
Real-Time Scheduling

Priority-Driven Scheduling

Fixed-Priority

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

1



Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

i.e. there is no dependency relation among jobs
I Jobs can be preempted at any time and never suspend

themselves
I No aperiodic and sporadic jobs
I No resource contentions

Moreover, unless otherwise stated, we assume that
I Scheduling decisions take place precisely at

I release of a job
I completion of a job

(and nowhere else)

I Context switch overhead is negligibly small
i.e. assumed to be zero

I There is an unlimited number of priority levels
2



Fixed-Priority Algorithms

Consider a set of tasks T = {T1, . . . ,Tn}

Any fixed-priority algorithm schedules tasks according to fixed
priorities assigned to tasks, w.l.o.g. assume

T1 � T2 � · · · � Tn

i.e. T1 has the highest priority, Tn has the lowest priority

Define

T↑i := {Tk | Tk � Ti}

3



Utilization

I Utilization ui of a periodic task Ti with period pi and
execution time ei is defined by ui := ei/pi
I The fraction of time a periodic task with period pi and

execution time ei keeps a processor busy
I Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is

defined as the sum of utilizations of all tasks of T , i.e. by

UT :=

n∑
i=1

ui

I U is a schedulable utilization of an algorithm ALG if all sets
of tasks T satisfying UT

≤ U are schedulable by ALG.
Maximum schedulable utilization UALG of an algorithm ALG
is the supremum of schedulable utilizations of ALG.

4



Critical Instant – Informally

To be able to further analyze fixed-priority algorithms we need
to consider a notion of critical instant

Intuitively, a critical instant is the time instant in which the
system is most loaded, and has its worst response time

Schedulability of a set of tasks is determined by response times
of jobs released at critical instants

5



Critical Instant – Formally

Definition 1
A critical instant tcrit of a task Ti is a time instant in which a job
Ji,k in Ti is released so that Ji,k either does not meet its
deadline, or has the maximum response time of all jobs in Ti

Denote by Wi the response time of such Ji,k

Theorem 2
In a fixed-priority system where every job completes before the
next job in the same task is released, a critical instant occurs
when one of its jobs Ji,k is released at the same time with a job
from every higher-priority task.
Note that the situation described in the theorem does not have to occur if
tasks are not in phase. So we use critical instants either to study tasks in
phase, or to get upper bounds on schedulability as follows:
I Set phases of all jobs in T↑i to zero, which gives a new set of tasks T ′

I Determine the response time w ′ of the first job Ji,1 in T ′i
Then w ′ ≥Wi , the response time of a job in the original set T released at the
critical instant 6



Optimality of RM for Simply Periodic Tasks

Definition 3
A set {T1, . . . ,Tn} is simply periodic if for every pair Ti , Tk
satisfying pi < pk we have that pk is an integer multiple of pi

Example 4
The helicopter control system from the first lecture

Theorem 5
A set T of n simply periodic, independent, preemptable tasks
with Di = pi is schedulable on one processor according to RM
iff UT

≤ 1.
i.e. on simply periodic tasks RM is as good as EDF

7



Optimality of DM (RM) among Fixed-Priority Algs.

Theorem 6
A set of independent, preemptable periodic tasks with Di ≤ pi
that are in phase can be feasibly scheduled on one processor
according to DM if it can be feasibly scheduled by some
fixed-priority algorithm.

Proof.
Assume a fixed-priority feasible schedule with T1 � · · · � Tn.

Consider the least i such that the relative deadline Di of Ti is
larger than the relative deadline Di+1 of Ti+1.

Swap the priorities of Ti and Ti+1.

The resulting schedule is still feasible.

DM is obtained by using finitely many swaps. �

Note: If the assumptions of the above theorem hold and all relative deadlines
are equal to periods, then RM is optimal among all fixed-priority algorithms.

8



Fixed-Priority Algorithms: Schedulability

We consider two schedulability tests:
I Schedulable utilization URM of the RM algorithm.
I Time-demand analysis based on response times of jobs

released at critical instants

9



Schedulable Utilization for RM

Theorem 7
Let us fix n ∈N and consider only independent, preemptable
periodic tasks with Di = pi .
I If T is a set of n tasks satisfying UT

≤ n(21/n
− 1), then UT

is schedulable by RM algorithm.
I For every U > n(21/n

− 1) there is a set T of n tasks
satisfying UT

≤ U that is not schedulable by RM.

