Website Classification Mgr. Juraj Hreško`s thesis 7.2.2013 presented by Jaromír Navrátil

Synopsis

- Task
- Possible solutions
- Solution
- Rare classes
- Possible improvements
- Rewriting to C++

The Task

- create application to classify czech websites
- 61 classes
- multi-labeling (1-3 classes for each document)
- real-time classification
- be able to adjust the algorithm to maximize precision or recall

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F_{1} measure = 2 * \frac{precision * recall}{precision + recall}$$

Classes

		Occurrences	Class
Occurrences	Class	678	Insurance
3159	Advertisement	1170	Job / Career
1281	Alcohol / Tobacco	6003	Kids / Toys / Family
2442	Arts	1059	Military / Guns
9756	Cars / Vehicles	1974	Mobile Phones / Operators
1590	Banking	11826	Music / Radio / Cinema / TV
450	Brokers	3477	News / Magazines
27066	Building / Home	54	Peer-to-peer
15045	Business	10002	Personal / Dating / Lifestyle
16998	Chats / Blogs / Forums	2049	Politics / Law
1068	Communications	4077	Pornography
72	Crime	4227	Portals / Search Engines
11805	Education	90	Proxies
2613	Entertainment	2475	Real Estate
5553	Environment	6966	Regional
1575	Erotic / Adult / Nudity	1803	Religious / Spirituality
459	Extreme / Hate / Violence	6405	Sale / Auctions
13302	Fashion / Beauty	6	Sects
12708	Food / Restaurants	48	Sex Education
2298	Foundations / Charity / Social Services	42240	Shopping
135	Gambling	288	Social Networks
3090	Games	14913	Sports
6108	Government	120	Streaming / Broadcasting
18	Hacking / Phishing / Fraud	951	Swimwear / Intimate
9225	Health / Medicine	384	Translation Services
13794	Hobbies	24537	Travelling / Vacation
2376	Humour / Cool	1788	Uploading / Downloading
13995	IT / Hardware / Software	816	Warez / Piracy
5163	IT Services / Internet	135	Web Based Mail
195	Illegal Drugs	888	Web Hosting
90	Instant Messaging	1110	Money / Financial

Possible Approaches

- Web structure mining links
- Web content mining text, html, multimedia
- Web usage mining access logs
- combining first two approaches would be ideal, but mining from structure is computationally difficult

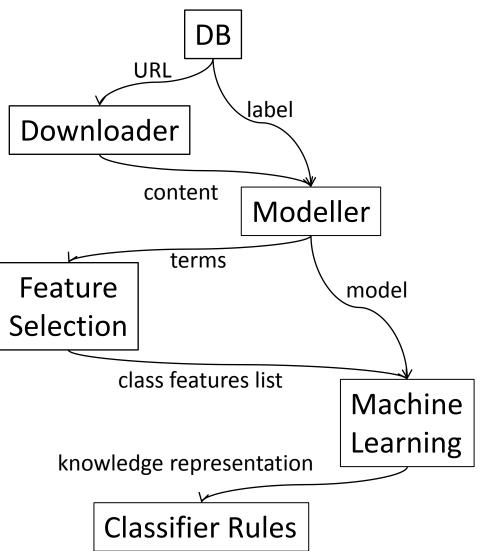
Multi-label Classification

- Algorithms from WEKA are not able to process multi-label data, thus we have to transform the problem or adapt the algorithm
- Transforming the problem:
 - choose one class for each example, forgetting others
 - delete all examples with more than one class
 - change every combination of classes into one new class
 - use one classificator for each class

Categories	Occurence
0	0.41%
1	64.45%
2	31.75%
3	3.38%
4-6	0.01%

Components of Classifier

- downloader
- modeller
- feature selection
- machine learning



Downloader

- download website using wget
- get language coding (mostly Windows-1250, ISO 8859-2 or UTF-8)
- transfer to UTF-8 using Enca

Modeller - source to vertical

- transfer text to so-called vertical
- delete HTML tags, scripts, parts of CSS, interpunction
- divide words by spaces and convert them to lower-case

vertical

word	Тад
interesting	title
article	title
the	h1
article	h1
this	none
is	none
the	none
main	none
part	none
of	none
article	none

Modeller - vertical to vector

- trasfer vertical into vector model using Structure-oriented Weighting Technique
- delete words with high frequency across classes not used
- stemming (lemmatization) not used

vertical

word	Tag
interesting	title
article	title
the	h1
article	h1
this	none
is	none
the	none
main	none
part	none
of	none
article	none

vector model

								w
								ar
								int
•	SWT _w ((t_i, d_i)	$=\sum_{i}$	$w(e_k)$	* TF (t _i	$(e_k, d_j))$)	th
		- , -				,		th
							\geq	is
		4:410	h 1	h 2	h 0			m
	e _k	title	h1	h2	h3	none		ра
	w(e _k)	10	5	3	2	1		-
							-	of

word	weight
article	16
interesting	10
the	6
this	1
is	1
main	1
part	1
of	1
article	1

