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Focus and sources

Focus
stuttering principle
theory of partial order reduction
heuristics for efficient implementation

Source
Chapter 10 of E. M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT, 1999.
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Basic facts on partial order reduction

compatible with model checking of finite systems against
LTL formulae without X operator
size of the reduced system is 3–99% of the original size
model checking process for reduced systems is faster and
consumes less memory
best suited for asynchronous systems
also known as model checking using representatives
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Modified definition of Kripke structure

We consider only deterministic systems.

A Kripke structure is a tuple M = (S,T ,S0,L), where
S is a finite set of states
T is a set of transitions, each α ∈ T is a partial function
α : S → S.
S0 ⊆ S is a set of initial states
L : S → 2AP is a labelling function associating to each state
s ∈ S the set of atomic propositions that are true in s.

a transition α is enabled in s if α(s) is defined
α is disabled in s otherwise
enabled(s) denotes the set of transitions enabled in s
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More definitions

Let ϕ be an LTL formula and K = (S,T ,S0,L) be a Kripke
structure.

AP(ϕ) is the set of atomic propositions occurring in ϕ
a path in K starting from a state s ∈ S is an infinite
sequence π = s0, s1, . . . of states such that s0 = s and for
each i there is a transition αi ∈ T such that αi(si) = si+1

a path starting in a fixed state can be identified with a
sequence of transitions
a path π satisfies ϕ, written π |= ϕ, if w |= ϕ, where the
word w = w(0)w(1) . . . is defined as w(i) = L(si) ∩ AP(ϕ)
for all i ≥ 0
K satisfies ϕ, written K |= ϕ, if all paths starting from initial
states of K satisfy ϕ
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Goal of partial order reduction

LTL−X denotes LTL formulae without X operator.

Goal

Given a finite Kripke structure K and an LTL−X formula ϕ, we
want to find a smaller Kripke structure K ′ such that

K |= ϕ ⇐⇒ K ′ |= ϕ.
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Reduction method

K ′ arises from K by disabling some transitions in some
states
as a result, some states may become unreachable in K ′

for each state s, ample(s) denotes the set of transitions
that are enabled in s in K ′, ample(s) ⊆ enabled(s)
calculation of ample sets needs to satisfy three goals

1 K ′ given by ample sets has to satisfy

K |= ϕ ⇐⇒ K ′ |= ϕ

2 K ′ should be substantially smaller than K
3 the overhead in calculating ample sets must be small
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A base of partial order reduction

Stuttering principle
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Stuttering on words

let w = w(0)w(1)w(2) . . . be an infinite word
a letter w(i) is called redundant iff w(i) = w(i + 1) and
there is j > i such that w(i) 6= w(j)
canonical form of w is the word obtained by deleting all
redundant letters from w
infinite words w1,w2 are stutter equivalent, written
w1 ∼ w2, iff they have the same canonical form

Example
canonical form of kk k oooo o m k k .nω is komk .nω

canonical form of k oo o mmmmm m kkk k .nω is komk .nω

hence kkkooooomkk .nω ∼ kooommmmmmkkkk .nω
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Stuttering principle

Theorem (Lamport 1983)

Let ϕ be an LTL−X formula and w1,w2 be two stutter equivalent
words. Then

w1 |= ϕ ⇐⇒ w2 |= ϕ.
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Stuttering on paths

Paths π = s0s1 . . . and π′ = s′0s′1 . . . are stutter equivalent with
respect to a set AP ′ ⊆ AP, written π ∼AP′ π′, iff w ∼ w ′, where
w ,w ′ are defined as w(i) = L(si) ∩ AP ′ and w ′(i) = L(s′i ) ∩ AP ′

for each i .

Kripke structures K ,K ′ are stutter equivalent with respect to
AP ′, written K ∼AP′ K ′, iff

K and K ′ have the same set of initial states and
for each path π of K starting in an initial state s there exists
a path π′ of K ′ starting in the same initial state such that
π ∼AP′ π′ and vice versa.
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Stuttering principle for Kripke structures

Corollary

Let ϕ be an LTL−X formula and K ,K ′ be Kripke structures such
that K ∼AP(ϕ) K ′. Then

K |= ϕ ⇐⇒ K ′ |= ϕ.

Hence, for every set of stutter equivalent paths (with respect to
AP(ϕ)) of K it is sufficient to keep at least one representative of
these paths in K ′.
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Example

��
x=2

β0

��

x:=x+1

��
x=2

β1

��
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��

x 6=2

β0��
x=2

x:=x+1

��

x 6=2

β1��
x 6=2

��

Let AP(ϕ) contain just x = 2.

x=2 x=2 x=2 x 6=2 . . .
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Theory of partial order reduction

Conditions on ample sets
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Terminology: (in)visibility and full expansion

A transition α ∈ T is invisible if for each pair of states s, s′ ∈ S
such that α(s) = s′ it holds that

L(s) ∩ AP(ϕ) = L(s′) ∩ AP(ϕ).

