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1. Foundations

1.1 Keep the Parameter Fixed

How to cope with computational intractability? Several methods to deal
with this problem have been developed: approximation algorithms [23, 152],
average-case analysis [153], randomized algorithms [197], and heuristic meth-
ods [190]. All of them have their drawbacks, such as the difficulty of approxi-
mation, lack of mathematical tools and results, limited power of the method
itself, or the lack of provable performance guarantees at all. Clearly, the di-
rect way of attacking NP -hard problems is in providing deterministic, exact
algorithms. However, in this case, one has to deal with exponential running
times. Currently, there is an increasing interest in faster exact solutions for
NP -hard problems. In particular, performance bounds are to be proven. De-
spite their exponential running times, these algorithms may be interesting
from a theoretical as well as a practical point of view. With respect to the
latter, note that for some applications, really exact solutions are needed or
the input instances are of modest size, so that exponential running times can
be tolerated.

Parameterized complexity theory, whose leitmotif can be characterized by
the words “not all forms of intractability are created equal”1 [88], is another
proposal on how to cope with computational intractability in some cases.
In a sense, so-called “fixed-parameter algorithms” form a variant of exact,
exponential time solutions mainly for NP -hard problems. This is the basic
theme of this work and some closely related survey articles [11, 89, 92, 104,
202, 224].

Many hard computational problems have the following general form: given
an object x and a nonnegative integer k, does x have some property that de-
pends on k? For instance, the NP -complete Vertex Cover problem is: given
an undirected graph G = (V, E) and a nonnegative integer k, does G have a
vertex cover of size at most k? Herein, a vertex cover is a subset of vertices
C ⊆ V such that each edge in E has at least one of its endpoints in C. In
parameterized complexity theory, k is called the parameter . In many applica-

1 Specifically, this means that one can often distinguish between hard problems
that nevertheless turn out to be efficiently worst-case solvable in many applica-
tions and others that are not.
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tions, the parameter k can be considered to be “small” in comparison with the
size |x| of the given object x. Hence, it may be of high interest to ask whether
these problems have deterministic algorithms that are exponential only with
respect to k and polynomial with respect to |x|. In this sense, parameterized
complexity is nothing but a two-dimensional complexity theory.2

The basic observation of parameterized complexity, as chiefly developed
by Downey and Fellows [88], is that for many hard problems, the seemingly
inherent “combinatorial explosion” really can be restricted to a (hopefully)
“small part” of the input, the parameter. So, for instance, Vertex Cover
allows for an algorithm with running time O(kn+1.29k) [60, 204, 207], where
the parameter k is a bound on the maximum size of the vertex cover set we are
looking for and n is the number of vertices of the given graph. The best known
“non-parameterized” solution for Vertex Cover is due to Robson [231,
232]. He showed that Independent Set and, thus, Vertex Cover can be
solved in time O(1.19n). However, for k ≤ 0.79 n, the above mentioned fixed-
parameter solution turns out to be better. Note that in several applications
k ≪ n is a natural assumption.

The aim of this work is not to list as many parameterized problems as
possible together with (if existing) their fixed-parameter algorithms, but to
give a, in a sense, application-oriented introduction to the prosperous field of
developing and analyzing efficient fixed-parameter algorithms.

To achieve this, we start with more methodologically oriented consider-
ations introducing basic techniques and results, followed by a series of case
studies where fixed-parameter algorithms have been successfully developed
and applied. Finally, we give a brief collection of some of many facets related
to fixed-parameter algorithms, ranging from structural complexity theory to
implementation and experimentation issues.

At the necessary risk of being incomplete and biased, the whole presen-
tation is kept within clear, relatively small dimensions. Following the given
references to the extensive literature it might serve (and it is meant as) a
springboard into this young, fast developing, and promising field of research
and its applications.

1.2 Preliminaries and Agreements

In this section, we briefly summarize some of the notation used throughout
the work. Still, however, we assume some familiarity with the fundamentals
of algorithms and complexity, cf., e.g., [69, 148, 189, 212, 241].

2 Hromkovič [154] also points to close connections between fixed-parameter
tractability and pseudo-polynomial-time algorithms. He considers the concept
of parameterized complexity as a generalization of the concept of pseudo-
polynomial-time algorithms.
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Basic Sets. Finite alphabets are usually denoted by Σ. We often deal with
the set of nonnegative integer numbers, also denoted by N . By way of con-
trast, R refers to the real numbers, where R+ is the subset of all positive
reals.

Problems. This work is about a particular kind of exact algorithms that
solve computationally hard problems. We present problems in an “input-
question-style.” This first of all refers to decision problems where it is asked
whether for a given input instance of a problem the answer is “yes” or “no.”
As a rule, however, there exists a naturally corresponding optimization prob-
lem which asks to minimize or maximize a certain cost value. All algorithms
in this work can be used not only to output “yes” or “no” in order to answer
the decision question but also can be easily adapted to constructively output
a desired solution object—most of the time they already do. Moreover, in
most cases the algorithms can also be modified to deliver optimal solutions
(i.e., not only fulfilling the given constraints, but being optimal among all
these solutions) to the corresponding optimization problem. We do not make
a sharp distinction between decision or optimization and the subsequently
derived parameterized problems (Subsection 1.3.1) because it will always be
made clear from the context what is meant. As a matter of fact, in a certain
sense one may identify decision and parameterized problems in many cases;
note, however, that in the latter case solution objects will be constructed.

Model of Computation. The Random Access Machine (RAM) model of
computation will be used to give a machine-independent description of al-
gorithms, sometimes using pseudo-code in the same style as it was usual
in the standard textbooks on algorithms. Particular features of RAM com-
putation are that each “simple” operation (basic arithmetic, assignments,
if-statements, etc.) takes one time unit, as well as every access to one mem-
ory cell (with some reasonable word size) does. In particular, the word size is
big enough to hold all numbers occurring in the presented algorithms. None
of the described RAM features will be misused in the sense that the corre-
sponding algorithms could not be implemented on existing computers in an
efficient way. This is true although the RAM model, in order to simplify the
analysis of algorithms, for instance, does not distinguish between different
levels of the memory hierarchy (cache versus disk etc.).

Running times. We use the “big Oh notation” to analyze the running
times of our algorithms. Hence, we ignore constant factors but, if appropriate,
we point to cases where the involved constant factors of the algorithms are
large and, thus, might threaten or destroy the practical usefulness of the
algorithms. All running time analysis in this work is worst-case analysis, that
is, the presented bounds hold over all input instances of a given problem. At
few points (in particular, concerning applications in computational biology)
we will indicate that sometimes the given bounds or the worst-case analysis
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as such are too pessimistic when the algorithm is applied in practice—to
mathematically analyze any kind of average-case complexity, however, is out
of the scope of this work.3

Strings. A word or, equivalently, a string over a finite alphabet Σ is a
sequence of elements from Σ. Strings will play a particularly important role
in those fixed-parameter algorithms related to computational biology. Here,
we need the Hamming distance measure dH(s, t) between two strings s and t
of same length L. It is defined as

|{ p | s[p] 6= t[p], 1 ≤ p ≤ L }|,

where s[p] denotes the character at position p in string s.

Graphs. The majority of computational problems we will study is based
on graphs. An undirected graph G is a pair (V, E), where V is a finite set of
vertices and E is a finite set of edges which are unordered pairs of vertices. All
graphs considered in this work are undirected. Furthermore, all our graphs are
simple (that is, there is at most one edge between each pair of vertices) and
do not contain self-loops (that is, edges from a vertex to itself are forbidden).
The degree of a vertex is the number of edges incident on it. A graph is d-
regular if every vertex has degree exactly d. The neighborhood of a vertex v
in graph G = (V, E) is defined as N(v) := {u | {u, v} ∈ E }. In a d-regular
graph each neighborhood has size exactly d. For a graph G = (V, E) and a
set V ′ ⊆ V , the subgraph of G induced by V ′ is denoted by G[V ′] = (V ′, E′),
where E′ := { {u, v} ∈ E | u ∈ V ′ ∧ v ∈ V ′ }. A graph is connected if every
pair of vertices is connected by a path. If a graph is not connected then it
naturally falls into its connected components. Two graphs G = (V, E) and
G′ = (V ′, E′) are isomorphic if there exists a bijection g : V → V ′ such that
(u, v) ∈ E if and only if (g(u), g(v)) ∈ E′.

In this work we often deal with a special class of graphs, planar graphs.
A graph G is called planar if it can be drawn in the plane such that no
two edges cross. A particular crossing-free drawing of a graph is called plane
embedding of that graph and a plane graph is a planar graph together with
its embedding in the plane. Planar graphs are “sparse” in the sense that the
well-known Euler formula says that a planar graph with n vertices has at
most 3n − 6 edges—a general graph may contain up to n(n − 1)/2 edges.
The faces of a plane graph are the maximal regions of the plane that contain
no point used in the embedding. A triangular face is a face enclosed by only
three edges (the smallest number possible). A plane graph where every such
face boundary is a cycle of three edges is called a triangulation.

3 Indeed, due to the inherent difficulties of average-case analysis starting with the
“simple” problem to define what a (practical) average case is and continuing
with difficult mathematical problems behind, relatively little is generally known
about average-case complexity.
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Complexity. Efficiency of algorithms from a theoretical computer science
point of view means algorithms running in time polynomial in the input size.
By way of contrast, there is a vast amount of important computational prob-
lems that so far resisted to efficient solutions. These problems are known as
NP -hard problems and the classic reference to the theory of computational
intractability is the book of Garey and Johnson [119]. A typical NP -hard
problem is the Satisfiability problem: Given a boolean formula in conjunc-
tive normal form, decide whether or not there is a satisfying truth assignment.
An NP -hard problem is NP -complete if it can be solved in polynomial time
by a nondeterministic Turing machine4—the (complexity) class of all prob-
lems solvable by this means is denoted by NP . All computational problems
considered in this work are decidable, that is, there always is an algorithm
deciding the given problem in finite time.

Since NP -hard decision problems generally need exponential (or worse)
running time to be solved exactly (which is impractical in most cases) a less
ambitious goal in attacking the corresponding optimization versions of the
NP -hard problems, as pursued by approximation algorithms, is to solve the
problem in polynomial time but not necessarily optimal [23, 152, 212, 258].
The hope is that the provided solution is “not too far from the optimum.”
The quality of the approximation (with respect to the given optimization
criterion) is measured by the approximation ratio, a number ǫ between 0
and 1 (see the given literature for details). The smaller ǫ is, the better the
approximation will be—ǫ = 0 means an optimal solution. A polynomial-time
approximation scheme (PTAS) for an optimization problem then is an algo-
rithm which, for each ǫ > 0 and each problem instance, returns a solution with
approximation ratio ǫ. The polynomial running time of this algorithm, how-
ever, crucially depends on 1/ǫ. If the polynomial depends polynomially on 1/ǫ
as well then the approximation scheme is called fully polynomial (FPTAS).
We mention in passing that the class MaxSNP [214] (also known as APX )
of optimization problems can be “syntactically” defined together with a re-
ducibility concept. The point is that MaxSNP-complete problems are unlikely
to have polynomial-time approximation schemes. The optimization version of
Vertex Cover (which plays a key role on this work) is MaxSNP -hard. More
details and much more advanced material on the hardness of approximation
but also positive results can be found in the given literature.

The recent book of Hromkovič [154] provides an extensive survey on vari-
ous ways (including approximation and exact algorithms) to cope with com-
putational intractability. Related texts can also be found in [22].

4 Note that polynomial time on a deterministic Turing machine is equivalent to
polynomial time on a RAM.
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1.3 Parameterized Complexity—a Brief Overview

We briefly sketch general aspects of the theoretical basis of the study of pa-
rameterized complexity. For a detailed exposition we refer to the research
monograph of Downey and Fellows [88]. The focus of this section, however,
lies on the practical relevance of fixed-parameter tractability, and the consid-
eration of structural complexity issues is limited.

1.3.1 Basic Theory

The NP -complete Vertex Cover problem is the best studied problem in
the field of fixed-parameter algorithms:

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer
vertices such that each edge in E has at least one of its endpoints
in C?

Vertex Cover is fixed-parameter tractable: There are algorithms solving it
in time less than O(kn + 1.29k) [60, 204, 207]. By way of contrast, consider
the also NP -complete Clique problem:

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or more
vertices such that C forms a clique by having all possible edges
between the vertices in C?

Clique appears to be fixed-parameter intractable: It is not known whether
it can be solved in time f(k) · nO(1), where f might be an arbitrarily fast
growing function only depending on k [88]. More precisely, unless P = NP ,
the well-founded conjecture is that no such algorithm exists. The best known
algorithm solving Clique runs in time O(nck/3) [201], where c is the exponent
on the time bound for multiplying two integer n×n matrices (currently best
known, c = 2.38, see [68]). Note that O(nk+2) is the running time for the
straightforward algorithm just checking all size k subsets. The decisive point
is that k appears in the exponent of n, and there seems to be no way “to
shift the combinatorial explosion only into k,” independent from n.

The observation that NP -complete problems like Vertex Cover and
Clique behave completely differently in a “parameterized sense” lies at
the very heart of parameterized complexity, a theory pioneered by Downey
and Fellows [88]. Subsequently, we will concentrate on the world of fixed-
parameter tractable problems as, e.g., exhibited by Vertex Cover. Hence,
here we only briefly sketch some very basics from the theory of parameter-
ized intractability in order to provide some background on parameterized
complexity theory and the ideas behind it. For many further details and
an additional discussion, we once more refer to Downey and Fellows’ mono-
graph [88].

We begin with some basic definitions of parameterized complexity theory.
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Definition 1.3.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗,
where Σ is a finite alphabet. The second component is called the parameter
of the problem.

In basically all examples in this work the parameter is a nonnegative integer.
Hence, we will subsequently write L ⊆ Σ∗ × N instead of L ⊆ Σ∗ × Σ∗.
In principle. however, the above definition leaves it open to also define more
complicated parameters, e.g., substructures one is searching for in a cited
structure.5 The key notion of this work is the concept of fixed-parameter
tractability.

Definition 1.3.2. A parameterized problem L is fixed-parameter tractable if
the question “(x1, x2) ∈ L?” can be decided in running time f(|x2|) · |x1|O(1),
where f is an arbitrary function on nonnegative integers. The corresponding
complexity class is called FPT.

In the preceding definition, one may assume any standard model of sequen-
tial computation such as deterministic Turing machines. For the sake of con-
venience, in the following, if not stated otherwise, we will always take the
parameter, then denoted by k, as a nonnegative integer encoded in unary.
Hence, we will simply write f(k) for the running time function only depend-
ing on the parameter.

Attempts to prove nontrivial, absolute lower bounds on the computational
complexity of problems have made relatively little progress [43]. Hence, it is
probably not surprising that up to now there is no proof that no f(k) ·nO(1)

time algorithm for Clique exists. In a more complexity-theoretical lan-
guage, this can be rephrased by saying that it is unknown whether Clique
∈ FPT . Analogously to classical complexity theory, Downey and Fellows de-
veloped some way out of this quandary by providing a completeness program.
The completeness theory of parameterized intractability involves significantly
more technical effort than the classical one. We very briefly sketch some in-
tegral parts of this theory in the following.

To start with a completeness theory, we first need a reducibility concept:

Definition 1.3.3. Let L, L′ ⊆ Σ∗ ×N be two parameterized languages. We
say that L reduces to L′ by a standard parameterized m-reduction if there
are functions k 7→ k′ and k 7→ k′′ from N to N and a function (x, k) 7→ x′

from Σ∗ ×N to Σ∗ such that

1. (x, k) 7→ x′ is computable in time k′′|x|c for some constant c and
2. (x, k) ∈ L iff (x′, k′) ∈ L′.

Notably, most reductions from classical complexity turn out not to be param-
eterized ones [88]. For instance, the well-known reduction from Independent
Set to Vertex Cover (see [212]), which is given by letting G′ = G and
k′ = |V | − k for a graph instance G = (V, E), is not a parameterized one.

5 An example is given by the Graph Minor Order Testing problem, cf. [88].
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This is due to the fact that the reduction function of the parameter k 7→ k′

strongly depends on the instance G itself, hence contradicting the definition of
a parameterized m-reduction. However, the reductions from Independent
Set to Clique and vice versa, which are obtained by simply passing the
original graph over to the complementary one for k′ = k, indeed are parame-
terized ones. Therefore, these problems are of comparable difficulty in terms
of parameterized complexity.

Now, the “lowest class of parameterized intractability” can be defined
as the class of parameterized languages that are equivalent to the so-called
Short Turing Machine Acceptance problem (also known as the k-Step
Halting problem).

Input: A nondeterministic Turing machine M with its transition
table, an input word x, and a nonnegative integer k.
Question: Does M accept x in a computation of at most k steps?

This is the parameterized analogue to the Turing machine acceptance
problem—the basic generic NP -complete problem in classical complexity the-
ory. Together with the above introduced reducibility concept, Short Turing
Machine Acceptance can now be used to define the currently lowest class
of parameterized intractability, that is, W [1].

Definition 1.3.4. The class of all parameterized languages that reduce by
a standard parameterized m-reduction to Short Turing Machine Accep-
tance is called W [1]. A problem which lets all other problems in W [1] reduce
to it is called W [1]-hard; if, additionally, it is contained in W [1] then it is
called W [1]-complete.

Note that W [1] is originally defined in a “circuit-based”, more technical way,
refer to [88] for any details.6 Clearly, by definition, Short Turing Machine
Acceptance is W [1]-complete. Other problems that are W[1]-complete in-
clude Clique and Independent Set, where the parameter is the size of
the relevant vertex set [88]. Note that a parameterized m-reduction from one
of these problems to Vertex Cover would lead to a collapse of the classes
W [1] and FPT . Downey and Fellows provide an extensive list of many more
W [1]-complete problems [88].

As a matter of fact, a whole hierarchy of parameterized intractability can
be defined, W [1] only being the lowest level. In general, the classes W [t] are
defined based on “logical depth” (i.e., the number of alternations between
unbounded fan-in And- and Or-gates) in boolean circuits. For instance, the
well-known Dominating Set problem on undirected graphs, which is NP -
complete, is known to be W [2]-complete, where the size of the dominating
set is the parameter [88].

6 This is also where the “W” stems from—it refers to the weft of boolean circuits,
that is, the maximum number of unbounded fan-in gates on any path from the
input variables to the output gate of the (decision) circuit.
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We mention in passing that Flum and Grohe recently came up with some
close connections between parameterized complexity theory and the general
logical framework of descriptive complexity theory [112, 114, 138]. They study
the parameterized complexity of various model-checking problems through
the syntactical structure of the defining sentences. Moreover, they provide a
descriptive characterization of the class FPT , as well as an approach of how
to characterize classes of intractability by syntactical means.

There exists a very rich structural theory of parameterized complexity
somewhat similar to classical complexity. Observe, however, that in some re-
spects parameterized complexity appears to be, in a sense, “orthogonal” to
classical complexity: For instance, the problem of computing the V-C dimen-
sion from learning theory [37, 215], which is not known (and not believed)
to be NP -hard, is W [1]-complete [86, 87]. Thus, although in the classical
sense it appears to be easier than Vertex Cover (which is NP -complete),
the opposite appears to be true in the parameterized sense, because Vertex
Cover is in FPT .