10



Schedulable Utilization for RM

It follows that the maximum schedulable utilization URM over
independent, preemptable periodic tasks satisfies

URM = inf
n

n(21/n
− 1) = lim

n→∞
n(21/n

− 1) = ln 2 ≈ 0.693

Note that UT
≤ n(21/n

− 1) is a sufficient but not necessary condition for
schedulability of T

11



Proof Sketch of Theorem 7
For the proof we need the following notions:
I A set of tasks is difficult-to-schedule if it is schedulable by RM

but any increase in execution time and/or decrease in period
makes the set unschedulable

I A set of tasks is most-difficult if its total utilization is smallest
among all difficult to schedule sets

Step 1. Show that for every difficult-to-schedule set there is another one
whose utilization cannot be larger and

1. is in phase
2. satisfies pn ≤ 2p1

from this moment on we may concentrate on sets T satisfying 1. and 2.

Step 2. For a fixed set of periods p1, . . . ,pn, find the most-difficult set T
with these periods, which gives U[p1, . . . ,pn] := UT

Step 3. Find T with the “most-difficult” values of periods p1, . . . ,pn, that is
minimize U[p1, . . . ,pn], and show that UT = n(21/n

− 1)

12



Proof Sketch of Theorem 7 – Step 2.

Most-difficult in phase set with pn ≤ 2p1:

0 p1 2p1

0 p2

0 p3

0 pn−1

0 pn

...

T3

T2

T1

Tn

Tn−1

ek = pk+1 − pk for k = 1, . . . ,n − 1

en = pn − 2
n−1∑
k=1

ek = 2p1 − pn

13



Time-Demand Analysis

Assume that Di ≤ pi for every i.

I Compute the total demand for processor time by a job
released at a critical instant of a task, and by all the
higher-priority tasks, as a function of time from the critical
instant

I Check if this demand can be met before the deadline of the
job:
I Consider one task Ti at a time, starting with highest priority

and working to lowest priority
I Focus on a job Ji,c in Ti , where the release time, t0, of that

job is a critical instant of Ti
I At time t0 + t for t ≥ 0, the processor time demand wi(t) for

this job and all higher-priority jobs released in [t0, t ] is
bounded by

wi(t) = ei +

i−1∑
k=1

⌈
t

pk

⌉
ek for 0 < t ≤ pi

14



Time-Demand Analysis

I Compare the time demand, wi(t), with the available time, t :

I If wi(t) ≤ t for some t ≤ Di , the job Ji,c released at critical
instant of Ti meets its deadline, t0 + Di

I If wi(t) > t for all 0 < t ≤ Di , then the task probably cannot
complete by its deadline; and the system likely cannot be
scheduled using a fixed priority algorithm
(Note that this condition is only sufficient as the expression for
wi(t) relies on the fact that jobs of all higher priority tasks are
released at the critical instant t0)

I Use this method to check that all tasks are schedulable if
released at their critical instants; if so conclude the entire
system can be scheduled

15



Time-Demand Analysis

Example: T1 = (3,1), T2 = (5,1.5), T3 = (7,1.25), T4 = (9,0.5)
16



Time-Demand Analysis

I The time-demand function wi(t) is a staircase function
I Steps in the time-demand for a task occur at multiples of

the period for higher-priority tasks
I The value of wi(t) − t linearly decreases from a step until

the next step
I If our interest is the schedulability of a task, it suffices to

check if wi(t) ≤ t at the time instants when a higher-priority
job is released and at Di

I Our schedulability test becomes:
I Compute wi(t)
I Check whether wi(t) ≤ t for some t equal either to Di , or to

j · pk where k = 1,2, . . . , i and j = 1,2, . . . , bDi/pk c

17



Time-Demand Analysis

I Time-demand analysis schedulability test is more complex
than the schedulable utilization test but more general:
I Works for any fixed-priority scheduling algorithm, provided

the tasks have short response time (Di ≤ pi)
Can be extended to tasks with arbitrary deadlines