A transition is visible if it is not invisible.

A state s is fully expanded when ample(s) = enabled(s).
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Terminology: (in)dependence

s
α

~~

β

  
s1

β   

s2

α~~
r

An independence relation I ⊆ T × T is a symmetric and
antireflexive relation satisfying the following two conditions for
each state s ∈ S and for each (α, β) ∈ I:

1 enabledness: if α, β ∈ enabled(s) then α ∈ enabled(β(s))
2 commutativity: if α, β ∈ enabled(s) then α(β(s)) = β(α(s))

The dependency relation D is the complement of I.
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Condition C0

If all ample sets satisfy the following conditions C0, C1, C2, and
C3, then K ′ ∼AP(ϕ) K .

C0

ample(s) = ∅ ⇐⇒ enabled(s) = ∅.

IA159 Formal Verification Methods: Partial Order Reduction 21/53



Condition C0

If all ample sets satisfy the following conditions C0, C1, C2, and
C3, then K ′ ∼AP(ϕ) K .

C0

ample(s) = ∅ ⇐⇒ enabled(s) = ∅.
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Condition C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.
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Condition C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

Lemma

If C1 holds, then the transitions in enabled(s)r ample(s) are
all independent of those in ample(s).
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Condition C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

Thanks to C1, all paths of K starting in a state s and not
included in K ′ have one of the following two forms:

the path has a prefix β0β1 . . . βmα, where α ∈ ample(s)
and each βi is independent of all transitions in ample(s)
including α.
the path is an infinite sequence of transitions β0β1 . . .
where each βi is independent of all transitions in ample(s).
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Condition C1: consequences

s

β0

��
α

��
s1

β1

��
α

��

r0

β0��
s2

β2

��

α

��

r1

β1��

βm

��

r2

β2

��sm

α

�� βm��
rm

Due to C1, after execution of a se-
quence β0β1 . . . βm of a transitions
not in ample(s) from s, all the tran-
sitions in ample(s) remain enabled.
Further, the sequence β0β1 . . . βmα
executed from s leads to the same
state as the sequence αβ0β1 . . . βm.

As the sequence β0β1 . . . βmα is not
included in the reduced system, we
want β0β1 . . . βmα and αβ0β1 . . . βm
to be prefixes of stutter equivalent
paths. This is guaranteed if α is in-
visible.
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Condition C2

C2 (invisibility)

If s is not fully expanded, then every α ∈ ample(s) is invisible.
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Condition C3: motivation

Conditions C0, C1, and C2 are not yet sufficient to guarantee
that K ′ is stutter equivalent to K . There is a possibility that
some transition will be delayed forever because of a cycle.

��

β

��

��

α1

��
α3

BB

α2
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��

β

��

α1

��

β

��

α3
BB

β

��

α2
oo

α1

��

α3 BB

α2
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��

α1

��
α3

BB

α2
oo

β is visible, α1, α2, α3 are invisible, β is independent of
α1, α2, α3, and α1, α2, α3 are interdependent
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Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state
in which some transition is enabled, but is never included in
ample(s) for any state s on the cycle.
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Calculating ample sets

Complexity of checking conditions C0–C3

IA159 Formal Verification Methods: Partial Order Reduction 30/53



Conditions C0 and C2

C0

ample(s) = ∅ ⇐⇒ enabled(s) = ∅.

C2 (invisibility)

If s is not fully expanded, then every α ∈ ample(s) is invisible.

conditions C0 and C2 are local: their validity depends just
on enabled(s) and ample(s), not on the whole structure
C0 can be checked in constant time
C2 can be checked in linear time with respect to |ample(s)|
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Condition C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

checking C1 for a state s and a set T ⊆ enabled(s) is at
least as hard as checking reachability for K (reachability
problem can be reduced to checking C1)
we give a procedure computing a set of transitions that is
guaranteed to satisfy C1
computed sets do not have to be optimal: tradeoff
efficiency Vs. amount of reduction
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Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state
in which some transition is enabled, but is never included in
ample(s) for any state s on the cycle.

C3 is also non-local
in contrast to C1, C3 refers only to the reduced structure
instead of checking C3, we formulate a stronger condition
which is easier to check
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Condition C3

Lemma

Assume that C1 holds for all ample sets along a cycle in a
reduced structure. If at least one state along the cycle is fully
expanded, then C3 hold for this cycle.

C1 implies that each α ∈ enabled(s)r ample(s) is
independent of transitions in ample(s)
α ∈ enabled(s)r ample(s) is also enabled in the next
state on the cycle in K ′

if the cycle contains a fully expanded state, then it surely
satisfies C3
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Condition C3’

If K ′ is generated using depth-first search strategy, then every
cycle in K ′ has to contain a back edge (i.e. an edge going to a
state on the search stack)

C3’

If s is not fully expanded, then no transition in ample(s) may
reach a state that is on the search stack.