From a more practical point of view (and the remainder of this work), it
is sufficient to distinguish between W [1]-hardness and membership in FPT .
Thus, for an algorithm designer not being able to show fixed-parameter
tractability of a problem, it may be “sufficient” to give a reduction from, e.g.,
Clique to the given problem using a standard parameterized m-reduction.
This then gives a concrete indication that, unless P = NP , the problem is
unlikely to allow for an f(k) ·nO(1) time algorithm. One piece of circumstan-
tial evidence for this is the result showing that the equality of W [1] and FPT
would imply a time 2o(n) algorithm for the NP -complete 3-Satisfiability
(formulas in conjunctive normal form with clauses consisting of at most three
literals) problem [88] (where n denotes the number of variables of the given
Boolean formula), which would mean a breakthrough in computational com-
plexity theory.

1.3.2 Interpreting Fixed-Parameter Tractability

The remainder of this work concentrates on the world inside the class FPT of
fixed-parameter tractable problems and the potential it carries for improve-
ments and future research. We therefore finish this section by an interpreta-
tion of FPT under some application aspects. Note that in the definition of
FPT the function f(k) may take unreasonably large values, e.g.,

222
2
2
2
2

k

.

Thus, showing that a problem is a member of the class FPT does not neces-
sarily bring along an efficient algorithm (not even for small k). In fact, many
problems that are classified fixed-parameter tractable still wait for such effi-
cient, practical algorithms. In this sense, we strongly have to distinguish two
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k f(k) = 2k f(k) = 1.32k f(k) = 1.29k

10 ≈ 103 ≈ 16 ≈ 13
20 ≈ 106 ≈ 258 ≈ 163
30 ≈ 109 ≈ 4140 ≈ 2080
40 ≈ 1012 ≈ 6.7 · 104 ≈ 2.7 · 104

50 ≈ 1015 ≈ 1.1 · 106 ≈ 3.4 · 105

75 ≈ 1022 ≈ 1.1 · 109 ≈ 2.0 · 108

100 ≈ 1030 ≈ 1.1 · 1012 ≈ 1.1 · 1011

500 ≈ 10150 ≈ 1.9 · 1060 ≈ 2.0 · 1055

Table 1.1. Comparing the efficiency of various Vertex Cover algorithms with
respect to the exponential terms given to be found in the literature.

different aspects of fixed-parameter tractability: The theoretical part which
consists in classifying parameterized problems along the W -hierarchy (i.e.,
proving membership in FPT or hardness for W [1]) and the algorithmic com-
ponent of actually finding efficient algorithms for problems inside the class
FPT .

The Graph Minor Theorem by Robertson and Seymour [88, chapter 7],
for instance, provides a great tool for the classification of graph problems.
It states that, for a given family of graphs F which is closed under taking
minors, membership of a graph G in F can be checked by analyzing whether
a certain finite “obstruction set” appears as a minor in G. Moreover, the
Graph Minor Order Testing problem is in FPT [88], or, more precisely,
for a fixed graph G of n vertices there is an algorithm with running time
O(f(|H|) ·n3) that decides whether a graph H is a minor or not. As a matter
of fact, the set Fk of vertex covers of size ≤ k are closed under taking minors.
Hence there exists a finite obstruction set Ok for Fk. The above method
then yields the existence of a fixed-parameter algorithm for Vertex Cover.
However, in general, the function f appearing in the Graph Minor Order
Testing algorithm grows fast and the constants hidden in the O-notation are
huge. Moreover, finding the obstruction set in the Graph Minor Theorem, in
general, is highly non-constructive. Thus, the above mentioned method may
only serve as a classification tool.

Taking into account that the theory of fixed-parameter tractability should
be understood as an approach to cope with inherently hard problems, it is
necessary to aim for practical, efficient fixed-parameter algorithms. In the
case of Vertex Cover, for example, it is fairly easy to come up with an
algorithm of running time O(2kn) using a simple search tree strategy. The
base of the exponential term in k was further improved, now below 1.29
(see [60, 204, 205, 207] for a complete exposition). Table 1.1 relates the size of
the exponential term for these base values. From this table we can conclude
that improvements in the exponential growth of f can lead to significant
changes in the running time, and, therefore, deserve investigation.
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Finally, to demonstrate the problematic nature of the comparison “fixed-
parameter tractable” versus “fixed-parameter intractable,” let us compare the

functions 22k

and nk = 2(k log n). The first refers to fixed-parameter tractabil-
ity, the second to intractability. It is easy to verify that assuming input sizes n

in the range from 103 up to 1015, the value of k where 22k

starts to exceed nk

is in the small range { 6, 7, 8, 9 }.
A striking example in this direction is that of computing the treewidth

of graphs (see Section 4.4 for more on that). For constant k, there is a fa-
mous result giving a linear time algorithm to compute whether a graph has
treewidth at most k [38]. More precisely, the algorithm has running time

2Θ(k3) · kO(1) · n.
As a consequence, the O(nk+1) algorithm [17] appears to be “more

practical.” This shows how careful one has to be with the term fixed-
parameter tractable since, in practical cases with reasonable input sizes, a
fixed-parameter intractable problem might turn out to have a still more “ef-
ficient” solution than a fixed-parameter tractable one.

Keeping these considerations in mind, this work now starts off to try to
give convincing arguments that the field of fixed-parameter tractability con-
tains a wealth of interesting questions and answers, relevant for the practice
of algorithmic strategies against computationally hard problems.

1.4 Vertex Cover – an Illustrative Example

Vertex Cover is the so far most popular fixed-parameter tractable prob-
lem. It is an important problem in combinatorial optimization and graph
theory and it is easy to grasp. Many aspects of fixed-parameter algorithms
can naturally be developed and illustrated using Vertex Cover as a run-
ning example. Hence, Vertex Cover also plays a prominent role in this
work. We start with recalling the definition:

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer
vertices such that each edge in E has at least one of its endpoints
in C?

Vertex Cover has seen quite a long history in the development of fixed-
parameter algorithms [88, page 5]. Surprisingly, a lot of papers published
fixed-parameter results (e.g., cf. [215]) on Vertex Cover that are worse
than the O(2kn) time bound that directly follows from the elementary search
tree method e.g. described in Mehlhorn’s text book on graph algorithms [189,
page 216]. The corresponding simple observation, which is also used in the
ratio 1/2 approximation algorithm for Vertex Cover, is as follows: Each
edge {u, v} has to be covered. Hence, u or v has to be in the cover (perhaps
both). Thus, building a search tree where we branch as either bringing u or v
in the cover, deleting the respective vertex together with its incident edges
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and continuing recursively with the remaining graph by choosing the next
edge (which is arbitrary) solves the problem. The search tree with depth at
most k has at most 2k nodes, each of which can be processed in linear time
using suitable data structures. In recent times, there has been very active
research on lowering the size of the search tree [30, 60, 92, 204, 207, 249],
the best known result now being better than 1.29k [60, 204, 207]. The basic
idea behind all of these papers is to use two fundamental techniques for
developing efficient fixed-parameter algorithms, that is, bounded search trees
and reduction to problem kernel. Both will be explained in greater detail
in chapters particularly dedicated to these methods (Chapters 2 and 3). To
improve the search tree size, intricate case distinctions with respect to the
degree of graph vertices were designed. As to reduction to problem kernel, a
very elementary idea is as follows: Assume that you have a graph vertex v of
degree k + 1, that is, k + 1 edges have endpoint v. Then, to cover all these
edges, one has to either bring v or all its neighbors into the vertex cover.
In the latter case, however, the vertex cover then would have size at least
k + 1—too much if we are only interested in covers of size at most k. Hence,
without branching we have to bring v and all other vertices of degree greater
than k into the cover. From this observation, one can easily conclude that
after doing this preprocessing, the remaining graph may consist of at most
k2+k vertices and at most k2 edges. A well-known theorem of Nemhauser and
Trotter [199] (also see, e.g., [32, 217]) can be used to construct an improved
reduction to problem kernel resulting in a graph of only 2k vertices [60] as
will be discussed in Section 2.4.

In the following subsections, we shed some light on the opportunities
fixed-parameter complexity studies offer. Vertex Cover is the illustrating
example.

1.4.1 Parameterize

In our discussions of Vertex Cover so far, the parameter k always denoted
the size of the vertex cover set to be found. But this is not necessarily the
only way how the parameter could have been chosen—it is probably the most
natural way, though. Let us discuss some other possible choices for what we
term the parameter .

As a first choice, consider the “dual” parameterization n−k, that is, now
the question is whether or not there is a vertex cover of size n− k, where n
denotes the total number of graph vertices and k again denotes a nonnegative
integer given as part of the input. It is a well-known fact that a graph has
a vertex cover of size k iff it has an independent set of size n − k. Hence,
the question whether or not a graph has a vertex cover of size n− k then is
equivalent to the question whether or not a graph has an independent set of
size k. The latter problem, however, is known to be W [1]-complete [88] and,
thus, unlikely to be fixed-parameter tractable. In this sense, therefore, one
can say that the “parameterization” with n− k is “hopeless” with respect to
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efficient fixed-parameter algorithms (the explicit parameter value still being k
which then denotes the number of vertices not being part of the vertex cover)
in our sense. There is also another subtle point brought up by this discussion,
namely the distinction between minimization problems (such as Vertex
Cover) and maximization problems (such as Independent Set) which
might also influence the choice of the parameterization to be applied to the
given problem. In several settings, in order to guarantee a small parameter
value (and, in particular, often for maximization problems) it might make
sense to choose the parameterization n − k because then k might be small
whereas n− k is not.

Another parameterization is the following where we restrict, for the time
being, our attention to planar graphs. Vertex Cover is NP -complete also
for planar graphs [119]. For planar graphs we have the famous four-color the-
orem [15, 16, 229]—every planar graph has a coloring (that is, neighboring
vertices have to have different colors) using only four colors. Moreover, there
is a polynomial time algorithm for constructing a four-coloring [228]. From
this result, however, it easily follows that every planar graph has a vertex
cover of size at most ⌊3n/4⌋. Hence, the question whether or not a given
planar graph possesses a vertex cover of size ⌊3n/4⌋ − k comes up naturally
(again, k is a given nonnegative integer and n is the total number of ver-
tices). To the best of our knowledge, however, it is open whether Vertex
Cover with this parameterization is fixed-parameter tractable or whether it
is W [1]-hard or something in-between. This way of parameterizing problems
is known as “parameterizing above (respectively below) guaranteed values”
(cf. Subsection 1.5.2 and [186]).

In summary, however, it needs to be emphasized that Vertex Cover has
natural and obvious, practically relevant parameterizations. In Section 1.5
we will see that for other problems the choice of what to consider as the
parameter may become a more complex issue.

1.4.2 Specialize

Already in the previous subsection we encountered Vertex Cover on pla-
nar graphs, a still NP -complete special case of the general problem on unre-
stricted graphs. Due to results in approximation algorithms, where Vertex
Cover on planar graphs can be better approximated than in the general
case [24]7, one might expect that it easier to cope with it on planar graphs.

And, indeed, this is the case. There are time O(c
√

k + kn) algorithms for

7 There are linear time algorithms giving approximation factor 2 (i.e., approx-
imation ratio 1/2) for the unweighted case [119] (as considered here) as well
as for the weighted case [31] of Vertex Cover on general graphs. Both re-
sults can be improved to an approximation factor that is asymptotically better:
2 − log log |V |/2 log |V | [32, 192]. Until now, no further improvements of these
bounds have been obtained. By way of contrast, Baker [24] gave a polynomial
time approximation scheme (PTAS) for Vertex Cover on planar graphs.
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Vertex Cover on planar graphs [3, 7, 8], where the currently best value

for c is 24
√

3. This is an (asymptotic) exponential speedup in comparison
with the best known bound O(1.3k + kn) for general graphs. Here, it is im-
portant to notice the huge difference between the exponential base values

c = 24
√

3 ≈ 121.8 and 1.3, which, at first sight, makes this result a purely
theoretical one. Recent experimental studies [4], however, reveal that for the
mathematically proven constant c there is probably quite some room for im-
provement and/or the average-case behavior of the corresponding algorithm
is much better. Clearly, this raises the general issue of investigating Ver-
tex Cover on various special graph classes (cf. [44] for a survey on graph
classes); very recent examples of this, building on the works [3, 8] are given
in [81, 115].

1.4.3 Generalize

There are many, more general “relatives” of Vertex Cover. The perhaps
closest ones are Weighted Vertex Cover problems, where we put, for
example, nonnegative integer or real weights on the graph vertices. Then,
the task is to search for a minimum weight vertex cover set, where we sum
up the weights of the vertices in the set. Recent studies also give efficient
fixed-parameter search tree algorithms for Weighted Vertex Cover prob-
lems, but, in comparison with unweighted Vertex Cover, completely new
branching strategies had to be designed (cf. Subsection 5.2.1 and [207]). Very
recently, a still more general version, so-called Capacitated Vertex Cover
with applications in drug design has been considered [142]. This problem still
lacks fixed-parameter complexity studies, whereas a polynomial time factor 2
approximation algorithm has been given.

Another way of generalization is to consider a broader graph concept, that
is, hypergraphs. By way of contrast to standard graphs, here edges may con-
nect more than two vertices. For instance, if we allow three vertices (instead
of two) per edge, then Vertex Cover becomes the so-called 3-Hitting
Set problem. Again, developing efficient fixed-parameter algorithms for 3-
Hitting Set requires new ideas (cf. Section 3.4 and [208]).

Nishimura et al. [209] derived fixed-parameter tractability results that can
also be seen as generalizations of the algorithms designed for Vertex Cover.
For instance, they consider classes of graphs which are defined through a base
graph class. Then, a graph is in such a graph class if a base graph can be
generated from it by deleting at most k vertices. In particular, if the base
graph class consists of all edgeless graphs, then this exactly yields the class of
graphs with a vertex cover of size at most k. Thus, a recognition algorithm for
this graph class yields an algorithm for the parameterized Vertex Cover
problem. Unfortunately, so far these results seem to be of mainly theoretical
interest only, because the exponential functions involved (e.g., kk and worse)
in the running times are too big for most practical purposes.
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Studying NP -complete variants of Vertex Cover on bipartite graphs
is motivated by applications in reconfigurable VLSI design [171, 111]. Here,
when modeling the application problem, one ends up with the task of mini-
mizing two vertex cover sets, and, thus, one has to deal with two parameters,
both being nonnegative integers. There also are fixed-parameter algorithms
for these modifications of Vertex Cover (cf. Subsection 5.2.2 and [58, 111]).

1.4.4 Count or Enumerate

So far, parameterized complexity has been focusing on the consideration of
decision or search problems. Counting problems, being standard in classical
computational complexity, have largely been neglected. Consider the graph
consisting of n vertices and n/2 vertex-disjoint edges. Clearly, an optimal
vertex cover of this graph has size k = n/2 and there are exactly 2k many
optimal vertex covers. Generally, it may become difficult to exactly count the
number of optimal vertex covers of a given graph. The problem is that the
common search tree approaches to solve Vertex Cover in a fixed-parameter
way have to be extended such that it is made sure that not the same vertex
cover set is generated through two different paths through the search tree
and thus to avoid that is counted twice. Rossmanith [234] reports on a fixed-
parameter search tree strategy for exactly counting vertex covers that runs
in time O(1.47kk2 + m + n) for a graph with n vertices and m edges. Also
see [122] for a non-parameterized counting algorithm for Vertex Cover.

More general considerations of parameterized counting, in particular in-
cluding hardness results, have recently been obtained by [19, 113, 188]. Specif-
ically, a whole complexity theory of parameterized counting has been initi-
ated.

If one wants to enumerate all optimal vertex covers of a given graph (let
an optimal vertex cover have size k) then clearly the trivial 2k search tree
is optimal because, again considering the example graph from above, there
are 2k optimal vertex covers of this graph and 2k is an upper bound for the
number of optimal vertex covers of every graph. Refer to [110] for further
observations concerning parameterized enumeration and refer to [96, 122] for
expositions explaining the practical usefulness of counting and enumeration
problems and also pointing out some concrete computational problems and
difficulties.

1.4.5 Lower-Bound

Giving (relative) lower bounds for the computational complexity of problems
is a core challenge in theoretical computer science. Unfortunately, it is also
a very hard problem with relatively little success so far. Nevertheless, it is
worth pursuing this issue also in the context of fixed-parameter algorithms.
Besides the “relative lower bounds” given by the mentioned parameterized
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completeness program as such (e.g., W [1]-hardness of Independent Set for
parameter k (number of vertices in the independent set) and, equivalently,
W [1]-hardness of Vertex Cover with respect to parameter k when it is
asked whether there is a vertex cover of size n − k), for instance, also the
following two questions merit attentiveness:

• Can Vertex Cover on general graphs be solved in time (1 + ǫ)k · nO(1)

for arbitrary ǫ > 0 or is there a minimum ǫ-value?
• Can Vertex Cover on general graphs be solved in time 2o(k) · nO(1)?

Cai and Juedes [53] negatively answered the second question by stating
(among other things) that Vertex Cover cannot be solved in time 2o(k) ·
nO(1) unless 3-Satisfiability can be solved in time 2o(n), where n is the
number of variables. Note that the currently best deterministic algorithm for
3-Satisfiability runs in time 1.481n · nO(1) [76]. By way of contrast, the
first question appears to be completely open.

1.4.6 Implement

All we discussed up to now are concerns with strong theoretical flavor. The
value of all algorithms mentioned with their proven worst-case performance
bounds only may indicate their practical usefulness. Fixed-parameter al-
gorithms for Vertex Cover (enriched with heuristic strategies) and for
Vertex Cover on planar graphs have actually been implemented and
tested [79, 234, 248, 4, 85]. The results are encouraging but this field as
a whole is still in its infancy, Vertex Cover being one of the rare examples
with some practical experiences. Usually a lot of algorithm engineering is
necessary to turn a theoretically efficient algorithm into a practically useful
tool. In particular, it appears to be obvious that the theoretically best search
tree algorithms for Vertex Cover [60, 204] which are based on highly com-
plicated case distinctions need to be simplified for practical applications.
The administrative (and intellectual) overhead caused by these fine-grained
case distinctions does not seem to pay off in practice. Hence, the question of
“re-engineering” these case distinctions as much as possible arises where the
challenge is to simplify the case distinctions as much as possible and, at the
same time, to deteriorate the (worst-case) bounds on the search tree size as
little as possible.

1.4.7 Apply

The last subsection, which we consciously separated from the last but one
point “Implement it,” deals with a very subtle point. It is still comparatively
easy in the academic setting to get your algorithms implemented and to test
them on some “toy examples,” e.g., random graphs. It may become a signif-
icantly more time-consuming and challenging task to experiment with “real
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data,” i.e., graphs derived from real world applications together with solv-
ing practically relevant problems. Observe that, especially for exponential
time algorithms as we deal with, final “fine tuning” is a must in order to
make them running as fast as possible. This fine tuning should be directed
towards the final application behind. For pretty general problems such as
Vertex Cover, it is to be expected that this is anything but easy to do.
Also, then, there should be a serious comparison with possibly existing, dif-
ferent approaches (especially with those of putative “practical people”). The
task to really find for a somewhat academic problem such as Vertex Cover
(although there are nice textbook examples for applications) a real-life, use-
ful, industrial-level application is a challenge of high importance. This topic
deserves more attention than it currently obtains.

1.4.8 Final Remarks

Compared with other parameterized problems, the fixed-parameter complex-
ity of Vertex Cover is well understood. Now, there are efficient fixed-
parameter algorithms available and two major challenges here are

1. to give them a really practical meaning as discussed in Subsection 1.4.7,
and

2. to further see what improvements in the running time (theoretically
as well as practically (heuristically?)) are still possible and what lower
bounds apply.

As Vertex Cover developed into a core problem of fixed-parameter al-
gorithmics, it would be good to have some benchmark instances available
where new algorithms can be tested and tuned. Also, modified and general-
ized Vertex Cover problems, in particular those arising in practice, need
to be dealt with. The fixed-parameter history of Vertex Cover has not yet
come to its end.

