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Motivation

Constructive tasks (resolution proofs in logic,
tableau proofs, ...)

Large amount of tasks solved by students (automated
processing Is an advantage)

Task solutions can be represented as graphs, some
solutions (e.g. resolution proofs) even as trees.

= Usage of graph mining methods
“CvB BvC

NS
N/



Thesis goals

Overview of graph mining methods with focus
on trees

Design and implementation of a tree mining
system for classification of solved tasks in logic,
specifically resolution proofs in propositional
calculus

System verification on data set from logic
courses at FI MU

Discussion and further improvements



Tree mining

Main focus on frequent tree mining
Trees: free, rooted (ordered, unordered);
Subtrees (rooted trees): induced, embedded
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Tree mining

Main focus on frequent tree mining
Trees: free, rooted (ordered, unordered);
Subtrees (rooted trees): induced, embedded

Subtree

Task: find all frequent subtrees satisfying
specified minimum support



Tree mining algorithms
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Tree mining algorithms

FreeTreeMiner
TreeMiner

Freqt

ukFreqt

Unot

PathJoin
HybridTreeMiner
Sleuth

Only for free trees

Only for ordered trees

Implementation not
available

Unsuitable output



393 solved resolution proofs; in GraphML format
Source: tests from course |1B101 — Introduction
to Logic
2 assighments (183 + 210 trees)
Trees (proofs) classified as:

Positive — correct solution (322 instances)

Negative — incorrect solution (71 instances)
Other attributes: number of obtained points, type
of resolution, numbers of occurences for
particular types of error, ...



Created system

New system which consists of modules for:
Data preprocessing (from general graphs in
GraphML to trees in convenient format)
Frequent subtree mining (using SLEUTH)
Visualization of trees with subtres and decision

trees
Classification of resolution proofs



Classification

Classes: correct or incorrect proof (values
positive and negative)

Every tree (proof) is represented by a set of its
frequent subtrees according to a given minimum
support value:
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Classification — basic scheme

Evaluation method: | e
Using test set Data spit

Cross validation "
Subtrees by SLEUTH
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Classification — emerging patterns

Emerging pattern: A pattern with a substantial
support in data that belongs to one particular
class (GrowthRate metrics)

For each class: create a lexicographical
ordering among all patterns on

GrowthRate x Support x PatternSize

Take patterns from beginning of those orderings
to get N desired features for classification

More patterns can be taken from ordering for a
particular class



Classification — emerging patterns

Examples of most significant emerging patterns
for classes (visualized by the system):
a) positive b) negative
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Classification — generalized patterns

Goal: perform generalization on the set of

patterns
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Classification — generalized patterns

Only for the 3-node patterns (application of the
resolution rule)
Lexicographical ordering on list of literals based
on number of negative and positive literals:
NegLiteral x PosLiteral
E.g. 2C,-B,A,C=> A<B<C ((0,1) <(1,0) < (1,1));
B,A,—A,C= B<C<A ((0,1)<(0,1) < (1,1)
Lexicographical ordering on the previous
ordering — for node (clause) comparison:

((0,1),(1,0), (1,1)) = ((0,1),(0,1), (1,1))



Classification — generalized patterns

Procedure:
Compare parent nodes, smaller node will be first.
E.g.
[FC,7B,A,C]  [B,A"AC] [B,A,"A C] [-C,7B,AC]
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Classification — generalized patterns

Procedure:

Compare parent nodes, smaller node will be first.

Merge literals from all nodes and create ordering
among them (in case of a tie check ordering on
nodes). Then assing variables to literal letters
according to ordering. E.g.:

[B,A,-A,C] [-C,~B,AC]  [ZX,~X,Y] [~Y,=Z,X,Y]
[A,C] [X,Y]
Z Y X

[B,A,=A,C,~C,~B,A,C.A,C] B<CsA (1,1),(1,3),(1,3)
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Classification — generalized patterns

Procedure:
Compare parent nodes, smaller node will be first.

Merge literals from all nodes and create ordering
among them (in case of a tie check ordering on
nodes). Then assing variables to literal letters
according to ordering.

Lexicographically reorder literals in each node (as
we want: Z, =Y ~ Y, Z)



Classification — three classes

To increase reliability of a classifier, it is used a
third class UNKNOWN for cases in which the
classifier is not very confident

J48, NaiveBayes and IBk can output probabillity
of classifying an example = when probability is
lower than a given threshold, use UNKNOWN



Classification on generalized frequent patterns
and emerging generalized patterns; used cross-
validation
Generalized frequent patterns:
Min. support (%): 0, 1, 2, 5, 10, 15, 20
Emerging generalized patterns:
Min. support (%): 1
Number of used emerging patterns: 10, 50, 100, 200,
500

Proportion of patterns for classes negative / positive:
50:50, 65:35, 80:20



Generalized frequent patterns:

Algorithm | Min. Accuracy | Precision | Recall Precision | Recall
support (%) | (%) (positive) | (positive) | (negative) | (negative)
J48 0 97.2 0.970 0.997 0.986 0.862
Naive 1 96.7 0.965 0.997 0.986 0.832
Bayes
SMO 0 97.5 0.973 0.997 0.988 0.873
IBk 5 96.7 0.970 0.991 0.955 0.862

Emerging generalized patters, best result:

J48, 100 patterns (proportion 65:35), accuracy 97.5%




Classification into 3 classes:

Same values for parameters + threshold 0.5-0.9

Best result: IBk on generalized frequent patterns (min.
support 5%), threshold 0.8, accuracy 97.97% (but
negative recall only 0.816)



Experiments — decision tree example

patterns
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Conclusion and future work

Created new system for tree mining

Main part of the system is module for
classification which uses several techniques; on
real data set from logic course reached
accuracy 97%

System is going to be extended for new kinds of
constructive tasks (such as tableau proofs)



Thank you