C3’ can be checked efficiently during nestedDFS algorithm
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Calculating ample sets

Algorithm
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Basic information

Reduced system is constructed on-the-fly: ample(s) is
computed only when a model checking algorithm needs to
know successors of s.

Algorithm computing ample sets depends on the model of
computation. We consider processes with

shared variables and
message passing with queues.
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Notation

pc i(s) denotes the program counter of process Pi in a
state s
pre(α) is a set including all transitions β such that there
exists a state s for which α 6∈ enabled(s) and
α ∈ enabled(β(s))
dep(α) is the set of all transitions that are dependent on α
Ti is the set of transitions of process Pi

Ti(s) = Ti ∩ enabled(s)
current i(s) is the set of all transitions of Pi that are enabled
in some s′ such that pc i(s) = pc i(s

′)
(note that Ti(s) ⊆ current i(s))
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Tradeoff

We do not compute the sets pre(α) and dep(α) precisely.
We prefer to efficiently compute over-approximations of these
sets.
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Computing pre(α)

pre(α) includes the transitions of the processes that
contain α and that can change a program counter to a
value from which α can execute
if the enabling condition for α involves shared variables,
then pre(α) includes all other transitions that can change
these shared variables
if α sends or receives messages on some queue q, then
pre(α) includes transitions of other processes that receive
or send data through q, respectively
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Computing dep(α)

pairs of transitions that share a variable, which is changed
by at least one of them, are dependent
pairs of transitions belonging to the same process are
dependent
two receive transitions that use the same message queue
are dependent
two send transitions are also dependent (sending a
message may cause the queue to fill)

Note that a pair of send and receive transitions in different
processes are independent as they can potentially enable each
other, but not disable.
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Sketch of the algorithm

C1 implies that transitions in enabled(s)r ample(s) are
independent on those in ample(s)
as transitions in Ti(s) are interdependent, it holds

Ti(s) ⊆ ample(s) ∨ Ti(s) ∩ ample(s) = ∅

hence, Ti(s) is a good candidate for ample(s)

Idea of the algorithm

We check whether some Ti(s) 6= ∅ satisfies the conditions C1,
C2, and C3’. If there is no such Ti(s), we set
ample(s) = enabled(s).
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Checking C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

If ample(s) = Ti(s) violates C1, then there is a path

s
β0 //

}} �� !!

• β1 // . . .
βn // • α // . . .

where
α 6∈ Ti(s) and α is dependent on Ti(s),
β0, . . . , βn are independent on Ti(s).
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Checking C1

s
β0 //

~~ ��   

• β1 // . . .
βn // s′

α 6∈Ti (s) // . . .

There are two cases.

Case A α ∈ Tj for some i 6= j . Then dep(Ti(s)) ∩ Tj 6= ∅.

Case B α ∈ Ti .
β0, . . . , βn are independent on Ti(s) and hence
β0, . . . , βn 6∈ Ti (all transitions of Pi are considered as
interdependent).
Therefore pc i(s) = pc i(s

′) and thus α ∈ current i(s)rTi(s).
As α 6∈ Ti(s), some transition of β0, . . . , βn has to be
included in pre(α).
Hence, pre(current i(s)r Ti(s)) ∩ Tj 6= ∅ for some j 6= i .
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Algorithm checking C1

function checkC1(s,Pi)
forall Pi 6= Pj do

if dep(Ti(s)) ∩ Tj 6= ∅ ∨ pre(current i(s)r Ti(s)) ∩ Tj 6= ∅ then
return false

return true
end function

If the function returns true, then C1 holds. It may return false
even if Ti(s) satisfies C1.
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Algorithm

function checkC2(X )
forall α ∈ X do

if visible(α) then
return false

return true
end function

function checkC3’(s,X )
forall α ∈ X do

if onStack(α(s)) then
return false

return true
end function

function ample(s)
forall Pi such that Ti(s) 6= ∅ do

if checkC1(s,Pi) ∧ checkC2(Ti(s)) ∧ checkC3’(s,Ti(s)) then
return Ti(s)

return enabled(s)
end function
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Partial order reduction

Example
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Example: code

P :: m : cobegin P0‖P1 coend

P0 :: s0 : while true do
NC0 : wait(turn = 0);
CS0 : turn := 1;

endwhile;

P1 :: s1 : while true do
NC1 : wait(turn = 1);
CS1 : turn := 0;

endwhile;

Specification formula ϕ = G¬((pc0 = CS0) ∧ (pc1 = CS1))
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Example
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turn = 0
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The End

Thank you for your attention!

Oral exam (subscribe via IS!)
30 min per student.
The order to be determined later.
Topics

Everything we have covered in the course.
Including the material not on the slides!
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