1.5 How to Parameterize

Already for Vertex Cover we have seen that there is usually more than one
natural way to choose the parameterization of a problem. Still, for Vertex
Cover the case was relatively clear. As we will see now, in general it is not
always straightforward to find the “right” parameterization for a problem—as
a matter of fact, several reasonable, equally valid parameters to choose may
exist and it often depends on the application behind or additional knowledge
about the problem which parameterization is to be preferred. In what follows,
we try to collect a kind of a check list of questions to ask when confronted with
a new problem and the task to develop an exact, fixed-parameter algorithm
to solve it.
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1.5.1 Parameter Really Small?

Recalling our running example Vertex Cover, the parameter “size of the
vertex cover set” appeared as natural choice, and, for general graphs, it seems
plausible in many cases to assume that the size of the vertex cover set is
significantly smaller than the total number of graph vertices. Hence, this can
be considered as a useful parameterization of Vertex Cover. The situation
changes when we turn our attention to the special case of Vertex Cover
on planar graphs. Observing the fact that planar graphs with n vertices have
at most 3n − 6 edges, it is no longer clear that the vertex cover sizes for
planar graphs are “small” compared to the total number of graph vertices.
And, indeed, in experiments with combinatorial random planar graphs we
observed that minimum size vertex covers very often contained about half of
all graph vertices [4].

A second example, drawn from computational biology and genome re-
arrangements, is given by the Breakpoint Median problem (cf. Subsec-
tion 5.1.2 and [236]):

Input: Signed permutations π1, π2, . . . , πk on n elements and a
nonnegative integer d.
Question: Is there a signed permutation π̂ such that∑k

i=1 dbp(πi, π̂) ≤ d?

Herein, dbp(πi, π̂) denotes the breakpoint distance between permutations
πi and π̂, see Subsection 5.1.2 for definitions. Breakpoint Median is
NP -complete, and remains so in the case of only three input permuta-
tions [46, 218]. Hence, choosing k as parameter does not make sense. The
problem is fixed-parameter tractable with respect to the distance parame-
ter d. More precisely, there is an algorithm solving Breakpoint Median
in time O(2.15d · kn), which is practical when d is not too large (as demon-
strated by experiments), a reasonable assumption in applications [135]. No-
tably, with increasing k, the base of the exponential term becomes smaller and
smaller [135]. By way of contrast, however, with increasing k also the value of
distance parameter d should increase, because we are using a “sum metrics.”
It is clear that with large enough k and, thus, many summation terms, it is
no longer reasonable to assume small values for distance parameter d. One
way to deal with this may be to to consider a “normalized parameter” d/k
instead of d, thus making the maximally allowed distance value dependent on
the number of input permutations. It is not clear whether or not Breakpoint
Median is fixed-parameter tractable with respect to parameter d/k. From a
practical point of view, however, the fact that the exponential base also de-
pends on k and decreases with increasing k still makes the above mentioned
algorithm valuable. In summary, we observe that increasing parameter val-
ues with increasing input size have to be taken into account. Normalization
might become an important (but difficult) issue in future fixed-parameter
complexity studies.
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1.5.2 Guaranteed Parameter Value?

This issue is closely related to the previous point. Once more reconsider Ver-
tex Cover on planar graphs. In Subsection 1.4.1 we noted that no minimum
vertex cover can contain more than ⌊3n/4⌋ of all n graph vertices due to the
four-color theorem. For the “dual problem” of Vertex Cover, Indepen-
dent Set, on planar graphs this means that every maximum independent set
contains at least ⌈n/4⌉ vertices. We have the guaranteed value ⌈n/4⌉. Hence,
the at first sight natural parameter “size of the independent set” is not to be
considered as really small. There is an alternative parameterization, which
makes sense: Find an independent set of size ⌈n/4⌉ + k. Unfortunately, the
fixed-parameter complexity of this problem is open. This alternative problem
formulation for Independent Set on planar graphs is the perhaps best ex-
ample for “parameterizing above guaranteed values,” introduced by Mahajan
and Raman [186]. They focused on the Maximum Satisfiability and the
Maximum Cut problems and give similar, somewhat “weaker”8 guaranteed
values for these problems.

Two further problems with guaranteed values again appear in the com-
putational biology context. The Minimum Quartet Inconsistency prob-
lem appears in the construction of evolutionary trees (cf. Subsection 5.1.1
and [133]):

Input: A set S of n taxa and a set QS of
(
n
4

)
quartet topo-

logies such that there is exactly one topology for every quartet
corresponding to S and a nonnegative integer k.
Question: Is there an evolutionary tree T where the leaves are
bijectively labeled by the elements from S such that the set of
quartet topologies induced by T differs from QS in at most k
quartet topologies?

Here, a quartet is a size four subset {a, b, c, d} of the set of taxa and the quartet
topology for {a, b, c, d} induced by T simply is the four leaves subtree of T for
{a, b, c, d} [133]. Minimum Quartet Inconsistency is NP -complete [35,
157]. Steel [246] pointed out that the quartet cleaning algorithm by Berry et
al. [35] finds the optimal solution for instances with k < (n− 3)/2. Thus, we
have the guaranteed value (n− 3)/2.

The Betweenness problem [211, 65] consists of a finite set of n elements
(or points) S = {x1, . . . , xn}, and a finite set of m constraints. Each constraint
consists of a triplet (xi, xj , xk) ∈ S×S×S. A candidate solution to Between-
ness is a total order < on its points. A total order xi1 < xi2 < . . . < xin

satisfies the constraint (xi, xj , xk) if either xi < xj < xk or xk < xj < xi.

8 The problem there is that it is not always clear what should be taken as a
guaranteed value. For example, in case of Maximum Satisfiability by a simple
argument it is known that at least half of all clauses can be satisfied. Thus, this
can be taken as a guaranteed value (as it is done in [186]). There exist, however,
larger guaranteed bounds (cf. [186]).
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That is, each constraint forces the second variable xj to be between the
two other variables xi and xk, but does not specify the relative order of xi

and xk. The decision version of Betweenness is to decide if all constraints
can be simultaneously satisfied by a total order of the variables. The opti-
mization version of Betweenness is to find a total ordering satisfying the
maximum number of constraints. Opatrny [211] showed that the decision
version of Betweenness is NP–complete. This problem arises when analyz-
ing certain mapping problems in molecular biology. For example, it occurs
when trying to order markers on a chromosome, given the results of a radi-
ation hybrid experiment [72, 124]. It is easy to find an assignment satisfying
⌈m/3⌉ out of the m constraints. What is the situation with respect to satis-
fying ⌈m/3⌉+ k constraints? Is the corresponding problem with parameter k
fixed-parameter tractable?

In summary, guaranteed bounds for parameter values should—whenever
available—be taken into account when designing fixed-parameter algorithms.
The particular difficulty herein is that to prove these bounds can be very hard,
and, additionally, it is not always clear whether these bounds are optimal and,
therefore, better guaranteed bounds might exist.

1.5.3 More Than One Reasonable Parameterization?

Many problems naturally offer a whole selection of possible parameterizations
and some parameterizations may make the design of a fixed-parameter algo-
rithm “easy” and some may make it “hard.” Moreover, different application
settings and different side conditions arising in practice may require different
parameterizations.

Firstly, we turn to Vertex Cover but now the weighted case (cf. Sub-
section 1.4.3). With positive weights on the vertices, we asked for a minimum
weight vertex cover, the parameter k denoting the total weight of the vertex
cover set. In most interesting cases, there are fixed-parameter algorithms solv-
ing this problem [207]. The situation changes, however, when k denotes the
number of vertices of a vertex cover of minimum weight. It is open whether
Weighted Vertex Cover is fixed-parameter tractable with respect to this
parameterization.

A second, in flavor significantly different example is given by the NP -
complete Closest String (or, equivalently, Consensus String or Center
String) problem (cf. Section 3.3 and [137]):9

Input: k strings s1, s2, . . . , sk over alphabet Σ of length L each,
and a nonnegative integer d.
Question: Is there a string s such that dH(s, si) ≤ d for all i =
1, . . . , k?

9 From a linguistic point of view, a “closest” string would only mean a string with
minimum Hamming distance to the given strings. Beyond that, we use the term
“closest” string here for a string which has Hamming distance at most d to all
given strings.
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Here, dH(s, si) denotes the Hamming distance between strings s and si.
Consider the two most natural parameters of Closest String: the max-
imum Hamming distance d allowed and the number k of given input strings.
Under the natural assumption that either d or k is (very) small (in par-
ticular, in biological applications it is appropriate to assume small d, e.g.,
d < 10 [100, 174]), it is important to ask whether efficient polynomial
or even better linear time algorithms are possible when d or k are con-
stants. Put in slightly more general terms, this is the question for the fixed-
parameter tractability of these problems. Closest String can be solved in
time O(dd·kd+kL), yielding a linear time search tree algorithm for constant d
(cf. Section 3.3 and [137]). Using an integer linear program formulation, we
can observe that the problem is fixed-parameter tractable with respect to k—
the exponential term in k is huge, though (cf. Section 4.1 and [137]). As
we see, there are two parameters with completely different fixed-parameter
algorithms—the application behind has to decide which one is to be pre-
ferred. In this particular case, so far, the parameterization with d seems to
be the first choice in most cases [136, 137].

1.5.4 Several Parameters at the Same Time?

If one has to design and analyze a fixed-parameter algorithm involving more
than one parameter at the same time, things might become easier as well as
they might become more difficult. Two examples, one for each case, follow.

A close relative of Vertex Cover is Constraint Bipartite Vertex
Cover (cf. Subsection 5.2.2 and [111]):

Input: A bipartite graph G = (V1, V2, E) and two nonnegative
integers k1 and k2.
Question: Are there two subsets C1 ⊆ V1 and C2 ⊆ V2 of sizes
|C1| ≤ k1 and |C2| ≤ k2 such that each edge in E has at least one
endpoint in C1 ∪ C2?

The existence of two parameters and two vertex sets makes this problem quite
different from the original Vertex Cover problem. Thus, whereas the classi-
cal Vertex Cover (with only one parameter!) restricted to bipartite graphs
is solvable in polynomial time (because it is equivalent to a polynomial time
solvable maximal matching problem), by a reduction from Clique it has been
shown that Constraint Bipartite Vertex Cover is NP -complete [171].
The fact that the problem in a sense requires the “minimization with respect
to two parameters” seemingly makes the problem harder. It can be solved in
time O(1.40k1+k2 + (k1 + k2)n) but it is conjectured that, due to its differ-
ent combinatorial structure in comparison with Vertex Cover, it should
be very hard to get an exponential base close to the one there (which is
1.29) [111].

On the contrary, looking back to Closest String before, it is clear that,
in principle, it is easier to design an algorithm with running time f1(k, d) ·
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nO(1) than to give one with running time only f2(k) · nO(1) or f3(d) · nO(1)

with arbitrary functions f1, f2, and f3.
10

1.5.5 Implicit Parameters?

For graph problems, there is a famous “implicit” parameter: treewidth [230].
The essential point here is that, intuitively speaking, treewidth measures how
tree-like a given graph is (see Section 4.4 for details and definitions). Thus,
if for a graph there is a tree decomposition with small width k, then many
otherwise hard graph problems can be solved efficiently. More precisely, on a
graph with a tree decomposition of width k Vertex Cover can be solved
in time O(2kn) and the also NP -complete Dominating Set problem can
be solved in time O(4kn) [12], where n is the number of nodes of the tree
decomposition (cf. Section 4.5 and [3, 12]). The important thing here to note
is that in the above algorithms the parameter “treewidth” is not given explic-
itly as part of the input, but it is “implicitly hidden” in the given graph (and
does not depend on the concrete problem (such as Vertex Cover) we want
to solve on it). For graphs, numerous other implicit parameters are known,
see, e.g., [44]. Observe, however, that it is often computationally expensive
to determine these implicit parameters. As to treewidth and tree decompo-
sitions, Bodlaender [38] gave a celebrated linear time algorithm when the
treewidth k is a fixed constant—with a hidden constant factor exponential
in k (i.e., ck3

for some constant c) that still seems too large for practical
purposes. That is why also heuristic approaches for constructing tree de-
compositions are in use, see [168] for an up-to-date account. Bodlaender’s
algorithm is a fixed-parameter algorithm for the NP -complete Treewidth
problem. It is a matter of current research to improve this fixed-parameter
algorithm, i.e., to improve the term exponential in k.

As a second example, recall the Betweenness problem from Subsec-
tion 1.5.2. A computational task of practical significance in this context is to
find a total ordering of the xi that maximizes the number of satisfied con-
straints. Indeed, Betweenness is central in the software package RHMAP-
PER [243, 250]. At the heart of this package is a method for producing the
order of framework markers based on betweenness constraints (obtained from
a statistical analysis of the biological data). Slonim et. al. [243, 250] success-
fully employ two greedy heuristics for solving the betweenness problem. These
heuristics perform quite well on real biological data, where presumably the
number of bad constraints is small. However, Chor and Sudan [65] have shown
that the problem is MaxSNP -complete. Therefore, there is some ǫ > 0 such
that finding a total order which satisfies at least m(1− ǫ) of the constraints
(even if they are all satisfiable) is NP–hard. It is suspected that the success of

10 Interestingly, to the best of the author’s knowledge, for Closest String only
a size k · d problem kernel (cf. Chapter 2 and Lemma 3.3.1, Section 3.3) but no
problem kernel with size only depending on d or k alone is known.
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the greedy heuristics depends on additional structure, a “hidden parameter”
that should be investigated.

1.5.6 Final Remarks

In conclusion, parameters implicitly hidden in the input may provide an alter-
native approach to cope with generally hard computational problems. As we
have seen, there are numerous possibilities but also decisions to be made when
attacking a problem the fixed-parameter way. This wealth of opportunities
concerning the parameterization, in some sense, also makes things more com-
plicated. That is, generally one probably may not have the fixed-parameter
algorithm for a problem because, at the same time, several alternative pa-
rameterizations of the same problem may make sense, being incomparable
to each others. This stands in contrast to approximation algorithms where
the approximation ratio is uniquely defined by the optimization goal whereas
the value to optimize usually is one possible parameterization of the given
problem (e.g., cf. Closest String in Subsection 1.5.3 where the distance
value d is the optimization goal but k, the number of input strings, yields
an equally valid parameterization). Perhaps, this also makes it difficult to
obtain a clean, unified (complexity) theory covering all that. Thus, in fixed-
parameter complexity it may get harder to keep track of what is going on in
the broad sense. But to cope with computational intractability is not an easy
game to play. A flexible response as offered by parameterized complexity is
a worthwhile opportunity to take into consideration.





2. Problem Kernels—Data Reduction by

Preprocessing

If a computationally hard problem has to be solved in practice, one of the first
things usually done is to try to perform a reduction of the size of the input
data. Many input instances have the property that they consist of some parts
that are relatively easy to cope with and other parts that form the “really
hard” core of the problem. Hence, before starting a cost-intensive algorithm
to solve the difficult problem, a preprocessing phase (which, as a rule, makes
use of problem-specific properties) is executed in order to shrink the given
input data as much (and as fast) as possible. Weihe [262, 263] gave a strik-
ing example when dealing with the NP -complete Red/Blue Dominating
Set problem appearing in context of the European railroad network. In a
preprocessing phase, he applied two simple data reduction rules again and
again until no further application was possible. The impressive result of his
empirical study was that each of his real-world instances was broken into very
small pieces such that for each of these a simple brute-force approach was
sufficient to solve the hard problems efficiently and optimally. Observe the
“universal importance” of data reduction by preprocessing. It is not only an
ubiquitous topic for the design of efficient fixed-parameter algorithms, but
it is of same importance for basically any method (such as approximation
or purely heuristic algorithms) that tries to cope with hard problems. Refer
to [49, 181] for related considerations concerning “off-line preprocessing” of
intractable problems (with a special emphasis on computational problems
from artificial intelligence and related fields).

We start with two easy examples for such an efficient preprocessing.
Firstly, consider the classic NP -complete Satisfiability problem, where one
is given a Boolean formula F in conjunctive normal form and the task is to
decide whether or not F has a satisfying truth assignment. Clearly, if there
are clauses consisting of only one literal (i.e., a negated or a non-negated
Boolean variable) then to satisfy F one has to satisfy these “unit-clauses”
by setting the value of the corresponding variable accordingly. There is no
choice here. This (and other simple rules such as, e.g., the well-known pure
literal rule, cf. Section 3.5) can be done in a simple preprocessing phase,
and it may shrink the original input formula considerably, resulting in the
combinatorially hard core formula.
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Secondly, let us return to our running example Vertex Cover: It clearly
is permissible to remove isolated vertices, i.e., vertices with no adjacent edges.
Moreover, if (as usual) one is looking for only one optimal vertex cover and
not all of them, then vertices with only one adjacent edge and, thus, one
adjacent vertex, can easily be dealt with by putting the neighboring vertex
into the cover. This is correct because in order to cover the corresponding
edge one of the both endpoints has to be in the vertex cover. Finally, in the
fixed-parameter setting, where we ask for a vertex cover of size at most k, we
can further do the following. If there is a vertex of degree at least k + 1, that
is, a vertex with more than k adjacent edges, then, if a vertex cover of size k
exists this particular vertex has to be part of it. Otherwise, to cover all its
adjacent edges would require all its at least k + 1 neighbors, a contradiction.
This is known as Buss’ reduction to problem kernel for Vertex Cover (cf.
[48, 88]). One can easily see that after performing the above rules, in order
to have a Vertex Cover of size at most k, the remaining graph can have at
most k2 +k vertices and at most 2k2 edges. For the time being, however, our
sole point of interest here is that all three above rules (concerning isolated
vertices, vertices of degree one and of degree at least k + 1) can be applied
in an easy and efficient polynomial time preprocessing phase. Thus, we may
obtain a data reduction by preprocessing. In Section 2.4, we will see that
Vertex Cover even allows for a much more sophisticated and stronger
data reduction, based on a theorem of Nemhauser and Trotter [199].

In summary, data reduction by preprocessing is a topic with practical
importance that cannot be overrated and it belongs as an important key
technique in every algorithm designer’s tool-box. One might say that it is
still under-represented in theoretical studies and the conjecture is that it
will become a growing field of research on its own. In the context of fixed-
parameter algorithms, this basically comes down to what is called reduction
to problem kernel. We formally introduce this notion in the following section.

2.1 Formal Definition

In its most general form needed in this work, reduction to problem kernel,
also simply referred to as kernelization, can be defined as follows.

Definition 2.1.1. Let L be a parameterized problem, i.e., L consists of
pairs (I, k), where problem instance I is asked to have a solution of size k
(the parameter). Reduction to problem kernel then means to replace instance
(I, k) by a “reduced” instance (I ′, k′) (called problem kernel) such that

k′ ≤ c · k, |I ′| ≤ g(k)

with a constant c,1 some function g only depending on k, and
1 Usually, c ≤ 1. In general, it would even be allowed that k′ = f(k) for some

arbitrary function f . For our purposes, however, we fixed that k and k′ are
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(I, k) ∈ L iff (I ′, k′) ∈ L.

Furthermore, we require that the reduction from (I, k) to (I ′, k′) is computable
in polynomial time TK(|I|, k).2 The size of the problem kernel is bounded
by g(k).

Often, the best one can hope for is that a problem kernel has size lin-
ear in k, a so-called linear problem kernel . For instance, using a theorem of
Nemhauser and Trotter [199], (also cf. [32, 217]), Chen et al. [60] recently
observed a problem kernel of size 2k for Vertex Cover (see Section 2.4).

