the code or other

project documentation without the execution of the code.

Reviews are a way of testing software work products (including code)) and can be performed well

before dynamic test execution. Defects detected during reviews early in the life cycle (e.g., defects

found in requirements) are often much cheaper to remove than those detected by running tests on

the executing code.

A review could be done entirely as a manual activity, but there is also tool support. The main

manual activity is to examine a work product and make comments about it. Any software work

product can be reviewed, including requirements specifications, design specifications, code, test

plans, test specifications, test cases, test scripts, user guides or web pages.

PV213 EIS in Practice: 10 - Testing 27

Statique techniques

Benefits of reviews include early defect detection and correction, development productivity

improvements, reduced development timescales, reduced testing cost and time, lifetime cost

reductions, fewer defects and improved communication. Reviews can find omissions, for example,

in requirements, which are unlikely to be found in dynamic testing.

Reviews, static analysis and dynamic testing have the same objective – identifying defects. They

are complementary; the different techniques can find different types of defects effectively and

efficiently. Compared to dynamic testing, static techniques find causes of failures (defects) rather

than the failures themselves.

Typical defects that are easier to find in reviews than in dynamic testing include: deviations from

standards, requirement defects, design defects, insufficient maintainability and incorrect interface

specifications.

PV213 EIS in Practice: 10 - Testing 28

Statique techniques - Review

Roles and Responsibilities

Manager: decides on the execution of reviews, allocates time in project schedules and
determines if thee review objectives have been met.

Moderator: the person who leads the review of the document or set of documents, including
planning the review, running the meeting, and following-up after the meeting. If necessary,
the moderator may mediate between the various points of view and is often the person upon
whom the success of the review rests.

Author: the writer or person with chief responsibility for the document(s) to be reviewed.

Reviewers: individuals with a specific technical or business background (also called checkers
or inspectors) who, after the necessary preparation, identify and describe findings (e.g.,
defects) in the product under review. Reviewers should be chosen to represent different
perspectives and roles in the review process, and should take part in any review meetings.

Scribe (or recorder): documents all the issues, problems and open points that were identified
during the meeting.

PV213 EIS in Practice: 10 - Testing 29

Statique techniques – Types of Review

Informal Review

No formal process

May take the form of pair programming or a technical

lead reviewing designs and code

Results may be documented

Varies in usefulness depending on the reviewers

Main purpose: inexpensive way to get some benefit

PV213 EIS in Practice: 10 - Testing 30

Statique techniques – Types of Review

Walkthrough

Meeting led by author

May take the form of scenarios, dry runs, peer group participation

Open-ended sessions

Optional pre-meeting preparation of reviewers

Optional preparation of a review report including list of findings

Optional scribe (who is not the author)

May vary in practice from quite informal to very formal

Main purposes: learning, gaining understanding, finding defects

PV213 EIS in Practice: 10 - Testing 31

Statique techniques – Types of Review

Technical Review

Documented, defined defect--detection process that includes peers and
technical experts with optional management participation

May be performed as a peer review without management participation

Ideally led by trained moderator (not the author)

Pre-meeting preparation by reviewers

Optional use of checklists

Preparation of a review report which includes the list of findings, the
verdict whether the software product meets its requirements and,
where appropriate, recommendations related to findings

May vary in practice from quite informal to very formal

Main purposes: discussing, making decisions, evaluating alternatives,
finding defects, solving technical problems and checking conformance to
specifications, plans, regulations, and standards

PV213 EIS in Practice: 10 - Testing 32

Statique techniques – Types of Review

Inspection

Led by trained moderator (not the author)

Usually conducted as a peer examination

Defined roles

Includes metrics gathering

Formal process based on rules and checklists

Specified entry and exit criteria for acceptance of the software
product

Pre-meeting preparation

Inspection report including list of findings

Formal follow-up process (with optional process improvement
components)

Main purpose: finding defects

PV213 EIS in Practice: 10 - Testing 33

Statique techniques – Static code analysis

The value of static analysis

Early detection of defects prior to test execution

Early warning about suspicious aspects of the code or design by the
calculation of metrics, such as a high complexity measure

Identification of defects not easily found by dynamic testing

Detecting dependencies and inconsistencies in software models such as
links

Improved maintainability of code and design

Prevention of defects, if lessons are learned in development

PV213 EIS in Practice: 10 - Testing 34

Statique techniques – Static code analysis

Typical defects discovered by static analysis tools include:

Referencing a variable with an undefined value

Inconsistent interfaces between modules and components

Variables that are not used or are improperly declared

Unreachable (dead) code

Missing and erroneous logic (potentially infinite loops)

Overly complicated constructs

Programming standards violations

Security vulnerabilities

Syntax violations of code and software models

PV213 EIS in Practice: 10 - Testing 35

Blackbox testing

Requirements-based

 Objectives /

Inventories
TestCase1 TestCase2 TestCase3 TestCase4 …

Req. 1 X X

Req. 2 X

Req. 3 X

Req. 4 X

…

PV213 EIS in Practice: 10 - Testing 36

Blackbox testing

UseCase-based

PV213 EIS in Practice: 10 - Testing 37

Blackbox testing

Equivalence class partitioning

System

I2

I3

I4

I5

I6

I1

O1

O2

O3

PV213 EIS in Practice: 10 - Testing 38

Blackbox testing

Boundary value analysis

n m

valid invalid invalid

Boundary values: n,m
Test: n-1,n+1 & m-1,m+1

PV213 EIS in Practice: 10 - Testing 39

Blackbox testing

State transition based

Input/state 0 1

S1 S? S?

S2 S? S?

PV213 EIS in Practice: 10 - Testing 40

Whitebox testing

Statement / Decision testing

PV213 EIS in Practice: 10 - Testing 41

Whitebox testing

Test 1

First, we shall run the code with the values: 30 and 20. We expect the output to
look like:

a > b

a > 10

Using this input data we execute the following statements:

1. Read a // a = 30

2. Read b // a = 30, b = 20

3. IF a > b THEN // True

4. Print "a > b" // "a > b“

5. IF a > 10 THEN // True

6. Print "a > 10" // "a > 10“

This test has executed all executable statements except the Print statement on

line 9. This has exercised 6 of the 7 executable statements of the program, that is

6/7 or 86% statement coverage.

PV213 EIS in Practice: 10 - Testing 42

Whitebox testing

Test 2

To execute the final statement, we shall run the code with the values: 20

and 30. We expect the output to look like:

a <= b

Using this input data we execute the following statements:

Read a // a = 30

Read b // a = 30, b = 20

IF a > b THEN // False

Print "a =< b" // "a > b“

By performing both two tests (Tests 1 and 2) we can execute all

statements of the code, achieving 100% statement coverage.