Feature Selection

- eliminate attributes with fewer than 50 ocurrences, lessening number of words in dictionary from 1 263 296 to 63 121
- compute information gain for each term
- choose 2000 best terms

Choosing Classifier

 choose 5 categories with average number of positive and negative examples

Category	Precision	Recall	F ₁ Measure	S١
Arts	0.812	0.810	0.810	
Entertainment	0.767	0.766	0.766	
Foundations	0.766	0.764	0.764	
Games	0.814	0.811	0.811	
HW-SW	0.782	0.782	0.781	
Mean	0.788	0.787	0.786	

Category	Precision	Recall	F ₁ Measure	J48
Arts	0.792	0.790	0.790	
Entertainment	0.762	0.759	0.758	
Foundations	0.761	0.758	0.758	
Games	0.798	0.797	0.796	
HW-SW	0.809	0.807	0.807	
Mean	0.784	0.782	0.782	

Category	Precision	Recall	F ₁ Measure
Arts	0.831	0.814	0.812
Entertainment	0.793	0.768	0.763
Foundations	0.811	0.792	0.789
Games	0.787	0.768	0.765
HW-SW	0.767	0.764	0.763
Mean	0.798	0.781	0.778

iear	Category	Precision	Recall	F ₁ Measure
	Arts	0.851	0.848	0.847
	Entertainment	0.817	0.815	0.815
	Foundations	0.821	0.821	0.821
	Games	0.851	0.851	0.851
	HW-SW	0.843	0.842	0.841
Random forest	Mean	0.837	0.835	0.835

	Category	Precision	Recall	F ₁ Measure
	Arts	0.762	0.762	0.759
	Entertainment	0.765	0.761	0.760
	Foundations	0.742	0.742	0.741
	Games	0.763	0.744	0.740
	HW-SW	0.792	0.782	0.780
Naive Bayes	Mean	0.765	0.758	0.756

SVM - sigmoid

SVM - linear

Random Forest

- number of randomly selected attributes (constant k) was set to 50, as well as number of trees
- $1 < k \le \log_2(|A| + 1)$, A is set of attributes
- rate Positive : Negative was set to 1:5 using meta classificator

System Evaluation

- cross-validation
 - training : testing data set to 1:4
 - precision 59.68%
- second approach took each class as one problem

#	Názov	Precision	Recall
1	Advertisement	63.89%	51.41%
2	Alcohol / Tobacco	66.43%	40.61%
3	Arts	76.10%	57.08%
4	Cars / Vehicles	84.72%	57.84%
5	Banking	87.76%	67.53%
6	Brokers	65.57%	51.95%
7	Building / Home	91.09%	62.12%
8	Business	88.80%	45.88%
9	Chats / Blogs / Forums	89.66%	52.64%
10	Communications	46.48%	51.56%
11	Crime	100.00%	35.71%
12	Education	81.74%	51.81%
13	Entertainment	68.98%	28.60%
14	Environment	76.66%	51.77%
15	Erotic / Adult / Nudity	74.31%	29.24%
16	Extreme / Hate / Violence	58.97%	30.67%
17	Fashion / Beauty	86.48%	60.86%
18	Food / Restaurants	85.70%	52.47%
19	Foundations / Charity / Social Services	76.67%	52.67%
20	Gambling	54.05%	66.67%
21	Games	75.65%	52.07%
22	Government	83.80%	53.59%
23	Hacking / Phishing / Fraud	0.00%	0.00%
24	Health / Medicine	77.96%	58.86%
25	Hobbies	87.98%	50.84%
26	Humour / Cool	78.97%	50.35%
27	IT / Hardware / Software	84.70%	49.22%
28	IT Services / Internet	82.01%	30.12%