Clearly, the aforementioned kernelization for Vertex Cover due to Buss
fits into the given definition. To get further acquainted with (also the pitfalls)
of this concept, now let us have a brief look at a somewhat strange kind of
problem kernelization. Consider Independent Set on planar graphs.

Input: A planar graph G = (V, E) and a nonnegative integer k.
Question: Does G have an independent set V ′ ⊆ V with |V ′| ≥ k,
that is, a set of at least k vertices that are pairwisely nonadjacent?

Independent Set restricted to planar graphs has a problem kernel consist-
ing of only 4k vertices: Due to the four-color theorem [15, 16, 229] and the
corresponding polynomial-time coloring algorithm by Robertson et al. [228]
one can color the vertices of a given planar graph such that no two neigh-
boring vertices possess the same color. Hence, each “color class” forms an
independent set of the graph, and, since we only have four color classes, one
of them has to contain at least one fourth of all vertices. Thus, the reduc-
tion to problem kernel preprocessing may simply proceed as follows: If for
the given input instance (a planar graph with n vertices and parameter k) it
holds that k ≤ ⌈n/4⌉, then answer “yes” and produce an independent set us-
ing the polynomial time coloring algorithm of Robertson et al. If k > ⌈n/4⌉,
then n < 4k and, voilà, we have a size 4k problem kernel. On the one hand,
in a way, this kind of kernelization is not satisfactory because in the second
case we did not reduce the size of the input graph at all, but simply made
indirectly the observation that it has to have a big (!) independent set that
contains at least one quarter of all graph vertices. This contradicts the com-
mon assumption of parameters being “small” and turns the attention to the
then more natural parameterization above the guaranteed value ⌈n/4⌉, see
Subsection 1.5.2. On the other hand, this example also shows that there may
be deep theory behind the construction of problem kernels, here the famous
four-color theorem [15, 16, 229] and the corresponding intricate coloring al-
gorithm [228].

linearly related. We are not aware of a concrete, natural parameterized problem
with problem kernel where this is not the case.

2 Again, one could allow for a more general definition here (i.e., allowing even a

time f(k) ·nO(1) for some arbitrary function f only depending on k), but we are
not aware of a non-polynomial time problem kernelization.
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Finally, let us mention in passing that in parameterized complexity theory
it has become a commonplace that “every fixed-parameter tractable problem
is kernelizable.” Firstly, note that it is obvious that if there is a reduction
to problem kernel for a decidable parameterized problem, then it is fixed-
parameter tractable: Simply perform a brute-force search algorithm on the
remaining problem kernel. The opposite direction is less obvious, but also
not hard: Assume that the given fixed-parameter algorithm has running time
f(k)·nd for some constant d. The idea is to run this algorithm on the problem
for at most nd+1 steps and then to consider the two cases that either the
algorithm has stopped within that time or it has not stopped. In the first case,
we directly obtain a kernelization algorithm running in polynomial time nd+1,
which simply outputs either a trivial “no”- or a trivial “yes”-instance. In the
second case, we can argue that n < f(k) and thus our problem kernel is
the original input instance itself. Clearly, this observation is of no practical
use. As a matter of personal experience, one might say that, as a rule of
thumb, it mostly seems easier to come up with a simple fixed-parameter
algorithm based on bounded search trees (see Section 3) than to come up
with a practical kernelization.

2.2 Maximum Satisfiability

To start with, we present a very simple reduction to problem kernel for the
NP -complete Maximum Satisfiability (MaxSat) problem:

Input: A boolean formula in conjunctive normal form consisting
of K clauses and a nonnegative integer k.
Question: Is there a truth assignment satisfying at least k clauses.

We represent the boolean values true and false by 1 and 0, respectively. A
truth assignment I can be defined as a set of literals that contains no pairs of
complementary literals. Then for a variable x we have I(x) = 1 iff x ∈ I and
I(x) = 0 iff x̄ ∈ I. We only deal with propositional formulas in conjunctive
normal form. These are often represented in clause form, i.e., as a set of
clauses, where a clause is a set of literals. We will represent formulas as
multi-sets of sets since a formula might contain some identical clauses. For
the satisfiability problem multiple clauses can be eliminated but this is of
course no longer true if we are interested in the number of satisfiable clauses.
The formula

(x ∨ y ∨ z̄) ∧ (x ∨ y ∨ z̄) ∧ (x̄ ∨ z) ∧ (ȳ ∨ z)

will be represented as

{{x, y, z̄}, {x, y, z̄}, {x̄, z}, {ȳ, z}}.
Note that the outer curly brackets denote a multi-set and the inner curly
brackets denote sets of literals. The length of a clause is its cardinality, and
the length of a formula is the sum of the lengths of its clauses.
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Suppose that we are given an input instance for MaxSat. The first simple
observation is that if k ≤ ⌈K/2⌉ then the desired truth assignment trivially
exists: Take a random truth assignment. If it satisfies at least k clauses then
we are done. Otherwise, “flipping” each bit in this truth assignment to its
opposite value yields a new truth assignment that now fulfills at least k (more
precisely, at least ⌈K/2⌉) clauses.

Hence, from now on we can assume that k > ⌈K/2⌉ which implies K < 2k.
The next observation, due to Mahajan and Raman [186], gives a quadratic
size problem kernel: Partition the clauses of the given formula F into long
clauses (i.e., clauses containing k or more literals) and into short clauses (i.e.,
clauses containing less than k literals). Thus, F = Fl ∧Fs, where Fl contains
all long clauses and Fs contains all short clauses. Let L be the number of
long clauses. If L ≥ k then again at least k clauses can be satisfied by picking
(in the worst case) in each long clause another variable and setting its value
accordingly such that the corresponding clause gets satisfied. If L < k then
we proceed as follows.

An important point is that now it is sufficient to concentrate attention
on the new instance (Fs, k − L) which is our problem kernel due to the
following. First, note that (F, k) is a yes-instance of MaxSat iff (Fs, k − L)
is a yes-instance of MaxSat. This holds since the same reasoning as above
shows that the “remaining” L large clauses can always be satisfied. This is
true because to satisfy k − L clauses at most k − L variables (at most one
variable per satisfied clause) are used and thus for the L large clauses at
least k − (k − L) = L variables remain to be freely set. But now the rest
is easy. We have that there are K − L ≤ K small clauses, each containing
at most k literals, and we have that K < 2k as explained before. Hence,
the total number of literals in Fs is bounded by 2k · k = 2k2. This means a
quadratic size problem kernel for MaxSat with respect to parameter k.

Proposition 2.2.1. There is a problem kernel of size O(k2) for MaxSat
and it can be found in linear time.

Proof. The method and its correctness immediately follow from the consid-
erations above. Concerning the running time, it is easy to verify that the
determination of the small and large clauses and their respective numbers
as well as the determination of an assignment satisfying all large clauses can
easily be done in linear time. ⊓⊔

We remark that the reduction to problem kernel for MaxSat has in some
sense a somewhat unsatisfactory character in a similar way as the one for In-
dependent Set on planar graphs (see Section 2.1) had. The point is that
again it is made use of a structural property that guarantees that at least half
of all clauses are always satisfiable. Hence, similar to there parameterizing
above guaranteed values probably would be more appropriate here (cf. Sub-
section 1.5.2 and [186]).
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2.3 3-Hitting Set

Another simple problem kernelization is given for the 3-Hitting Set (3HS)
problem, the generalization of Vertex Cover to “hypergraphs with size-
three edges”:

Input: A collection C of subsets of size three of a finite set S and
a nonnegative integer k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k which allows S′

contain at least one element from each subset in C?

Vertex Cover is the same as 2-Hitting Set. Following [208], we show
how to reduce the original instance to a new one consisting of only O(k3)
elements. Similar to Buss’ reduction to problem kernel for Vertex Cover
the idea is that we must put “high degree elements” into the hitting set.

In the following we assume that elements of S are integers between 1
and n.

Theorem 2.3.1. There is a problem kernel of size O(k3) for 3-Hitting Set
and it can be found in time O(n).

Proof. Firstly, let us consider two fixed elements x, y ∈ S:
Claim 1: For an instance (C, k) we can find an instance (C ′, k) in linear time
so that (C, k) ∈ 3HS iff (C ′, k) ∈ 3HS and there can be at most k size three
subsets in the collection C ′ that contain both x and y.
Claim 1 is seen as follows. Assume that there are more than k subsets con-
taining x and y. Since each set appears only once in C this implies that there
are more than k different “third” elements in the corresponding sets. Hence,
to cover these more than k different sets with at most k elements from the
base set S, we have to bring at least one of x and y into our hitting set S′.
This means, however, that all sets containing both x and y can be replaced
by the single set {x, y}. This proves Claim 1.

Next, we consider the case where there is only one fixed element x ∈ S:
Claim 2: For an instance (C, k) we can find an instance (C ′, k′) in linear
time so that (C, k) ∈ 3HS iff (C ′, k′) ∈ 3HS, k′ ≤ k, and there can be at
most k2 size three subsets in the collection C that contain x.
Claim 2 is seen as follows. Assume that there are more than k2 subsets
containing x. From Claim 1 we can assume that x can occur in a subset
together with another element y at most k times. Hence, if there were more
than k2 subsets containing x, these could not be covered by some S′ ⊆ S
with |S′| ≤ k without taking x. Thus, x must be in S′ and the corresponding
sets can be deleted. This proves Claim 2.

Now, from Claim 2 we can conclude that each element x from S can occur
in at most k2 subsets in C. (Otherwise, x had to be in the hitting set S′.)
Clearly, because |S′| ≤ k this means (provided that C has a hitting set of
size ≤ k) that C can consist of at most k · k2 = k3 size three subsets. This is
the size of the problem kernel.
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Finally, we remark that we can easily count in how many sets each element
occurs and throw away in linear time all elements (and their corresponding
subsets) occurring in more than k2 subsets. ⊓⊔

The above kernelization still is comparatively simple. The next two sec-
tions indicate that designing good kernelization algorithms may turn into a
very challenging task. In particular, it is an interesting open question to inves-
tigate whether the subsequent kernelization due to Nemhauser and Trotter
can be generalized to 3-Hitting Set in order to improve Theorem 2.3 and
to perhaps attain a linear size problem kernel.

2.4 Vertex Cover

We already discussed the O(k2) problem kernel due to Buss, which is based
on a simple observation concerning high-degree vertices (cf. the beginning
of this chapter). Now, we present a much more sophisticated kernelization
based on a theorem of Nemhauser and Trotter [199]. It was developed in
the context of approximation algorithms and Chen et al. [60] were the first
to point out its usefulness when designing fixed-parameter algorithms for
Vertex Cover. We basically follow Bar-Yehuda and Even [32] in proving
the Nemhauser-Trotter theorem [199], a core result for the kernelization field.
Also see [164] for a new alternative proof.

Theorem 2.4.1. (Nemhauser-Trotter) For an n-vertex graph G = (V, E)
with m edges, two disjoint sets C0 ⊆ V and V0 ⊆ V can be computed in time
O(
√

n ·m), such that the following three properties hold.

1. Let D ⊆ V0 be a vertex cover of the subgraph G[V0]. Then C := D ∪ C0

is a vertex cover of G.
2. There is a minimum vertex cover S of G with C0 ⊆ S.
3. The subgraph G[V0] has a minimum vertex cover of size at least |V0|/2.

Proof. The algorithm given in Fig. 2.1 computes the sets C0 and V0.
To prove the validity of the three claims of the theorem, we still need the

following definition.

I0 := {x | x /∈ CB and x′ /∈ CB}
= V − (V0 ∪ C0).

In the following, step by step we prove the three statements of the theorem.

D ∪ C0 is a vertex cover of G: For {x, y} ∈ E we have to show that x ∈ C
or y ∈ C.
Case 1: If x ∈ I0, i.e., x, x′ /∈ CB, then it must hold y, y′ ∈ CB and, thus,

y ∈ C0.
Case 2: The case y ∈ I0 is completely analogous to Case 1.
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Input: G = (V,E)
Output: C0 and V0.
Phase 1:

Define the bipartite graph B = (V, V ′, EB)
where EB := {{x, y′} | {x, y} ∈ E}
and V ′ is a “copy” of V .

Phase 2:
Let CB be an optimal vertex cover of B
which can be computed by a maximum matching
in time O(

√
nm).

C0 := {x | x ∈ CB and x′ ∈ CB}.
V0 := {x | either x ∈ CB or x′ ∈ CB}.

Fig. 2.1. An algorithm to compute the sets C0 and V0 of Theorem 2.4.1.

Case 3: x ∈ C0 or y ∈ C0 is trivial.
Case 4: If x, y ∈ V0 then x ∈ D or y ∈ D.

There is an optimal vertex cover S of G with C0 ⊆ S: Define SV := S ∩ V0,
SC := S ∩ C0, SI := S ∩ I0 and S̄I := I0 − SI . By S′

C we denote a copy
of SC .
Claim: C ′

B := (V − S̄I) ∪ S′
C is a vertex cover of B.

Using the Claim (which we prove afterwards), we show |C0| ≤ |S − SV |
which implies |C0 ∪ SV | ≤ |S|. With the first point of the theorem we
obtain the optimality of C0 ∪ SV .

|V0|+ 2|C0| = |V0 ∪ C0 ∪ C ′
0|

= |CB| [Def. of V0 and C0]

≤ |C ′
B| [Optimality of CB]

= |V − S̄I |+ |S′
C | [Claim]

= |V0 ∪ C0 ∪ I0 − (I0 − SI)|+ |S′
C |

= |V0|+ |C0|+ |SI |+ |SC |
⇒ |C0| ≤ |SI |+ |SC |

= |SI |+ |SC |+ |SV | − |SV |
= |S| − |SV |.

It remains to show the claim. Let {x, y′} ∈ EB. We have to show that
x ∈ C ′

B or y′ ∈ C ′
B.

Case 1: If x /∈ S̄I then x ∈ CB1
according to the definition of C ′

B.
Case 2: If x ∈ S̄I then x ∈ I0 and, therefore, x /∈ C0 and x /∈ S. Then,

y ∈ S and y ∈ C0 (according to Case 1 in the proof of the first claim
of the theorem), thus, y ∈ S ∩ C0 = SC and y′ ∈ S′

C .
The graph induced by V0 has a minimum vertex cover of size at least |V0|/2:

Assume that S0 is a minimum vertex cover of G[V0]. According to the
first claim of the theorem C0∪S0 is a vertex cover of G. According to the
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definition of the bipartite graph B the set C0 ∪ C ′
0 ∪ S0 ∪ S′

0 is a vertex
cover of B. Hence:

|V0|+ 2|C0| = |CB| [Def. of V0 and C0]

≤ |C0 ∪ C ′
0 ∪ S0 ∪ S′

0| [CB optimal]

= 2|C0|+ 2|S0|.
This implies |V0| ≤ 2|S0|.

⊓⊔

As observed by Chen et al. [60], Theorem 2.4.1 is the key to a linear size
problem kernel for Vertex Cover which can be found efficiently.

Theorem 2.4.2. Let (G = (V, E), k) be an input instance of Vertex
Cover. In time O(k · |V | + k3) one can compute a reduced instance (G′ =
(V ′, E′), k′) with |V ′| ≤ 2k and k′ ≤ k such that G admits a vertex cover of
size k iff G′ admits a vertex cover of size k′.

Proof. Firstly, use Buss’ reduction to problem kernel to get a reduced instance
containing at most k2+k vertices and parameter k′′ ≤ k. Then, Phase 2 of the
algorithm described in the proof of Theorem 2.4.1—which basically consists
of a maximum matching computation in a bipartite graph then containing
O(k2) vertices and O(k2) edges—can be done in time O(k3) (cf. [69]). From
the maximum matching in linear time we get the set C0 of vertices that have
to be in the vertex cover (thus, k′ := k′′−|C0|) and the set V0 that induces the
subgraph G[V0], the problem kernel G′. Observe that due to Theorem 2.4.1
we directly know that if |V0| > 2k′ then there is no vertex cover of size k of
the original graph G. Otherwise, the remaining vertices for a minimum vertex
cover of G can be found by searching for a minimum vertex cover of G′. ⊓⊔

There are several important observations to be made with respect to The-
orem 2.4.2. Firstly, according to the current state of knowledge, a size 2k
problem kernel for Vertex Cover is the best one could hope for because a
problem kernel of size (2−ε)k with constant ε > 0 would imply a factor 2−ε
polynomial-time approximation algorithm for Vertex Cover. This, how-
ever, is a long-standing open question and an answer to it would mean a
major breakthrough in approximation algorithms for Vertex Cover [152].

Secondly, in contrast to the simpler Buss kernelization, after performing
the Nemhauser-Trotter reduction to problem kernel, in general we cannot
guarantee to find all vertex covers up to size k. Theorem 2.4.1 only leads to
(at least) one particular minimum vertex cover, excluding others from further
consideration.

Thirdly, it is important to note that Theorem 2.4.1 can be generalized
to finding minimum weight vertex covers, where vertices have a positive real
weight (see [199, 32] for details). This is useful for fixed-parameter algorithms
for Weighted Vertex Cover, see Subsection 5.2.1.
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We only briefly mention that Chen et al. [60] used another interesting
technique called “folding” (also called “struction” in the literature) to solve
Vertex Cover. The point is that all degree-two vertices in a graph together
with their two neighbors can be melted into one super-vertex. Thus, the
“combinatorially explosive” part of the search for a (minimum) vertex cover
can then be restricted to graphs of minimum degree three (see [60] for details).

Finally, it is worth noting that implementing the Nemhauser-Trotter ker-
nelization and experimenting with random (planar) graphs showed the im-
pressive power of this data reduction at least for planar random graphs [4, 85].
Often data reduction around 60% and more (concerning both vertices and
edges) could be achieved. Moreover, the preprocessing usually detected a very
high percentage (around 50–60%) of vertices that can be guaranteed to be-
long to a minimum vertex cover. These experiments need to be extended in
order to get a better picture of the benefits of Vertex Cover kernelization
in different contexts.

2.5 Dominating Set on Planar Graphs

In the previous subsection, we became acquainted with a linear size problem
kernel for Vertex Cover. We know of so far only few problem kernels of
linear size—a further example is the one recently developed for Dominating
Set on planar graphs.

Input: A planar graph G = (V, E) and a nonnegative integer k.
Question: Is there a choice of at most k vertices V ′ ⊆ V such
that for every vertex v ∈ V there is either at least one vertex in V ′

that is a neighbor of v or v ∈ V ′ (or both)?

The kernelization consists of two main parts—the algorithmic side with
the actual reduction rules and the mathematical side with the proof of cor-
rectness and the analysis of the problem kernel size. Because of the significant
technical machinery involved, we will essentially focus on the algorithmic side
and refer to [2, 6] for more details. We follow parts of [6].

Two reduction rules are used to prove the linear size problem kernel for
Dominating Set. Both reduction rules are based on the same principle:
Explore the local structure of the graph and try to replace it by a simpler
structure. In what follows, the minimum k such that graph G has a size k
dominating set is called the domination number of G, denoted by γ(G).

2.5.1 The Neighborhood of a Single Vertex

Consider a vertex v ∈ V of the given graph G = (V, E) and partition the
vertices of the neighborhood N(v) of v into three different sets N1(v), N2(v),
and N3(v) depending on what neighborhood structure these vertices have.
More precisely, setting N [v] := N(v) ∪ {v}, we define



2.5 Dominating Set on Planar Graphs 35

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

N3(v)

N2(v)

N1(v) v
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

N3(v, w)

N2(v, w)

N1(v, w)

v
w

Fig. 2.2. The left-hand side shows the partitioning of the neighborhood of a single
vertex v. The right-hand side shows the partitioning of a neighborhood N(v, w) of
two vertices v and w. Since, in the left-hand figure, N3(v) 6= ∅, reduction Rule 1
applies. In the right-hand figure, since N3(v, w) cannot be dominated by a single
vertex at all, Case 2 of Rule 2 applies.

