
Author: Karel Vaculík

Thesis supervisor: doc. RNDr. Lubomír Popelínský, Ph.D.

 Constructive tasks (resolution proofs in logic,

tableau proofs, ...)

 Large amount of tasks solved by students (automated

processing is an advantage)

 Task solutions can be represented as graphs, some

solutions (e.g. resolution proofs) even as trees.

⇒ Usage of graph mining methods

 Overview of graph mining methods with focus

on trees

 Design and implementation of a tree mining

system for classification of solved tasks in logic,

specifically resolution proofs in propositional

calculus

 System verification on data set from logic

courses at FI MU

 Discussion and further improvements

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 support = 0.25

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 support = 1.00

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 Task: find all frequent subtrees satisfying

specified minimum support

 FreeTreeMiner

 TreeMiner

 Freqt

 uFreqt

 Unot

 PathJoin

 HybridTreeMiner

 Sleuth

 FreeTreeMiner

 TreeMiner

 Freqt

 uFreqt

 Unot

 PathJoin

 HybridTreeMiner

 Sleuth

Only for free trees

Only for ordered trees

Implementation not

available

Unsuitable output

 393 solved resolution proofs; in GraphML format

 Source: tests from course IB101 – Introduction

to Logic

 2 assignments (183 + 210 trees)

 Trees (proofs) classified as:

 Positive – correct solution (322 instances)

 Negative – incorrect solution (71 instances)

 Other attributes: number of obtained points, type

of resolution, numbers of occurences for

particular types of error, ...

New system which consists of modules for:

 Data preprocessing (from general graphs in

GraphML to trees in convenient format)

 Frequent subtree mining (using SLEUTH)

 Visualization of trees with subtres and decision

trees

 Classification of resolution proofs

 Classes: correct or incorrect proof (values

positive and negative)

 Every tree (proof) is represented by a set of its

frequent subtrees according to a given minimum

support value:

pattern1 pattern2 ... patternm class

true false ... false negative

...

false true ... true positive

 Evaluation method:

 Using test set

 Cross validation

 Subtrees by SLEUTH

 Classifiers from

 Weka

 Emerging pattern: A pattern with a substantial

support in data that belongs to one particular

class (GrowthRate metrics)

 For each class: create a lexicographical

ordering among all patterns on

GrowthRate × Support × PatternSize

 Take patterns from beginning of those orderings

to get N desired features for classification

 More patterns can be taken from ordering for a

particular class

 Examples of most significant emerging patterns

for classes (visualized by the system):

 a) positive b) negative

 Goal: perform generalization on the set of

patterns

 Only for the 3-node patterns (application of the

resolution rule)

 Lexicographical ordering on list of literals based

on number of negative and positive literals:

NegLiteral × PosLiteral

 E.g. ¬𝐶, ¬𝐵, 𝐴, 𝐶 ⇒ A ≤ B ≤ 𝐶 ((0,1) ≤ (1,0) ≤ (1,1));
 𝐵, 𝐴, ¬𝐴, 𝐶 ⇒ 𝐵 ≤ C ≤ A ((0,1) ≤ (0,1) ≤ (1,1))

 Lexicographical ordering on the previous

ordering – for node (clause) comparison:

 ((0,1), (1,0), 1,1) ≤ ((0,1),(0,1), (1,1))

 Procedure:

1. Compare parent nodes, smaller node will be first.

 E.g.:

 Procedure:

1. Compare parent nodes, smaller node will be first.

2. Merge literals from all nodes and create ordering

among them (in case of a tie check ordering on

nodes). Then assing variables to literal letters

according to ordering. E.g.:

 Procedure:

1. Compare parent nodes, smaller node will be first.

2. Merge literals from all nodes and create ordering

among them (in case of a tie check ordering on

nodes). Then assing variables to literal letters

according to ordering.

3. Lexicographically reorder literals in each node (as

we want: 𝑍, ¬𝑌 ~ ¬𝑌, 𝑍).

 To increase reliability of a classifier, it is used a

third class UNKNOWN for cases in which the

classifier is not very confident

 J48, NaiveBayes and IBk can output probability

of classifying an example ⇒ when probability is

lower than a given threshold, use UNKNOWN

 Classification on generalized frequent patterns
and emerging generalized patterns; used cross-
validation

 Generalized frequent patterns:
 Min. support (%): 0, 1, 2, 5, 10, 15, 20

 Emerging generalized patterns:
 Min. support (%): 1

 Number of used emerging patterns: 10, 50, 100, 200,
500

 Proportion of patterns for classes negative / positive:
50:50, 65:35, 80:20

 Generalized frequent patterns:

 Emerging generalized patters, best result:
J48, 100 patterns (proportion 65:35), accuracy 97.5%

Algorithm Min.

support (%)

Accuracy

(%)

Precision

(positive)

Recall

(positive)

Precision

(negative)

Recall

(negative)

J48 0 97.2 0.970 0.997 0.986 0.862

Naive

Bayes

1 96.7 0.965 0.997 0.986 0.832

SMO 0 97.5 0.973 0.997 0.988 0.873

IBk 5 96.7 0.970 0.991 0.955 0.862

 Classification into 3 classes:

 Same values for parameters + threshold 0.5–0.9

 Best result: IBk on generalized frequent patterns (min.

support 5%), threshold 0.8, accuracy 97.97% (but

negative recall only 0.816)

 Created new system for tree mining

 Main part of the system is module for

classification which uses several techniques; on

real data set from logic course reached

accuracy 97%

 System is going to be extended for new kinds of

constructive tasks (such as tableau proofs)

Thank you