I Still more efficient than exhaustive simulation
I Only a sufficient test (as well as the utilization test for fixed-

priority systems)

18



Real-Time Scheduling

Priority-Driven Scheduling

Aperiodic Tasks

19



Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

I Jobs can be preempted at any time and never suspend
themselves

I No resource contentions

I Aperiodic jobs exist
I They are independent of each other, and of the periodic

tasks
I They can be preempted at any time

I There are no sporadic jobs (for now)
I Jobs are scheduled using a priority driven algorithm

20



Scheduling Aperiodic Jobs

Consider:
I A set T = {T1, . . . ,Tn} of periodic tasks
I An aperiodic task A

Recall that:
I A schedule is feasible if all jobs with hard real-time

constraints complete before their deadlines

⇒ This includes all periodic jobs
I A scheduling algorithm is optimal if it always produces a

feasible schedule whenever such a schedule exists, and if
a cost function is given, minimizes the cost

⇒We consider a cost function which to a schedule
assigns the average response time of aperiodic jobs

We assume that the periodic tasks can be scheduled using a
priority-driven algorithm

21



Background Scheduling of Aperiodic Jobs

I Aperiodic jobs are scheduled and executed only at times
when there are no periodic jobs ready for execution

I Advantages
I Clearly produces feasible schedules
I Extremely simple to implement

I Disadvantages
I Not optimal since it is almost guaranteed to delay execution

of aperiodic jobs in favour of periodic ones

Example: T1 = (3,1), T2 = (10,4)

22



Polled Execution of Aperiodic Jobs

I We may use a polling server
I A periodic job (ps ,es) scheduled according to the periodic

algorithm, generally as the highest priority job
I When executed, it examines the aperiodic job queue

I If an aperiodic job is in the queue, it is executed for up to es

time units
I If the aperiodic queue is empty, the polling server

self-suspends, giving up its execution slot
I The server does not wake-up once it has self-suspended,

aperiodic jobs which become active during a period are not
considered for execution until the next period begins

I Simple to prove correctness, performance less than ideal –
executes aperiodic jobs in particular timeslots

23



Polled Execution of Aperiodic Jobs

Example: T1 = (3,1), T2 = (10,4), poller = (2.5,0.5)

Can we do better?

Yes, polling server is a special case of periodic-server for
aperiodic jobs

24



Periodic Severs – Terminology

periodic server = a task that behaves much like a periodic task,
but is created for the purpose of executing aperiodic jobs

I A periodic server, TS = (pS ,eS)
I pS is a period of the server
I eS is the (maximal) budget of the server

I The budget can be consumed and replenished; the budget
is exhausted when it reaches 0
(Periodic servers differ in how they consume and replenish the budget)

I A periodic server is
I backlogged whenever the aperiodic job queue is non-empty
I idle if the queue is empty
I eligible if it is backlogged and the budget is not exhausted

I When a periodic server is eligible, it is scheduled as any
other periodic task with parameters (pS ,eS)

25



Periodic Severs

Each periodic server is thus specified by
I consumption rules: How the budget is consumed
I replenishment rules: When and how the budget is

replenished

Example – polling server:
I consumption rules:

I Whenever the server executes, the budget is consumed at
the rate one per unit time.

I Whenever the server becomes idle, the budget gets
immediately exhausted

I replenishment rule: At each time instant k · pS replenish
the budget to eS

26



Deferrable Sever

I Consumption rule:
I The budget is consumed at the rate of one per unit time

whenever the server executes
I Unused budget is retained throughout the period, to be

used whenever there are aperiodic jobs to execute
(i.e. instead of discarding the budget if no aperiodic job to execute
at start of period, keep in the hope a job arrives)

I Replenishment rule:
I The budget is set to eS at multiples of the period

I i.e. time instants k · pS for k = 0,1,2, . . .
(Note that the server is not able tu cumulate the budget over
periods)

We consider both
I Fixed-priority scheduling
I Dynamic-priority scheduling (EDF)

27



Deferrable Server – RM

Here the tasks are scheduled using RM.

Is it possible to increase the budget of the server to 1.5 ?

28