N1(v) := {u ∈ N(v) | N(u) \N [v] 6= ∅},
N2(v) := {u ∈ N(v) \N1(v) | N(u) ∩N1(v) 6= ∅},
N3(v) := N(v) \ (N1(v) ∪N2(v)).

An example which illustrates the partitioning of N(v) into the sub-
sets N1(v), N2(v), and N3(v) can be seen in the left-hand diagram of Fig. 2.2.

Based on the above definitions we give our first reduction rule.

Rule 1 If N3(v) 6= ∅ for some vertex v, then

• remove N2(v) and N3(v) from G and
• add a new vertex v′ with the edge {v, v′}.

Lemma 2.5.1. Let G = (V, E) be a graph and let G′ = (V ′, E′) be the
resulting graph after having applied Rule 1 to G. Then γ(G) = γ(G′).

Proof. Consider a vertex v ∈ V such that N3(v) 6= ∅. The vertices in N3(v)
can only be dominated by either v or by vertices in N2(v)∪N3(v). But, clearly,
N(w) ⊆ N(v) for every w ∈ N2(v) ∪N3(v). This shows that an optimal way
to dominate N3(v) is given by taking v into the dominating set. This is
simulated by the “gadget” {v, v′} in G′. It is safe to remove N2(v) ∪N3(v),
since these vertices need not to be used in an optimal dominating set. Hence,
γ(G′) = γ(G). ⊓⊔

Lemma 2.5.2. Rule 1 can be carried out in time O(n) for planar graphs and
in time O(n3) for general graphs.

Proof. We first discuss the planar case. To carry out Rule 1, for each vertex v
of the given planar graph G we have to determine the neighbor sets N1(v),
N2(v), and N3(v). By definition of these sets, one easily observes that it is
sufficient to consider the subgraph G that is induced by all vertices that are
connected to v by a path of length at most two. To do so, we employ a search
tree of depth two, rooted at v. We perform two phases.
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In phase 1, constructing the search tree we determine the vertices from
N1(v). Each vertex of the first level (i.e., distance one from the root v) of the
search tree that has a neighbor at the second level of the search tree belongs
to N1(v). Observe that it is enough to stop the expansion of a vertex from
the first level as soon as its first neighbor in the second level is encountered.
Hence, denoting the degree of v by deg(v), phase 1 takes time O(deg(v))
because there clearly are at most 2 ·deg(v) tree edges and at most O(deg(v))
non-tree edges to be explored. The latter holds true since these non-tree edges
all belong to the subgraph of G induced by N [v]. Since this graph is clearly
planar and |N [v]| = deg(v) + 1, the claim follows.

In phase 2, it remains to determine the sets N2(v) and N3(v). To get
N2(v), one basically has to go through all vertices from the first level of the
above search tree that are not already marked as being in N1(v) but have
at least one neighbor in N1(v). All this can be done within the planar graph
induced by N [v], using the already marked N1(v)-vertices, in time O(deg(v)).
Finally, N3(v) simply consists of vertices from the first level that are neither
marked being in N1(v) nor marked being in N2(v). In summary, this shows
that for vertex v the sets N1(v), N2(v), and N3(v) can be constructed in time
O(deg(v)).

Once having determined these three sets, the sizes of which all are
bounded by deg(v), it is clear that the possible removal of vertices from N2(v)
and N3(v) and the addition of a vertex and an edge as required by Rule 1 all
can be done in time O(deg(v)). Finally, it remains to analyze the overall com-
plexity of this procedure when going through all n vertices of G = (V, E). But
this is easy. The running time can be bounded by

∑
v∈V O(deg(v)). Since G

is planar, this sum is bounded by O(n), i.e., the whole reduction takes linear
time.

For general graphs, the method described above leads to a worst-case
cubic time implementation of Rule 1. Here, one ends up with the sum

∑

v∈V

O((deg(v))2) = O(n3).

Note that the size of the graph that is induced by the neighborhood N [v]
again is relevant for the time needed to determine the sets N1(v), N2(v), and
N3(v). For general graphs, this neighborhood may contain O(deg(v)2) many
vertices. ⊓⊔

2.5.2 The Neighborhood of a Pair of Vertices

Similar to Rule 1, we explore the set N(v, w) := N(v)∪N(w) of two vertices
v, w ∈ V . Analogously, we now partition N(v, w) into three disjoint subsets
N1(v, w), N2(v, w), and N3(v, w). Setting N [v, w] := N [v] ∪N [w], we define
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N1(v, w) := {u ∈ N(v, w) | N(u) \N [v, w] 6= ∅},
N2(v, w) := {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) 6= ∅},
N3(v, w) := N(v, w) \ (N1(v, w) ∪N2(v, w)).

The right-hand diagram of Fig. 2.2 shows an example which illustrates
the partitioning of N(v, w) into the subsets N1(v, w), N2(v, w), and N3(v, w).

Our second reduction rule—compared to Rule 1—is slightly more com-
plicated.

Rule 2 Consider v, w ∈ V (v 6= w) and suppose that N3(v, w) 6= ∅. Suppose
that N3(v, w) cannot be dominated by a single vertex from N2(v, w)∪N3(v, w).

Case 1 If N3(v, w) can be dominated by a single vertex from {v, w}:
(1.1) If N3(v, w) ⊆ N(v) as well as N3(v, w) ⊆ N(w):
• remove N3(v, w) and N2(v, w) ∩N(v) ∩N(w) from G and
• add two new vertices z, z′ and edges {v, z}, {w, z}, {v, z′}, {w, z′}.

(1.2) If N3(v, w) ⊆ N(v) but not N3(v, w) ⊆ N(w):
• remove N3(v, w) and N2(v, w) ∩N(v) from G and
• add a new vertex v′ and the edge {v, v′} to G.

(1.3) If N3(v, w) ⊆ N(w) but not N3(v, w) ⊆ N(v):
• remove N3(v, w) and N2(v, w) ∩N(w) from G and
• add a new vertex w′ and the edge {w, w′} to G.

Case 2 If N3(v, w) cannot be dominated by a single vertex from {v, w}:
• remove N3(v, w) and N2(v, w) from G and
• add two new vertices v′, w′ and edges {v, v′}, {w, w′}.

Lemma 2.5.3. Let G = (V, E) be a graph and let G′ = (V ′, E′) be the
resulting graph after having applied Rule 2 to G. Then γ(G) = γ(G′).

Proof. Similar to the proof of Lemma 2.5.1, vertices from N3(v, w) can only
be dominated by vertices from M := {v, w} ∪N2(v, w) ∪N3(v, w). All cases
in Rule 2 are based on the fact that N3(v, w) needs to be dominated. All
rules only apply if there is not a single vertex in N2(v, w) ∪ N3(v, w) which
dominates N3(v, w).

We first of all discuss the correctness of Case (1.2) (and similarly the
symmetric Case (1.3)): If v dominates N3(v, w) (and w does not), then it is
better to take v into the dominating set—and at the same time still leave the
option of taking vertex w—than to take any combination of two vertices {x, y}
from the set M \ {v}. It may be that we still have to take w to a minimum
dominating set, but in any case {v, w} dominates at least as many vertices
as {x, y}. The “gadget” {v, v′} simulates the effect of taking v. It is safe
to remove N := (N2(v, w) ∩ N(v)) ∪ N3(v, w) since, by taking v into the
dominating set, all vertices in N are already dominated and since, as discussed
above, it is always better to take {v, w} into a minimum dominating set than
to take v and any other of the vertices from N .
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In the situation of Case (1.1), we can dominate N3(v, w) by both v or w.
Since we cannot decide at this point which of these vertices should be chosen
to be in the dominating set, we use the “gadget” with vertices v′ and w′ which
simulates a choice between v or w, as can be seen easily. In any case, however,
it is better to take one of the vertices v and w (maybe both) than taking any
two of the vertices from M \ {v, w}. The argument for this is similar to the
one for Case (1.2). The removal of N3(v, w) ∪ (N2(v, w) ∩ N(v) ∩ N(w)) is
safe by a similar argument than the one that justified the removal of N in
Case (1.2).

In Case 2, we need at least two vertices to dominate N3(v, w). Since
N(v, w) ⊇ N(x, y) for all pairs x, y ∈ M it is best to take v and w into
the dominating set, simulated by the gadgets {v, v′} and {w, w′}. As in the
previous cases removing N3(v, w) ∪ N2(v, w) is safe since these vertices are
already dominated and since these vertices need not be used for an optimal
dominating set. ⊓⊔
Lemma 2.5.4. Rule 2 can be carried out in time O(n2) for planar graphs
and in time O(n4) for general graphs.

Proof. To prove the time bounds for Rule 2, basically the same ideas as
for Rule 1 apply (cf. proof of Lemma 2.5.2). Instead of a depth two search
tree, one now has to argue on a search tree where the levels indicate the
minimum of the distances to vertex v and w. Hence, we associate the vertices v
and w to the root of this search tree. The first level consists of all vertices
that lie in N(v, w) (i.e., at distance one from either of the vertices v or w).
Determining the subset N3(v, w) means to check whether some vertex on
the first level has a neighbor on the second level. We do the same kind of
construction as in Lemma 2.5.2. The running time again is determined by
the size of the subgraph induces by the vertices that correspond to the root
and the first level of this search tree, i.e., by G[N [v, w]] in this case. For
planar graphs, we have |G[N [v, w]]| = O (deg(v) + deg(w)). Hence, we get∑

v,w∈V O (deg(v) + deg(w)) as an upper bound on the overall running time
in the case of planar graphs. This is upper-bounded by

O(
∑

v∈V

(n · deg(v) +
∑

w∈V

deg(w))) = O(n2).

In case of general graphs, we have |G[N [v, w]]| = O
(
(deg(v) + deg(w))2

)
,

which trivially yields the upper bound
∑

v,w∈V

O((deg(v) + deg(w))2) = O(n4)

for the overall running time. ⊓⊔
We remark that the running times given in Lemmas 2.5.2 and 2.5.4 are

pure worst-case estimates and turn out to be much lower in experimental
studies. The problem kernels will be obtained from “reduced” graphs.
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Definition 2.5.1. Let G = (V, E) be a graph such that both the application
of Rule 1 and the application of Rule 2 leave the graph unchanged. Then we
say that G is reduced with respect to these rules.

Observing that the (successful) application of any reduction rule always
“shrinks” the given graph implies that there can only be O(n) successful
applications of reduction rules. This directly leads to the following.3

Lemma 2.5.5. A graph G can be transformed into a reduced graph G′ with
γ(G) = γ(G′) in time O(n3) in the planar case and in time O(n5) in the
general case. ⊓⊔

The kernelization procedure implied by the above reduction rules allows
to prove the following main result. Herein, γ(G) denotes the size of an optimal
dominating set of graph G.

Theorem 2.5.1. For a planar graph G = (V, E) which is reduced with re-
spect to Rules 1 and 2, we get |V | ≤ 335 γ(G), i.e., the dominating set
problem on planar graphs admits a linear problem kernel. ⊓⊔

To present the proof of correctness of Theorem 2.5.1 and the correspond-
ing concrete upper bound 335γ(G) goes beyond the scope of this work. We
refer to [2, 6] for a complete exposition.

Instead, we briefly report on the efficiency of the given reduction rules
in practice. The performance of the preprocessing was measured on a set of
combinatorial random planar graphs of various sizes. More precisely, eight
sample sets of 100 random planar graphs each were created, containing in-
stances with 100, 500, 750, 1000, 1500, 2000, 3000, and 4000 vertices. The
preprocessing was, at least on the given random sample sets, to be very ef-
fective. As a general rule of thumb, one may say that, in all of the cases,

• more than 79% of the vertices and
• more than 88% of the edges

were removed from the graph. Moreover, the reduction rules determined a
very high percentage (for all cases approximately 89%) of the vertices of an
optimal dominating set. The overall running time for the reduction ranged
from less than one second (for small graph instances with 100 vertices) to
around 30 seconds (for larger graph instances with 4000 vertices) on a stan-
dard Linux PC. Moreover, it is possible to enrich the given reduction rules by
further heuristics derived from the bounded search tree algorithm for Dom-
inating Set on planar graphs (cf. Section 3.6 and [2, 5]). In this extended
setting, the running times for the data reduction went down to less than half
a second (for graphs of 100 vertices) and less than eight seconds (for graphs of
4000 vertices) in average. Most interestingly, the combination of these rules
removed, in average,
3 Observe that the polynomial-time bounds for the reduction rules given here

are real worst-case bounds (which may not even be tight) and, in practice, the
algorithms implementing these rules appear to be much faster.
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• more than 99.7% of the vertices and
• more than 99.8% of the edges

of the original graph. A similarly high percentage of the vertices that belong
to an optimal dominating set could be detected.

2.6 Concluding Discussion

The design and analysis of good kernelization algorithms clearly is among
the most important and practically most relevant contributions to algorithm
development in general. The reason for that is the ubiquitous need for ef-
ficient preprocessing procedures almost everywhere in the algorithmics for
hard problems. In addition, as the Nemhauser and Trotter problem kernel
for Vertex Cover exhibits, there are close connections to the theory of
approximation algorithms, which should be further pursued in future inves-
tigations. With respect to fixed-parameter studies, it is worth mentioning
that the linear size problem kernels as presented for Dominating Set on
planar graphs and for Vertex Cover do imply exponential speedup for
fixed-parameter algorithms for hard problems on planar graphs [7, 8] (also
cf. Section 4.5 and Subsection 5.2.4). All in all, a good problem kerneliza-
tion for a combinatorially hard parameterized problem is among the best and
most meaningful things from a practical as well as a theoretical side that a
designer of fixed-parameter algorithms can achieve.

Other problems with kernelization algorithms (clearly this is an incom-
plete list) to be found in the literature are Constraint Bipartite Vertex
Cover [111] (also see Chen and Kanj [58] for a linear size problem kernel
for a closely related problem), and Max Leaf Spanning Tree [108]. Many
other known fixed-parameter tractable problems still lack non-trivial reduc-
tions to problem kernel, for instance, Minimum Quartet Inconsistency
(cf. Subsection 5.1.1 and [133]) or Breakpoint Median (cf. Subsection 5.1.2
and [135]).



3. Search Trees—the Power of Systematics

A standard way to explore the huge search space of a computationally hard
problem in quest for an optimal solution is to perform a systematic search.
This can be organized in a tree-like fashion. In the fixed-parameter context,
the depths of these search trees usually are bounded by some numbers de-
pending on the parameter values. Bounded search trees lie at the heart of
most efficient fixed-parameter algorithms today.

3.1 The Basic Idea

The basic idea behind a systematic search by way of bounded search trees
is as follows: In polynomial time find a “small subset” of the input instance
such that at least one element of this subset is part of an optimal solution
to the problem. For instance, in case of Vertex Cover this “small subset”
is a two-element set consisting of the two endpoints of an edge—one of these
two vertices has to be part of the vertex cover. This leads to the previously
mentioned search tree of size 2k for Vertex Cover, where the parameter k
denotes the size of the vertex cover. In case of 3-Hitting Set, we have
the same observation with size-three sets. Hence, we obtain a size 3k search
tree here, where parameter k denotes the size of the hitting set. The “art”
of constructing search trees lies in detecting more clever (and usually more
complicated) ways of “defining” these small subsets. Both Vertex Cover
and 3-Hitting Set do possess a sophisticated search tree machinery. The
problematic nature of search trees, as we will see in the course of this section,
may come in by the fact that many small size search trees are based on using
numerous case distinctions. These case distinctions, on the one hand, require
a complicated analysis and correctness proof, and, on the other hand, when
implemented, they may cause administrative overhead. Thus, the theoreti-
cally best (i.e., smallest) search tree may not always be the practically best
one and implementation and experiments have to decide on that.

Before we come to several examples for more or less intricate bounded
search trees used in fixed-parameter algorithmics, let us first come to a very
simple search tree, which, to the best of our knowledge, is the smallest in size
known for that particular problem. Consider the Independent Set problem:
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Input: A graph G = (V, E) and a nonnegative integer k.
Question: Does G have an independent set V ′ ⊆ V with |V ′| ≥ k,
that is, a set of at least k vertices that are pairwisely nonadjacent?

For general graphs, Independent Set is W [1]-complete [88]—there is no
hope for fixed-parameter tractability. If Independent Set is restricted to
the class of planar graphs (where it remains NP -complete) the situation
changes. There is an important property of planar graphs that we can make
use of, namely, that in every planar graph there is at least one vertex of
degree five or smaller. Using this knowledge, our search strategy for a size k
independent set on planar graphs is as follows. Pick a vertex v in G which
has minimum degree (bounded by five) and branch into at most six cases.
Either put v into the vertex cover or one of its as most five neighbors. In each
branching case, delete the corresponding vertex together with all its adjacent
edges and vertices from G. Thus, obtain a smaller graph G′ in each case,
and recursively search for an independent set of size k − 1 in each G′. This
is correct because from the set { v } ∪ N(v), i.e., the closed neighborhood
of v, exactly one vertex has to be in an optimal independent set. Since the
parameter in each branch decreases by one, we thus obtain a search tree of
size at most 6k. Using a suitable edge list representation of G’s n vertices
and m edges, picking a vertex and generating G′ can easily be done in linear
time O(n + m). Altogether, we have:

Theorem 3.1.1. Independent Set on planar graphs can be solved in time
O(6k · (n + m)), where k is the size of the independent set we search for and
n and m are the numbers of vertices and edges, respectively. ⊓⊔

Sometimes, such a tempting simple argument as the one for Independent
Set above can go wrong. Consider the Dominating Set problem on planar
graphs.

Input: A planar graph G = (V, E) and a nonnegative integer k.
Question: Is there a choice of at most k vertices V ′ ⊆ V such
that for every vertex v ∈ V there is either at least one vertex in V ′

that is a neighbor of v or v ∈ V ′ (or both)?

For general graphs, in a parameterized sense, Dominating Set is even
“harder” than Independent Set, that is, it is W [2]-complete [88]. Can
we use a similar argument as for Independent Set in order to show fixed-
parameter tractability of Dominating Set on planar graphs? Unfortunately,
it is much harder to prove the existence of a bounded search tree here. Namely,
the problem is the following. Assume that we want to argue as we did for In-
dependent Set, that is, choosing a vertex of minimum degree, then branch-
ing on it by recursively solving the problem in each branch. Clearly, a mini-
mum degree vertex v or one of its neighbors can be chosen to be in an optimal
dominating set. By way of contrast to Independent Set, the point now is
that we cannot say any longer that exactly one vertex of the closed neigh-
borhood of v has to be in an optimal dominating set. It could be more than
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one. For instance, removing v from G, we can only delete its adjacent edges,
but not its adjacent vertices, because, although all its neighbors then being
already dominated, they still are suitable candidates for an optimal domi-
nating set. To circumvent this problem, in Section 3.6 we will formulate a
more general, “annotated” version of Dominating Set, where there are two
kinds of vertices in our graph. The technical effort for solving this problem
increases significantly (see Section 3.6). Notably, the difficulty mainly comes
from the mathematical analysis of the correctness, the presented algorithm
still is relatively easy and also easy to implement [176].