29	Illegal Druga	60.00%	68.57%
30	Illegal Drugs	66.67%	50.00%
	Instant Messaging	67.00%	54.03%
31	Insurance		
32	Job / Career	74.07%	50.25%
33	Kids / Toys / Family	82.95%	41.52%
34	Military / Guns	56.64%	47.37%
35	Mobile Phones / Operators	56.52%	33.91%
36	Music / Radio / Cinema / TV	81.22%	55.22%
37	News / Magazines	73.61%	41.49%
38	Peer-to-peer	50.00%	87.50%
39	Personal / Dating / Lifestyle	60.31%	59.53%
40	Politics / Law	64.84%	47.29%
41	Pornography	86.34%	58.57%
42	Portals / Search Engines	73.54%	47.35%
43	Proxies	28.00%	46.67%
44	Real Estate	79.26%	54.48%
45	Regional	80.90%	30.31%
46	Religious / Spirituality	74.79%	55.45%
47	Sale / Auctions	90.08%	61.69%
48	Sects	0.00%	0.00%
49	Sex Education	100.00%	40.00%
50	Shopping	93.82%	65.12%
51	Social Networks	2.62%	39.58%
52	Sports	87.35%	52.08%
53	Streaming / Broadcasting	1.01%	8.70%
54	Swimwear / Intimate	72.31%	26.55%
55	Translation Services	59.38%	54.29%
56	Travelling / Vacation	92.16%	60.86%
57	Uploading / Downloading	76.13%	59.29%
58	Warez / Piracy	80.85%	30.16%
59	Web Based Mail	16.98%	40.91%
60	Web Hosting	46.88%	38.22%
61	Money / Financial	56.13%	41.83%
2	Priemer	81,78%	54,40%

Complications

- classes with very low number of positive examples
- some pages stopped existing
- system cannot handle HTTPS protocol, nor redirection
- existing solution was very slow when it came to classifying multiple webpages

Rare Classes

- task is to examine two classes with low occurence
- Illegal Drugs (418 URLs)
 - some pages do not exist anymore, are redirected or requires confirmation
 - only 96 pages (23%) were classified correctly
- Alcohol / Tobacco (5631 URLs)
 - some websites caused utility wget to enter infinite loop
 - 2289 pages (41%) classified correctly
 - category Shopping assigned many times, along with Social Networks

Rare Classes - data

 classification of six thousand pages runned for about 18 hours (it would be much longer if SSD was not used)

Illegal Drugs (418 examples)

Category	Times Assigned
Illegal Drugs	96
Shopping	56
Health / Medicine	43
Social Networks	39
Chats / Blogs / Forums	19
Alcohol / Tobacco	11
News / Magazines	10
Streaming / Broadcasting	10
other (classified < 10 times)	122
empty pages	59

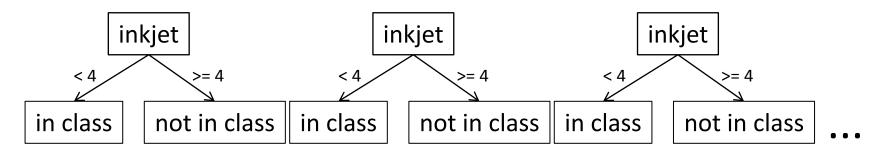
Alcohol / Tobacco (5631 examples)

Category	Times Assigned
Alcohol / Tobacco	2289
Shopping	648
Social Networks	461
Food / Restaurants	316
Health / Medicine	203
Travelling / Vacacion	167
Chats / Blogs / Forums	105
Streaming / Broadcasting	51
other (classified < 50 times)	375
empty pages	402

Possible Improvements

- remove obstacles preventing downloading some pages, such as use of HTTPS, redirection, age prompt
- relearn forests using verified data
- use faster classifier or parallelize Random Forest
- rewrite system from Python and Bash to C++
- improve feature selection

Forest classifying rare class Sects



Rewriting to C++

- rapid increase of speed (now 42 examples per min., was 5.5)
- somehow different results using same URLs

former solution (~1h 15min)

Category	Times Assigned
Illegal Drugs	96
Shopping	56
Health / Medicine	43
Social Networks	39
Chats / Blogs / Forums	19
Alcohol / Tobacco	11
News / Magazines	10
Streaming / Broadcasting	10
other (classified < 10 times)	122

C++ version (9min 50s)

Category	Times Assigned
Social Networks	128
Illegal Drugs	81
Health / Medicine	33
Shopping	31
Chats / Blogs / Forums	17
Alcohol / Tobacco	9
Web Based Mail	7
Streaming / Broadcasting	7
other (classified < 7 times)	58

Conclusion

- rewriting system to C++ made it viable for real-time application
- the main problem is preprocessing now
 - downloading webpage takes most time
 - using more pages from same domain could improve accuracy
 - utility wget enters infinite loop on some sites
- classifier itself could be improved as well
 - independent list of attributes for each class
 - another algorithm can be tried (e.g. Bayesian classifier)
- dividing program into parts operating independently would slightly improve speed

Sources

- Thesis of Mgr. Juraj Hreško, Masaryk University, Faculty of Informatics, Brno, 2012
- http://weka.wikispaces.com/
- <u>http://www.ide.bth.se/~hgr/Papers/cuda-rf_mcc10_v1.0_crc.pdf</u>
- http://www.cplusplus.com/