3.2 Analyzing Search Tree Sizes

To analyze the sizes of the presented search trees for Vertex Cover, 3-
Hitting Set, and Independent Set on planar graphs was straightforward.
There, we branched into either two, three, or six cases, in each of which the
parameter value could be decreased by one. This is due to the fact that
in each case we selected exactly one element for inclusion into the set to
be constructed. Thus, we had very regular branchings and since the depth
of the search tree can be bounded by k then, we end up with search tree
sizes 2k, 3k, and 6k in the respective problems. The improvements on 2k

and 3k known for Vertex Cover and 3-Hitting Set, however, heavily
rely on more complicated branchings with numerous case distinctions. And,
even more importantly, often more than one element is selected for inclusion
into the desired set. In addition, the numbers of selected elements may dif-
fer in different branches. This leads to more complicated recursions and to
estimate the worst-case sizes of the corresponding search trees requires some
mathematical tools. Fortunately, these tools are available and they are easy
to use.

Search tree algorithms work in a recursive manner. The number of re-
cursion calls is the number of nodes in the according tree. This number is
governed by homogeneous, linear recurrences with constant coefficients. It is
well-known how to solve them and the asymptotic solution is determined by
the roots of the characteristic polynomial. We use the notation of Kullmann
and Luckhardt [169, 170]. If the algorithm solves a problem of size n and calls
itself recursively for problems of sizes n − d1, . . . , n − di then (d1, . . . , di) is
called the branching vector of this recursion. It corresponds to the recurrence

Tn = Tn−d1
+ · · ·+ Tn−di

. (3.1)

Observe that in recurrence (3.1) we actually give a recurrence to estimate the
number of leaves of a search tree. This is sufficient because for non-degenerate
trees (i.e., all inner nodes have at least two children), as we always consider
here, the leaves make at least half of the total number of tree nodes. In
addition, also note that we assume that T0 = T1 = . . . = Tdi−1 = 1 for the
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termination of the recursion. The characteristic polynomial of this recurrence
is

zd = zd−d1 + · · ·+ zd−di , (3.2)

where d = max{d1, . . . , di}. If α is a root of (3.2) with maximum absolute
value then Tn is αn up to a polynomial factor. We call |α| the branching
number that corresponds to the branching vector (d1, . . . , di). (In our case α
is always real, since 1/α is the dominant singularity of the series Tnzn. The
dominant singularity of a series with non-negative coefficients is always a
positive, real number.) Moreover, if α is a single root, then even Tn = O(αn)
and all branching numbers that will occur in this work are single roots.

In the examples to follow, the size of the search tree is therefore O(αk),
where k is the parameter and α is the biggest branching number that
will occur. For instance, in an intricate search tree algorithm for Vertex
Cover [203, 204], among others, the branching vectors (3, 5, 7), (4, 5, 8, 9, 9),
and (3, 5, 8, 8) occur. Here, it is no longer obvious which the branching
with the largest branching number is. Solving the corresponding recurrences
(which can be done using any standard computer algebra system), we ob-
tain the respective (approximate) branching numbers 1.273739, 1.290649, and
1.291743. The last number gives the worst case and the corresponding search
tree algorithm (which has several more branchings) indeed has the worst-case
bound 1.291743k on its search tree size.

One further thing to learn from the above is that all the bounds for search
tree sizes we give are worst-case estimates. They are based on the determi-
nation of worst-case branching vectors and branching numbers. It is well
conceivable that the average-case sizes of the constructed search trees are
significantly smaller in many cases. Since average-case complexity analysis is
a very elusive matter, the normal way to find out the average-case and, thus,
practical behavior of a search tree algorithm is through implementation and
experiments. Experience tells us that, as a rule, additional heuristic improve-
ments (affecting search tree size and running time, but not the quality of
the solution) can be incorporated and the resulting algorithm may perform
much better than to be expected from the sole consideration of the proven
worst-case bounds. Finally, Chen et al. [60] proposed the iterative branching
method as a means of a further improved complexity analysis and branching
strategy. Roughly speaking, the idea is to iteratively pick “special” branches
in a skillful way in order to keep some kind of invariant concerning “nice”
branching situations which lead to good branching vectors. Refer to [60] for
any details with respect to an application to Vertex Cover.
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3.3 Closest String

The first example for a “state of the art” search tree is for a problem with ap-
plications in computational molecular biology. We follow parts of [137] in de-
riving a bounded search tree for Closest String (also cf. Subsection 1.5.3).

Input: k strings s1, s2, . . . , sk over alphabet Σ of length L each,
and a nonnegative integer d.
Question: Is there a string s such that dH(s, si) ≤ d for all i =
1, . . . , k?

Here, dH(s, si) denotes the Hamming distance between strings s and si. We
present a fixed-parameter algorithm with respect to parameter d. To start
with, we need to introduce some notation and some easy observations. Given
a set of k strings of length L, we can think of these strings as a k×L character
matrix. The columns of a Closest String instance are the columns of this
matrix. With the following observation by Evans and Wareham [100], we find
that it is sufficient to solve instances containing less than kd columns. We call
a column dirty iff it contains at least two different symbols from alphabet Σ.
Clearly, “all the work” in solving Closest String concentrates on the dirty
columns of the input instance.

Lemma 3.3.1. Given a Closest String instance with k strings of length L
and integer d. If the corresponding k × L matrix has more than kd dirty
columns, then there is no solution to this instance. ⊓⊔
Lemma 3.3.1 gives a simple reduction to problem kernel. Notably, it is not
with respect to the parameter d alone, but needs to incorporate parameters
k and d. A useful kernelization only with respect to d currently is not known.

In Fig. 3.1, we outline a recursive algorithm solving Closest String. For
the correctness of the algorithm, we need the following simple observation.

Lemma 3.3.2. Given a set of strings S = {s1, s2, . . . , sk} and a nonnegative
integer d. If there are i, j ∈ {1, . . . , k} with dH(si, sj) > 2d then there is no
string s with maxi=1,...,k dH(s, si) ≤ d.

Proof. The Hamming distance satisfies the triangle inequality. If dH(si, sj) >
2d and we are given an arbitrary string s, we, therefore, know that dH(s, si)+
dH(s, sj) > 2d. It follows that dH(s, si) > d or dH(s, sj) > d (or both). ⊓⊔

Theorem 3.3.1. Closest String can be solved in time O(kL + kd · dd).

Proof. Fig. 3.1 contains the recursive procedure CSd which, after a “success-
full” reduction to problem kernel (i.e., according to Lemma 3.3.2 a solution
is possible) is invoked by the call CSd(s1, d). Referring to this by “Algo-
rithm CS-D,” we subsequently analyze its running time and prove that it
correctly solves Closest String.
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Algorithm CS-D, recursive procedure CSd(s,∆d):
Global variables: Set of strings S = {s1, s2, . . . , sk}, nonnegative integer d.
Input: Candidate string s and integer ∆d.
Output: A string ŝ with maxi=1,...,k dH(ŝ, si) ≤ d and dH(ŝ, s) ≤ ∆d,

if it exists, and “not found,” otherwise.
Method:
(D0) if (∆d < 0) then return “not found”;
(D1) if (dH(s, si) > d + ∆d) for some i ∈ {1, . . . , k} then return “not found”;
(D2) if (dH(s, si) ≤ d) for all i = 1, . . . , k then return s;
(D3) choose i ∈ {1, . . . , k} such that dH(s, si) > d:

P := { p | s[p] 6= si[p] };
choose any P ′ ⊆ P with |P ′| = d + 1;
for all p ∈ P ′ do

s′ := s;
s′[p] := si[p];
sret := CSd(s′, ∆d− 1);
if sret 6=“not found” then return sret;

(D4) return “not found”

Fig. 3.1. Algorithm CS-D. Inputs are a Closest String instance consisting
of a set of strings S = {s1, s2, . . . , sk} of length L, and an integer d. First, we
perform a preprocessing performing the reduction to problem kernel as shown in
Lemma 3.3.1: We select the dirty columns. If there are more than kd many then
we reject the instance. If there are at most kd many then we invoke the recursion
with CSd(s1, d).

1. Running time.
Prior to the recursion, we perform the reduction to problem kernel as de-
scribed in Lemma 3.3.1. This preprocessing, reducing the size of the input
instance to kd, can be done in time O(kL). Now, we consider the recursive
part of the algorithm. Parameter ∆d is initialized to d. Every recursive call
decreases ∆d by one. The algorithm stops when ∆d < 0. Therefore, the al-
gorithm builds a search tree of height at most d. In one step of the recursion,
the algorithm chooses, given the current candidate string s, a string si such
that dH(s, si) > d. It creates a subcase for d + 1 of the positions in which s
and si disagree (there are more than d but at most 2d such positions). This
yields an upper bound of (d + 1)d on the search tree size. Every step of
the recursion only needs linear time O(kd). Before starting the recursion, we
build a table containing the distances of the candidate s to all other given
strings in time O(kd). Using this table, instructions (D1) and (D2) can be
done in time O(k). In instruction (D3), we need time O(k) to select the si

for branching and time O(kd) to find the positions in which s and si differ.
For d+1 of the differing positions we modify the candidate, update the table
of distances, and call the procedure recursively. Since we changed only one
position, we can update the table of distances in time O(k).
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2. Correctness.
We show that Algorithm CS-D finds a string s with maxi=1,...,k dH(s, si) ≤
d, if one exists. Here, we explicitly show only the correctness of the first
recursive step; the correctness of the algorithm then follows with an inductive
application of the argument.

In the situation that s1 satisfies maxi=1,...,k dH(s1, si) ≤ d, we imme-
diately find a solution, namely s1. If s1 is not a solution but there exists
a closest string s for this instance with distance value d, then there is a
string si, i = 2, . . . , k, such that dH(s1, si) > d. For branching, we con-
sider the positions where s1 and si differ, i.e., P := { p | s1[p] 6= si[p] }.
Algorithm CS-D successively creates subcases for d + 1 positions p from
P in order to create a new candidate by altering the respective position
p from s1[p] to si[p]. Such a “move” is correct if we choose a position p
from P1 := { p | s1[p] 6= s[p] = si[p] }. Now, we show that (at least) one
of our d + 1 moves is a correct one. We observe that P = P1 ∪ P2 for
P2 := { p | s[p] 6= si[p] }. Since dH(s, si) ≤ d we know that |P2| ≤ d.
Therefore, at least one of our d + 1 subcases will try a position from P1.
An inductive application of this argument shows that Algorithm CS-D finds
a closest string for this instance, if one exists. Note that we allow to al-
ter the candidate s in only those positions p in which s[p] = s1[p]. Having
started with s1, every positions p with s[p] 6= s1[p] has been previously al-
tered. It does not make sense, however, to alter the candidate twice in one
position. Regarding instruction (D1), we can analogously to Lemma 3.3.2
observe that it is correct to omit those branches where the candidate string s
satisfies dH(s, si) > d+∆d for some string si of the given strings s1, . . . , sk.1:
Assume that there is a solution s′. Solution s′ can differ from si in at most d
positions. Due to the triangle inequality, s′ would differ from s in more than
∆d positions, contradicting the assumption that s′ is a solution. ⊓⊔

With Algorithm CS-D, we can find a solution if one exists. We find all
solutions if the given distance parameter d is optimal. We do not necessarily
find all solutions to a given instance when d is not optimal. Using binary
search, however, we can find the optimal distance value at most d at the cost
of a constant time factor.

It is open to give a good bounded search tree yielding fixed-parameter
tractability with respect to parameter k. In Section 4.1, however, we will
see that a deep result from integer linear programming theory implies that
Closest String is fixed-parameter tractable with respect to parameter k.

1 If there are two strings si, sj with dH(si, sj) = 2d then we can use a special
strategy: We know that a solution has to differ from both si and sj in d positions.
We can search a solution by trying all ways to partition the set of positions p
with si[p] 6= sj [p] into two sets of size d. In the candidate, we give to one set of
positions the characters of si, to the second set the characters of sj . This strategy
has running time O(kL + kd · 22d).
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3.4 3-Hitting Set

The next example is a bounded search tree for 3-Hitting Set (3HS). A
special reason for choosing this example was that it offers a complicated, but
still easier to overview search tree machinery than the best known Vertex
Cover algorithms do. In addition, the determination of the size of the search
tree is a little more involved than usual. We follow [208]. Recall from Sec-
tion 2.3 that we already know that 3HS has a problem kernel of size O(k3).

Input: A collection C of subsets of size three of a finite set S and
a nonnegative integer k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k which allows S′

contain at least one element from each subset in C?

We assume that no three element subset occurs more than once within the
collection. By n we denote the length of the encoding of the input. Equally,
3HS can be seen as a vertex cover problem for hypergraphs: Interpret the
elements of S as vertices and interpret the size three subsets as hyperedges.
Thus, a hyperedge now joins three vertices instead of two. As a result, 3HS
requires the covering of all these three element sets (hyperedges) by elements
(vertices) completely analogously to Vertex Cover. From this point of
view it is natural to speak of the degree of elements in S. It simply means the
number of subsets in which it occurs. Moreover, we call a given collection of
subsets d-regular if each element x has exactly degree d. Finally, we call an
element y ∈ S dominated by an element x ∈ S if each subset containing y
also contains x.

A special property of the subsequent mathematical analysis of the search
tree size is that in contrast to previous estimations of search tree sizes in
parameterized complexity, we use a system of recurrences. For example, we
may have recurrences as

Tk = 1 + Tk−1 + Tk−2 + Bk−1

and
Bk = 1 + Bk−1 + Tk−1

with T1 = B1 = 1 and T2 = 2, where we start with Tk. Since for non-
degenerate trees (inner nodes have at least two children) the number of leaves
is at least half of all tree nodes, to get an asymptotic solution for the recur-
rences we may drop the additive term “1+.” Solving these simplified recur-
rences, we obtain the branching number α which tells us that Tk = O(αk),
thereby giving an upper bound for the search tree size. Note that we will have
to study several cases for our algorithm, each yielding some recurrence(s).

3.4.1 The Algorithm

In what follows, the fundamental aim is to undertake a case distinction con-
cerning the degree of elements x in the base set S. However, there are also
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some special cases, which are always considered first. For example, if there
is a singleton {x} in our collection, we clearly have to take x in our hitting
set. A simple but important concept is that of domination. An element x is
dominated by an element y if whenever x occurs in a set of the collection,
then y will occur in this set as well. In this case, we can delete x from the
sets without repercussion. Lastly, before coming to degree considerations, a
case of special importance is when we have subsets with two elements in our
collection. In this case, which can easily be dealt with, the size of the search
tree is at most Bk, whereas when there is no such subset (i.e., all subsets
have size three), its size is at most Tk.

Summarizing, the algorithmic structure of the search tree is as follows.
Observe that the subsequent order of the steps is important. In each step,
the algorithm always executes the applicable step with the lowest possible
number:

1. Deal with simple cases, that is, one element subsets, elements occurring
in only one set, or dominated elements.

2. Deal with subsets of size two.
3. Deal with elements of degree three.
4. Deal with elements of degree at least four.
5. Deal with the case that the collection of subsets is two-regular.

It is easily verified that the above case distinction covers all cases that may
occur. As a rule, each case leads to some recursive calls. The worst case leads
to the bound O(2.27k) on the search tree size.

Simple Cases

There exist some simple cases that we always consider first. Firstly, assume
that there is a singleton, say {x}. Then we clearly have to take x into the
hitting set without any branching of the recursion.

Secondly, assume that there is an element x ∈ S that occurs in only
one set of size three, e.g., {x, a, b}. Then it suffices to consider the covering
of {a, b}, leading to the recursive call Bk. Thus, we find the recurrences as
shown for subsets of size two.

Thirdly, if an element y is dominated by an element x it never occurs
in a set without x occurring in the same set. This implies, however, that it
would not make sense to take y and not to take x into the hitting set. As a
consequence, we can simply throw away all occurrences of y, thus obtaining
two-element-sets instead of three element ones.

In the cases handled in the following, it will be of key importance to rely
on the absence of dominated elements, degree 1 elements, and sets of size one
in the given instance.
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Subsets of Size Two

We distinguish whether the size of all sets is at least three and whether there
is at least one set with size two. In this subsection we assume the latter. An
upper bound on the number of leaves in a branching tree whose root has this
property will be called Bk. First of all, note that we can discard from further
consideration the case when all sets have size two, because we can simply
apply the much better results for 2HS, i.e., Vertex Cover. Hence, in the
following subcases, at least one subset of size three occurs.

Let us first handle the special case where there are two sets

{x, y} and {x, a, b},

where x only occurs in these two sets and b may be missing from the second
set. We can branch according to y: If y is in the hitting set then x occurs only
in {x, a, b} and x can be deleted from this subset. This must happen because
y /∈ {a, b} (otherwise x would be dominated by y). The corresponding subtree
has at most Bk−1 leaves. If y is not in the hitting set then x is. Since there
are no elements occurring in only one subset y occurs in some other set from
which it is deleted, leaving a set of size at most two. Hence, this subtree has
at most Bk−1 leaves, as well. Altogether, the corresponding upper bound for
this case is 2Bk−1.

We continue with the case that x occurs in at least two sets of size two
and one set of size three, that is

{x, y1}, {x, y2}, {x, a, b}.

If x is in the hitting set then we get a Tk−1 branch. If x is not in the hitting set,
y1 and y2 have to be in the hitting set and (since, without loss of generality,
y1 6= y2) we trivially get a Tk−2 branch. The corresponding upper bound
reads Tk−1 + Tk−2.

Next, we consider the case of three sets

{x, y}, {x, a, b}, {x, a, c},

where x may occur in other sets as well. If x is in the hitting set, we get
a Tk−1 branch. Otherwise, y must be in the hitting set. Among others, the
sets {a, b} and {a, c} remain. Now we branch according to a. If a is in the
hitting set then we obtain a Tk−2 branch and, otherwise, b and c must be in
the hitting set, yielding a Tk−3 branch. (Note that b 6= c.) The corresponding
upper bound is Tk−1 + Tk−2 + Tk−3.

Finally, the remaining case is three sets

{x, y}, {x, a, b}, {x, c, d},

where x may again occur elsewhere but {a, b} ∩ {c, d} = ∅. If x is in the
hitting, set we get a Tk−1 branch. Otherwise, we branch according to a. Note
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that now, y must be in the hitting set. If a is in the hitting set, we still have
the set {c, d} and, hence, a Bk−2 branch. If a is not, then b is in the hitting
set and we are also left with {c, d}: Another Bk−2 branch. The corresponding
upper bound reads Tk−1 + 2Bk−2.

Degree Three

Here, we assume that there is an element x that occurs in exactly three sets

{x, a1, a2}, {x, b1, b2}, {x, c1, c2}.

We can assume that all sets have size three because if they did not the
previous considerations would apply.

We consider two subcases: Firstly, that there is another element besides x
that occurs in at least two of the three sets (A.) and, secondly, that there is
no such element (B.).
A. Let us assume a1 = b1. Then a1 6= c1 and a1 6= c2 because, otherwise, x
would be dominated by a1 = b1. We make three branches: Either c1 and a1

are in the hitting set or c1 is and a1 is not or, finally, c1 is not in the hitting
set.

If c1 and a1 are in the hitting set then we get a Tk−2 branch because the
size of the hitting set grows by two.

If only c1 is in the hitting set but a1 is not then the elimination of
{x, c1, c2} will leave {x, a1, a2}, {x, a1, b2} as the only sets that contain x.
Hence, x is dominated by a1 and, since we assume that a1 is not in the hit-
ting set, x won’t be either. This leaves the two singletons {a2} and {b2}. They
are, in fact, two sets, since a2 6= b2 (otherwise x would not have occurred in
three sets, but only in two). We can include a2 and b2 together with c1 in the
hitting set and, consequently, obtain a Tk−3 branch.

Finally, if c1 is not in the hitting set then {x, c2} remains after c1 has
been eliminated, yielding at least a Bk branch.

Summarizing, the upper bound reads Tk ≤ Tk−2 + Tk−3 + Bk.
B. Now we may assume that a1, a2, b1, b2, c1, c2 are pairwisely different. We
branch on x. By a Tk−1 branch, we deal with the case where x is in the hitting
set. Otherwise we can eliminate x, leaving {a1, a2}, {b1, b2}, {c1, c2}. Now we
branch according to whether a1 or a2 is in the hitting set and according to
whether b1 or b2 is in the hitting set. Hence, we get four branches, each putting
two elements in the hitting set and leaving the two element set {c1, c2}.
Therefore, the corresponding recurrence reads Tk ≤ Tk−1 + 4Bk−2.

Degree at Least Four

Here, we assume that there is an element x that occurs in at least fours sets

{x, a1, a2}, {x, b1, b2}, {x, c1, c2}, {x, d1, d2}.
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Subsequently, we distinguish between two cases.
Firstly, assume that a1, a2, b1, b2, c1, c2, d1, d2 are not all pairwise

different. Without loss of generality, assume that a1 = b1. (Of course, a1 6= a2,
b1 6= b2, c1 6= c2, and d1 6= d2.) Clearly, a1 = b1 implies that a2 6= b2 because,
otherwise, we would have two times the same size three subset in our given
collection. We claim the upper bound Tk−1 + Bk−1 + Tk−2 for this case. We
branch on x as follows. If x is part of the hitting set, all four sets above are
covered. We obtain a Tk−1 branch. If we do not include x in the hitting set,
then we will, in particular, obtain the sets {a1, a2} and {a1, b2} which are to
be covered. Upon branching on a1, we end up with the following situation.
If a1 is in the hitting set, both of these sets are covered and there must be
an additional two-element set, without loss of generality, {c1, c2}, remaining.
This is due to the following fact: Since due to the preceding considerations
we may assume that a1 is not dominated by x and vice versa (see “Simple
Cases”) there must be a set containing x and not containing a1. Without loss
of generality, let this set be {x, c1, c2}. Hence, since we decided not to take x
in the hitting set, {c1, c2} remains to be covered. Thus, we can continue with
a Bk−1 branch here. Eventually, if a1 is not in the hitting set then only {a2}
and {b2} remain to be covered and, clearly, we have to take both, leading to
a Tk−2 branch.

Clearly, here and in the following case, the situation (and, consequently,
the branching number) improves if we have degree greater than four.

Now let us turn to the second case, that is, assuming that a1, a2, b1, b2,
c1, c2, d1, d2 are pairwise distinct. In this case, we claim the upper bound
Tk−1 + 8Bk−3. Again, we branch on x. Bringing x into the hitting set leads
to a Tk−1 branch. If x is not in the hitting set, we have to cover the four sets

{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}.

Since these contain eight distinct elements we can branch in the manner
of a binary tree of height 3, yielding eight possibilities, each putting three
elements in the hitting set and, without loss of generality, leaving in each
branch the two element set {d1, d2}. Hence, we get eight Bk−3 branches.

The Collection Is Two-Regular

Finally, we end up with two-regular collections, that is, each element x ∈ S
occurs in exactly two subsets of the given collection. Hence, we have

{x, a, b}, {x, c, d}.

We may assume that a, b, c, d all are pairwise distinct, because if, e.g., a = c,
then x would be dominated by a. Therefore, we branch according to a. If a
is in the hitting set, then {x, a, b} is covered and {x, c, d} will be replaced by
{c, d}, because x is dominated after {x, a, b} has been removed. This leads to
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a Bk−1 branch. If a is not in the hitting set then we will branch additionally
according to x. If x is in the hitting set then both of the above sets are covered.
However, since we assume two-regularity we also know that a has to appear in
some other set {a, e, f}. Since this now is the only remaining occurrence of a,
this set is replaced by {e, f}. Consequently, we find the recursive call Bk−1.
Finally, suppose that neither a nor x are in the hitting set. Then b has to
be in the hitting set. Furthermore, {x, c, d} is replaced by {c, d}, yielding a
Bk−1 branch. Hence, the size of this subtree is at most 3Bk−1 in the case of
two-regular collections.

Summarizing the Various Parts

Altogether, we have the following result.

Theorem 3.4.1. 3-Hitting Set has a search tree of size O(2.27k) and each
search tree node can be processed in time linear in the input size.

Proof. We described a search tree whose size is bounded from above by the
given recurrences, which yield search tree size O(2.27k). Since for each node
of the search tree we have to process the collection of subsets (i.e., throwing
out subsets or deleting elements from them) in time linear in the input size,
we obtain linear time complexity for the processing of one search tree node.

⊓⊔

3.4.2 d-Hitting Set for General d

Finally, we present a more general algorithm that works for the generalization
of 3-Hitting Set to subsets of sizes larger than three. It is quite efficient,
but, of course, it is outperformed by the above algorithm for the most im-
portant case d = 3.

The trivial algorithm that tries all d possibilities for a set of d elements
has running time O(dk + n). Our algorithm is better, having running time
O(αk + n), where

α =
d− 1

2
+

d− 1

2

√

1 +
4

(d− 1)2
= d−1+

1

d− 1
+O(d−3) = d−1+O(d−1).

The algorithm proceeds as follows.

1. Eliminate all dominating elements.
2. Choose some set s = {x1, x2, . . . , xd}.
3. Branch according to the following possibilities:

a) Choose x1 for the hitting set, or
b) choose that x1 is not in the hitting set but xi is for i = 2, . . . , d.
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d 3 4 5 6 7 8 9 10 20 50 100

Tk 2.41k 3.30k 4.23k 5.19k 6.16k 7.14k 8.12k 9.11k 19.05k 49.02k 99.01k

Table 3.1. Search tree sizes for d-Hitting Set.

That makes d branches in total. If Tk is the number of leaves in a branching
tree, then the first branch has at most Tk−1 leaves. Let Bk be the number
of leaves in a branching tree where there is at least one set of size d − 1 or
smaller. For each i = 2, . . . , d, there is some set s′ in the given collection
such that x1 ∈ s′, but xi /∈ s′. Therefore, the size of s′ is at most d − 1
after excluding x1 from and including xi in the hitting set. Altogether we get
Tk ≤ Tk−1 + (d− 1)Bk−1.

If there is already a set with at most d − 1 elements, we can play the
same game and get Bk ≤ Tk−1 + (d− 2)Bk−1. The branching number of this
recursion is α from above.

Table 3.1 shows the resulting running times for several values of d. Note
that even for d = 3 the result is better than the previously best special
algorithm for 3-Hitting Set (cf. [92]) and that α is always smaller than
d− 1 + (d− 1)−1.

Observe, however, that the general Hitting Set problem (unbounded
subset size) is W [2]-complete [88], so there is little chance of showing fixed-
parameter tractability for the general problem with unbounded value of d.

3.5 Maximum Satisfiability

Many bounded search tree algorithms (including those for Vertex Cover
and 3-Hitting Set) achieve small search tree size by distinguishing between
quite a number of “branching cases.” These algorithms are solely governed
by branching (or “splitting”) rules. Now, by investigating the Maximum
Satisfiability (MaxSat) problem we will give a example where besides
branching also so-called transformation rules play a major role. Moreover,
MaxSat is a good example for the limitations and pitfalls of the fixed-
parameter approach, as we will discuss in the end of this relatively lengthy
section. We follow parts of [206].

MaxSat is the following problem:

Input: A boolean formula in conjunctive normal form consisting
of K clauses and a nonnegative integer k.
Question: Is there a truth assignment satisfying at least k clauses.

Like the satisfiability problem itself, MaxSat plays an important role in com-
puter science since it is the basis for solutions of major problems in AI and
combinatorial optimization [27, 147]. It has also been a subject of the second
DIMACS challenge [159]. It has been termed “a paradigmatic problem for the
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“algorithmic engineering” and scientific testing and tuning effort” [26]. Ac-
cording to Crescenzi and Kann [73], MaxSat is among the 15 most popular
problems in combinatorial optimization. MaxSat cannot be solved in poly-
nomial time unless P = NP since it generalizes the Satisfiability problem.

3.5.1 Basic Definitions

We also refer to Section 2.2 for some very basic definitions. A subformula,
i.e., a subset of clauses, is called closed if it is a minimal subset of clauses
such that no variable in this subset also occurs outside this subset in the
rest of the formula. A clause that contains the same variable positively and
negatively, e.g., {x, x̄, y, z̄}, is satisfied by every assignment. We will not allow
for such clauses but we assume that such clauses are always replaced by a
special clause ⊤ which denotes a clause that is always satisfied. We call a
clause containing r literals simply an r-clause. A formula in 2CNF is one
consisting of 1- and 2-clauses. We assume that 0-clauses do not appear in our
formula since they clearly are not satisfiable. Let l be a literal occurring in a
formula F . We call it an (i, j)-literal if the variable corresponding to l occurs
exactly i times positively and exactly j times negatively, respectively. In
analogy, we get (i+, j)-, (i, j+)-, and (i+, j+)-literals by replacing “exactly”
with “at least” at the appropriate positions and get (i−, j)-, (i, j−)- and
(i−, j−)-literals by replacing “exactly” with “at most.” We denote the number
of occurrences of a literal l in a formula F by #l(F ).

For a literal l and a formula F , let F [l] be the formula originating
from F by replacing all clauses containing l by ⊤ and removing l̄ from
all clauses where it occurs. To estimate the time complexity of our algo-
rithms, the following notions are useful: S(F ) denotes the number of ⊤-
clauses in F , and maxsat(F ) denotes the maximum number of simultaneously
satisfiable clauses in F . We say two formulas F and G are equisatisfiable if
maxsat(F ) = maxsat(G). A formula that contains only ⊤ as its clauses is
called final. Obviously, there is exactly one final formula in the equivalence
class of equisatisfiable formulas, assuming that 0-clauses are deleted from our
formula as soon as they exist.

Definition 3.5.1. A formula is called nearly monotone if negative literals
occur only in 1-clauses. It is called a simple formula if it is nearly monotone
and each pair of variables occurs together in one clause at most.

Definition 3.5.2. For a variable x, we say x̃ occurs in a clause C if x ∈ C
or x̄ ∈ C.

For example, x̃ occurs in {x̄, y, z} and in {x, y, z} but x occurs only in
{x, y, z} and x̄ only in {x̄, y, z}. As a rule, we will use x, y, z to denote
variables and l to denote a literal.
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3.5.2 Transformation and Branching Rules

In the following, we present algorithms that solve MaxSat by mapping a
formula to the unique, equisatisfiable, final formula. We distinguish two pos-
sibilities: If a formula is replaced by another formula then we speak of a
transformation rule; if one formula is replaced by several other formulas then
we speak of a branching rule. The resulting formula or formulas are then
solved recursively, a technique that goes back to the Davis–Putnam proce-
dure [78]. It must be emphasized here that the purpose of the transformation
rules as presented here is not to obtain a reduction to problem kernel (cf.
Section 2.2) but they serve to simplify the subsequently described branching
strategy and its mathematical analysis.

Transformation Rules

A transformation rule F
F ′

replaces F by F ′, where F ′ and F are equisatisfi-
able but F ′ is simpler. We will use the following transformation rules, whose
correctness is easily confirmed. We mention in passing that many rules that
apply for the conceptually easier Satisfiability problem do not (directly)
apply for MaxSat, thus requiring new techniques for MaxSat.

Pure Literal Rule.

F

F [x]
if x is a (1+, 0)-literal.

The correctness of the pure literal rule is easy to prove. Obviously, there is
an optimal assignment I that fulfills I(x) = 1.

Complementary Unit-Clause Rule.

F

{⊤} ∪G
if F = {{x̄}, {x}} ∪G.

For every assignment maxsat(F ) = maxsat(G) + 1.

Dominating Unit-Clause Rule.

F

F [l]
if l̄ occurs in i clauses, and l occurs at least i times in 1-clauses.

Resolution Rule.

{{x̄} ∪K1, {x} ∪K2} ∪G

{⊤, K1 ∪K2} ∪G
if G does not contain x̃.

Small Subformula Rule. Let F = {{x′, y′, . . .}, {x′′, y′′, . . .}, {x′′′, y′′′, . . .}}∪
G, where G contains neither x̃ nor ỹ and x′, x′′, x′′′ ∈ {x, x̄} and y′, y′′, y′′′ ∈
{y, ȳ}. Then

F

{⊤,⊤,⊤} ∪G
,

since there is always an assignment to x and y only that already satisfies
{{x′, y′, . . .}, {x′′, y′′, . . .}, {x′′′, y′′′, . . .}}.
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Star Rule. A formula {{x̄1}, {x̄2}, . . . , {x̄r}, {x1, x2, . . . , xr}, {x1, x2, . . . , xr}}
is called an r-star. Let F be an r-star. Then

F

{⊤, . . . ,⊤} ,

where the “⊤-multi-set” contains r + 1 many ⊤’s.

Definition 3.5.3. A formula is reduced if no transformation rule is appli-
cable, each variable occurs at least as often positively as negatively, and it
contains no empty clauses. Using the above transformation rules, Reduce(F )
denotes the corresponding reduced, equisatisfiable formula.

When reducing a formula, it can be necessary to rename literals. Observe
that in the rest of the paper many arguments will rely on the fact that we
are dealing with a reduced formula. Particularly note that a variable in a
reduced formula occurs at least three times.

Branching Rules

The branching rules are based on partitioning the search space, i.e., dividing
the set of all possible assignments into several parts, finding an optimal as-
signment within each part, and then taking the best of them. Careful splits
enable us to simplify the formula in some of the branches. Take, for example,
the formula

{{x, y}, {x̄, y}, {x, ȳ}, {x̄, ȳ}}
and split the set of all assignments into those with x = 0 and those with
x = 1. If x = 0, the formula becomes

{{0, y}, {1, y}, {0, ȳ}, {1, ȳ}}

which simplifies to
{{y},⊤, {ȳ},⊤}.

We assume in the following that the elimination of 0 or 1 in clauses is done
automatically whenever it occurs; a 0 is removed from its clause and a clause
that contains 1 is replaced by ⊤. Finally, we can simplify {{y}, {ȳ},⊤,⊤}
with the complementary unit-clause rule to get {⊤,⊤,⊤}. The result is
|{⊤,⊤,⊤}| = 3 for assignments with x = 1. Similarly, we get the result 3
for assignments with x = 0, so the result is “3 satisfiable clauses” which is
obviously correct.

If we remove m clauses in which l occurs from F to get F [l] then obviously
S(F [l]) = S(F ) + m if we look only at assignments where l = 1. In general,
however, we can at least say that

S(F [l]) ≥ S(F ) + m
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Input: A formula F
Output: An equisatisfiable formula A(F ) = {⊤, . . . ,⊤}
Method:
F ← Reduce(F );
if F is final then return F
else

let x̃ be a variable that occurs in F ;
return max{A(F [x]), A(F [x̄])}

fi

Fig. 3.2. Algorithm A to compute a final, equisatisfiable formula. Note that
max{A(F [x]), A(F [x̄])} is the multi-set with the maximum number of ⊤’s.

since an assignment where l = 0 could be better than all assignments where
l = 1. Thus, a simple algorithm to compute maxsat(F ) is easily developed
and can be found in Fig. 3.2.

In the rest of this subsection, we describe our set of branching rules. We
distinguish between three basic cases, the first being easy: Either there is
a variable occurring at least five times in the given formula or all variables
occur three or four times in the formula and either there is one occurring
exactly three times or all variables occur exactly four times. Clearly, this
gives a complete case distinction.

There is a Variable that Occurs at Least Five Times. F1 Let F be
reduced.

F

F [x], F [x̄]
if x̃ occurs at least five times in F.

We get S(F [x]) ≥ S(F ) + a and S(F [x̄]) ≥ S(F ) + b with a, b ≥ 1 and
a + b = 5.

Each Variable Occurs Three or Four Times and Some Variable Oc-

curs Exactly Three Times. In the following we present seven branching
rules T1–T7 and an analysis with respect to S(F ). These rules are applicable
if F is reduced and all literals in F are (2, 1), (3, 1), or (2, 2)-literals. More-
over, there must be at least one (2, 1)-literal x. In what follows, we firstly
describe our set of rules and secondly show that it really handles all possible
cases.

T1
F

F [l′], F [l̄′]
if F = {{x̄, l′, . . .}, {x, . . .}, {x, . . .}, {l′′, . . .}, {l′′′, . . .}, . . .}
and l′, l′′, l′′′ ∈ {y, ȳ}.

First, assume that l′ = y. Then, in F [l′] we get the first clause satisfied
and since y is a (2, 1)-literal or better, at least one of the last two clauses
is also satisfied. Additionally, x then becomes a pure literal and the second
and third clauses can be satisfied setting x = 1 by the pure literal rule. In
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F [l̄′], trivially, at least one clause is directly satisfied. Altogether, we have
S(Reduce(F [l′])) ≥ S(F ) + 4 and S(F [l̄′]) ≥ S(F ) + 1. Second, assume that
l′ = ȳ. Arguing in an analogous way as before, we obtain S(Reduce(F [l′])) ≥
S(F ) + 3 and S(F [l̄′]) ≥ S(F ) + 2.

T2
F

F [l], F [l̄]
if F = {{x̄, l̄, . . .}, {x, l, . . .}, {x, . . .}, {l, . . .}, . . .}.

Clearly, S(Reduce(F [l])) ≥ S(F ) + 3 since two clauses containing l are sat-
isfied and then another clause is satisfied by the resolution rule. We also get
S(Reduce(F [l̄])) ≥ S(F )+3: Since at least one clause containing l̄ is satisfied,
x becomes a pure literal, thus satisfying one or two more clauses because of
the pure literal rule.

T3
F

F [x], F [x̄]
if F = {{x̄, y, . . .}, {x, y, . . .}, {x, . . .}, {ȳ, . . .}, . . .}
and y is a (2, 1)-literal.

Now S(Reduce(F [x̄])) ≥ S(F )+2, because of one directly satisfied clause and
the resolution rule on {x, y, . . .} and {ȳ, . . .}; S(Reduce(F [x])) ≥ S(F ) + 3
because of two directly satisfied clauses and the resolution rule on {x̄, y, . . .}
and {ȳ, . . .}.

T4
F

F [y], F [ȳ]
if F = {{x̄, y, . . .}, {x, ȳ, . . .}, {x, . . .}, {y, . . .}, . . .}
and y is a (2, 1)-literal.

Then S(Reduce(F [ȳ])) ≥ S(F ) + 2, since {x, ȳ, . . .} is directly satisfied and
we get one more clause from the resolution rule on {x̄, y, . . .} and {x, . . .}.
Also, S(Reduce(F [y])) ≥ S(F )+4 since two clauses are directly satisfied and
x becomes a pure literal in two clauses.

T5
F

F [x], F [x̄]
if F = {{x̄}, {x, y, . . .}, {x, z}, {y, . . .}, {ȳ}, {z̄}, . . .}
and y and z are (2, 1)-literals.

Then S(Reduce(F [x])) ≥ S(F ) + 4 because of two directly satisfied clauses
and the resolution rule on y satisfying another clause. Then z becomes a
(1−, 1)-literal and resolution, pure literal rule, or complementary unit-clause
rule are applicable. Clearly, S(F [x̄]) = S(F )+ 1. Observe that we did not fix
the third occurrence of z—for example, z̃ might occur in the clause {x, y, . . .}.

T6
F

F [l], F [l̄ ]
if F = {{x̄, . . .}, {x, l, . . .}, {x, . . .}, . . .},
l is a (3, 1)- or (2, 2)-literal,
and l does not occur together with x̃ in three clauses.

We have S(F [l]) ≥ S(F )+a, S(F [l̄ ]) ≥ S(F )+b, and a+b = 4 with a, b ≥ 1. In
F [l], however, x̃ occurs either 1 or 2 times. Hence, S(Reduce(F [l]))−S(F ) ≥
a + 1.
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T7
F

F [l], F [l̄ ]
if F = {{x̄, y, . . .}, {x, y, . . .}, {x, y, . . .}, {ȳ, . . .}, . . .}
and there is a literal l that occurs in a clause
with ỹ and l̃ occurs also in a clause with no ỹ.

If l occurs in two clauses together with ỹ then these two clauses are directly
satisfied in F [l] and two others by the pure literal rule (first x and then y
becomes pure or vice versa). If l occurs in a clause with no ỹ and in a clause
with ỹ then these two clauses are directly satisfied by l = 1 and at least two
others following transformation rules. Altogether, S(Reduce(F [l]) ≥ S(F )+4,
if l occurs in at least two clauses of F .

If, however, l occurs only in one clause of F then S(Reduce(F [l])) ≥
S(F )+3 but now l̄ occurs in at least two clauses and consequently S(F [l̄ ]) ≥
S(F ) + 2.

We get S(Reduce(F [l])) ≥ S(F ) + 4 and S(Reduce(F [l̄])) ≥ S(F ) + 1 or
S(Reduce(F [l])) ≥ S(F ) + 3 and S(Reduce(F [l̄])) ≥ S(F ) + 2.

Lemma 3.5.1. Let F be a reduced formula with no closed subformulas and
each variable occur in three or four clauses. Moreover, let there be at least one
variable that occurs in exactly three clauses. Then one of the rules T1-T7 is
applicable.

Proof. 1. There are only (2, 1)-literals in F .
Firstly, assuming that F is not nearly monotone (cf. Definition 3.5.1) we
can conclude that there is some variable x that occurs negatively in a clause
together with at least one other literal, say l. If l̃ occurs together with x̃ in
no other clause then T1 applies. Otherwise, x̃ and l̃ occur together in at
least two clauses. Three joint occurrences are not possible since F is reduced
and that case is covered by the small subformula rule (Subsection 3.5.2).
Depending on the combination of positive and negative occurrences, T2, T3,
or T4 apply, as they cover all combinations.

If, however, F happens to be nearly monotone, T5 applies: Pick any
variable x. Then pick a variable y that occurs together with x in exactly one
clause. Such a y exists since, otherwise, x would be part of a star or in a
unit-clause. Then pick some arbitrary variable z from the other clause that
contains x, but not y.

2. There is also some (3, 1)- or (2, 2)-literal in F .
Find a (2, 1)-literal x and a (3, 1)- or (2, 2)-literal y such that x̃ and ỹ occur
in the same clause. (Such a pair is available since, otherwise, there would be
a closed subformula that contains only (2, 1)-literals.) Let N be the number
of clauses where x̃ and ỹ occur together. If N = 1 then T1 or T6 apply:
If ỹ occurs together with x then T6 applies where ỹ plays the role of l (the
precondition of T6 is fulfilled even if l = ȳ since then l is nevertheless a (2, 1)-,
(3, 1)-, or (2, 2)-literal, and if ỹ occurs together with x̄ then T1 applies where
ỹ plays the role of l′ (note that here y can be a (2, 1)-, (3, 1)-, or (2, 2)-literal,
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too). If N = 2 then T6 applies. Observe that in T6 ỹ may occur together with
x̄ as well as together with x. If N = 3 then T6 or T7 apply (the existence of
l in the side condition of T7 can be assumed since otherwise there would be
a small closed subformula). ⊓⊔

All Variables Occur Exactly Four Times. Now, we assume that F is
reduced, it contains no closed subformulas, and that each variable occurs
exactly four times.

D1
F

F [l], F [l̄]
if F = {{x̄, l, . . .}, {x, . . .}, {x, . . .}, {x, . . .}, . . .}.

In F [l], the clause {x̄, l, . . .} is satisfied. Moreover, F [l] contains the pure
literal x and we can apply the pure literal rule. Clearly, it follows that
S(Reduce(F [l])) ≥ S(F ) + 4 and S(F [l̄]) ≥ S(F ) + 1.

D2
F

F [x], F [x̄, y]
if F = {{x̄}, {x, y}, {x, . . .}, {x, . . .}, . . .}.

There is always an optimal assignment I with I(x) = 1 or with I(x) = 0 and
I(y) = 1: Let I ′ be an optimal assignment with I ′(x) = 0 and I ′(y) = 0. Let
I be the assignment that coincides with I ′, except that I(x) = 1. Obviously,
I satisfies at least as many clauses as I ′ and is therefore also optimal. Hence,
it suffices to examine F [x] and F [x̄, y]. We get S(F [x]) ≥ S(F ) + 3 and
S(F [x̄, y]) ≥ S(F ) + 3.

D3
F

F [x], F [x̄]
if F = {{x̄}, {x, l, . . .}, {x, . . .}, {x, . . .}, . . .}
and l̃ occurs in 1 or 2 clauses that do not contain x̃.

In F [x], three clauses containing x are satisfied and l is a (1, 1)-, (1+, 0)-, or
(0, 1+)-literal. Some transformation rule satisfies at least one other clause.
We get S(Reduce(F [x])) ≥ S(F ) + 4 and, of course, S(F [x̄]) ≥ S(F ) + 1.

D4
F

F [x], F [x̄]
if F = {{x̄, . . .}, {x̄, . . .}, {x, . . .}, {x, . . .}, . . .}.

Obviously, S(F [x]) ≥ S(F ) + 2 and S(F [x̄]) ≥ S(F ) + 2.

D5
F

F [y], F [ȳ, z], F [ȳ, z̄]
if F = {{x̄}, {x, y, z}, {x, . . .}, {x, . . .},
{ȳ}, {y, . . .}, {y, . . .}, {z̄}, {z, . . .}, {z, . . .}, . . .}.

Obviously, S(F [y]) = S(F ) + 3 and S(F [ȳ, z]) = S(F ) + 4. Finally, we
get S(Reduce(F [ȳ, z̄])) ≥ S(F ) + 5 since F [ȳ, z̄] contains a subformula
{{x̄}, {x}, {x, . . .}, {x, . . .}} and, applying the complementary unit-clause rule
followed by the pure literal rule, satisfies three clauses.
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D6
F

F [x̄], F [x, ȳ], F [x, y, z̄1, z̄2, . . . , z̄6]

if F = {{x̄}, {x, y, . . .}, {x, . . .}, {x, . . .},
{y, z1, z2, z3, . . .}, {y, z4, z5, z6, . . .}, {ȳ}, . . .},

F is simple, and each positive clause has size at least 4.

We have to prove the following claim: If there is an optimal assignment I
for F with I(x) = 1 then there is an optimal assignment I ′ with I ′(x) = 1
and I ′(y) = 0 unless I(z1) = . . . = I(z6) = 0. Let us assume that I is in-
deed an optimal assignment with I(x) = 1, but I(z1) = · · · = I(z6) = 0
does not hold; without loss of generality let us assume I(z1) = 1. Now
define I ′ as I, but I ′(y) = 0. When changing from I to I ′, the clause
{y, z4, z5, z6, . . .} may no longer be satisfied. The number of satisfied clauses,
however, does not decrease since now {ȳ} is satisfied. The status of all other
clauses does not change. We get S(F [x̄]) ≥ S(F ) + 1, S(F [x, ȳ]) ≥ S(F ) + 4,
and S(F [x, y, z̄1, z̄2, z̄3, z̄4, z̄5, z̄6]) ≥ S(F ) + 11.

Lemma 3.5.2. Let F be a reduced formula. Let each variable occur in exactly
four clauses and let there be no closed subformula. Then one of the rules D1-

D6 is applicable.

Proof. If there is at least one (2, 2)-literal then D4 applies. Therefore, in the
following we can assume that F contains only (3, 1)-literals.

Let us first assume that F is not nearly monotone. Then D1 applies.
Next, let us assume that F is nearly monotone, but not simple. Then D3

applies.
Finally, let F be simple. If a variable x occurs in a clause of size 2 (resp. 3),

then D2 (resp. D5) applies. Otherwise, all variables occur positively only in
clauses of size at least 4 and D6 applies. ⊓⊔

The following lemma shows that the relatively inefficient rule D4 can
always be followed by something efficient.

Lemma 3.5.3. Let F be a reduced formula such that each variable occurs in
exactly four clauses and there is some (2, 2)-literal x. Let F contain no closed
subformulas. Then S(Reduce(F [x])) > S(F [x]) or Reduce(F [x]) contains a
(2, 1)-literal. The same applies for F [x̄].

Proof. Let ỹ occur together with x in any one clause and also in any one
other clause that does not contain x. Then ỹ occurs in F [x] between one and
three times. If it occurs one or two times then the pure literal or resolution
rule is applicable to F [x]. If y occurs three times in F [x] then it is a (2, 1)-
literal. Then it remains a (2, 1)-literal in Reduce(F [x]) unless a reduction that
increases S(F [x]) was carried out. Analogously, prove the same for F [x̄]. ⊓⊔
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Input: A formula F
Output: An equisatisfiable formula B(F ) = {⊤, . . . ,⊤}
Method:
F ← Reduce(F );
if F is final then return F
else if F = F1 ⊕ F2 ⊕ · · · ⊕ Fm then return B(F1) ∪B(F2) ∪ · · · ∪B(Fm)
else if F has less than 6 unresolved clauses then return A(F )
else

choose an applicable rule
F

F1, . . . , Fr
∈ {F1,T1–T7,D1–D6},

where D4 is chosen only if no other rule is applicable;
return max{B(F1), . . . , B(Fr)}

fi

Fig. 3.3. Algorithm B. Note that F1 ⊕ F2 ⊕ · · · ⊕ Fm denotes the decomposition
of F into closed subformulas and max{B(F1), . . . , B(Fr)} is the multi-set with the
maximum number of ⊤’s. Among the applicable rules some rule with minimum
branching number is chosen.

3.5.3 The Algorithm and Its Analysis

One key to an efficient algorithm for MaxSat is a suitable data structure to
represent formulas in conjunctive normal form. For the high-level description
of transformation and branching rules, we used the representation as a multi-
set of sets of literals. The actual implementation of the algorithm will use a
refinement of this representation. We represent literals as natural numbers.
A positive literal xi is represented as the number i and the negative literal
x̄i by −i. A clause is represented as a list of literals and a formula as a list of
clauses. The ⊤-clause is represented by a special symbol. Moreover, for each
variable there is an additional list of pointers that point to each occurrence
of the variable in the formula.

Algorithm B constructs an equisatisfiable final formula {⊤, . . . ,⊤} from
a formula F by using transformation and branching rules (see Fig. 3.3).

Lemma 3.5.4. A formula F can be decomposed into its closed subformulas
in linear time.

Proof. Simply find the connected components in the graph whose nodes are
all variables and edges connect variables that occur in the same clause. ⊓⊔

Lemma 3.5.5. A formula F can be transformed into an equisatisfiable, re-
duced formula F ′ with S(F ′) ≥ S(F ) in time O(|F |+ |F |(S(F ′)− S(F ))).

Proof. First check if the formula is a star, subsequently check for each variable
in constant time if a transformation rule applies to it and if yes, apply it in
linear time.

A technique to achieve these bounds easily is a dictionary that can be
constructed from a formula in linear time and that can process queries such
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Cases Branching vector Branching number
F1, T1, T5, T6, T7, D1, D3 (4, 1) 1.39

F1, T1, T3, T7 (3, 2) 1.33
T2, D2 (3, 3) 1.26

T4 (4, 2) 1.28
D4 (2, 2) 1.42
D5 (5, 4, 3) 1.33
D6 (11, 4, 1) 1.40

Table 3.2. Lower bounds on branching vectors for Algorithm B referring to the
number of ⊤-clauses S(F ).

as “Give me a variable x such that x occurs in C1, x̃ occurs in C2 and x̄
occurs in C2, if such a variable exists.” It is sufficient to have a dictionary
for queries that involve at most four clauses and that answers with variables
that occur at most four times in the formula.

For example, one can check in constant time whether the small subformula
rule applies to a variable x: Check that x̃ occurs three times. Find the clauses
C1, C2, and C3 that contain x̃. Then, using a dictionary, ask the query “Give
me two variables that occur exactly in C1, C2, and C3.” The rule is applicable
iff such a pair exists. ⊓⊔

Algorithm B generates a search tree whose nodes are labeled by formulas
that are recursively processed. The children of an inner node F are computed
by a transformation rule (one child) or a branching rule (more than one child).
The value of a node F is S(F ). The values of all children of F are bigger
than S(F ). If the children of F were computed according to a rule

F

F1, F2, . . . , Fr

then (S(F1)− S(F ), . . . , S(Fr)− S(F )) is the branching vector of this node.

Lemma 3.5.6. The branching tree of Algorithm B has O(1.40k) nodes,
where k is the number of satisfiable clauses in F .

Proof. In Table 3.2 we list all branching vectors and numbers corresponding
to the branching rules given in Subsection 3.5.2. All branching numbers are
smaller than 1.40 which is the branching number of the branching vector
(1, 4, 11) (rule D6) except the branching number

√
2 ≈ 1.42 which belongs

to nodes that are split according to rule D4 and whose branching vector
is (2, 2).

By Lemma 3.5.3, however, the children of nodes with branching vector
(2, 2) have a branching vector of at least (1, 4) or (2, 3), since they are split
by any one rule T1–T7. The combined branching number of the nodes and
its children is therefore at most (3, 6, 3, 6), (3, 6, 4, 5), or (4, 5, 4, 5). The cor-
responding branching numbers are 1.40, 1.39, and 1.37. The largest branch-
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ing number remains 1.40 and consequently the size of the branching tree is
O(1.40k). ⊓⊔

Theorem 3.5.1. The running time of Algorithm B is O(|F | ·1.40k) and (for
a slight modification in the algorithm) O(|F | · 1.39K), where |F | is the length
of the given formula F , k is the number of satisfiable clauses in F and K is
the number of clauses in F .

Proof. The size of each formula in the branching tree does not exceed |F |,
since transformation and branching rules never generate longer formulas. Re-
ducing the formula (Lemma 3.5.5), selecting and applying a branching rule,
or decomposing the formula into minimal subformulas, take time O(|F |).

The size of the tree is at most 1.40k (Lemma 3.5.6). This proves the time
bound O(|F | · 1.3995k) for Algorithm B.

Let µ(F ′) be K minus the number of clauses in F ′ that are not ⊤. Then,
obviously µ(F ′) ≥ S(F ′). Hence, the branching numbers in the tree with
respect to µ(F ′) are at least as big as those with respect to S(F ′). In the
following we analyze Algorithm B with respect to µ(F ′) and get in this way
a bound on the size of the branching tree in terms of K.

Except for D4 and D6 all branching numbers for S(F ′) and thus for
µ(F ′) are at most 1.39. The branching vector for D6 is (1, 5, 13) with respect
to µ(F ′) (yielding a branching number of 1.34). Thus, it remains to deal with
D4. This problem occurs only if all variables occur four times.

If there are only (2, 2)-literals left we do apply D4. If a formula in one of
the two branches is reducible, then we have at least a (3, 2) or (2, 3)-branch.
Otherwise, it is only a (2, 2)-branch. However, by Lemma 3.5.3 the formulas
in both branches contain (2, 1)-literals. If both formulas do not contain (2, 2)-
literals, then D4 will never again be used and this single use plays no role
asymptotically.

Let us assume we branch on the (2, 2)-literal x and F [x] still contains
(2, 2)-literals. Then there is a (2, 2)-literal y and a (2, 1)-literal z such that ỹ
and z̃ occur together in the same clause in F [x] (unless there are closed sub-
formulas). Then, there are between one and two clauses in F [x, y] or F [x, ȳ]
that contain z̃ and therefore one of the two formulas is reducible. In total,
if we branch according to F [x̄], F [x, y], and F [x, ȳ], we get a branching vec-
tor of (2, 5, 4) or (2, 4, 5). The corresponding branching number is 1.39. This
settles the case that there are only (2, 2)-literals in the formula.

If there are also (3, 1)-literals then either D1 is applicable or all (3, 1)-
literals occur negatively only in unit-clauses. If that is the case and there are
also (2, 2)-literals then there is also a clause that contains a (3, 1)-literal x and
some (2, 2)-literal l (otherwise there would exist a closed subformula). Then,
rule D3 can be applied. If, however, no (2, 2)-literal exists then D4 is not
applicable and therefore some other rule must be applicable. The branching
numbers of all rules except D4 are, however, at most 1.39. ⊓⊔

Assuming a parameter value k < K, the following corollary is of interest.
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Corollary 3.5.1. To determine an assignment satisfying at least k clauses
of a boolean formula F in CNF takes O(k2 · 1.40k + |F |) steps.

Proof. Proposition 2.2.1 (Section 2.2) gives a size O(k2) problem kernel for
MaxSat which can be computed in linear time. Hence, running time O(|F | ·
γk) can be improved to running time O(k2γk + |F |). ⊓⊔

Corollary 3.5.1 improves Theorem 7 of Mahajan and Raman [186] by
decreasing the exponential factor from φk ≈ 1.62k to 1.40k. Analogously, the
running time for MaxqSat is improved to O(qk · 1.40k + |F |). Building up
on the above rules and increasing the number of case distinctions, Bansal
and Raman [29] reported an improvement of the upper bounds: They stated
that MaxSat can be solved in O(1.35K |F |) or O(1.39kk2 + |F |) time. Very
recently, Chen and Kanj [59] stated a further refinement of these methods,
leading to the upper bounds O(1.35k|F |) and O(1.37kk2 + |F |), respectively.

3.5.4 Final Remarks

If we do not demand that the solution be exact rather only approximately
correct then it is possible to solve MaxSat in polynomial time. There is a de-
terministic, polynomial time approximation algorithm for MaxSat with ap-
proximation factor 0.7845 [20], indicating that further improvements are pos-
sible when making use of a conjecture of Zwick [266]. However, a polynomial-
time approximation algorithm with an approximation factor arbitrarily close
to 1 will not exist unless P = NP [18]. Dantsin et al. show how to improve the
MaxSat approximation factor of 0.770 arbitrarily close to 1 using an expo-
nential time algorithm [75]. More precisely, they describe, given a polynomial
time α-approximation algorithm, how to construct an (α + ǫ)-approximation
algorithm running in time exponential in the number of clauses, where the
exponent depends on the ǫ. The idea is to combine a search tree with an
approximation algorithm.

The most immediate parameterized version of MaxSat is to determine
whether at least k clauses of a CNF formula F with K clauses can be satisfied.
The fixed-parameter tractability of MaxSat implies that every problem in
the optimization class MaxSNP [214] is also fixed-parameter tractable [51].
Mahajan and Raman [186] introduced a more meaningful parameterization,
asking whether at least ⌈K/2⌉+k clauses of a CNF formula F can be satisfied.
This is what we know as a parameterization above a guaranteed value (cf.
Subsection 1.5.2 and Section 2.2). The guaranteed value ⌈K/2⌉, however,
can further be lifted (see [186] for details). The fixed-parameter algorithm
presented above can also be plugged into this framework.

Finally, the special case Max2Sat deserves particular attention. Firstly,
it gives an example where search tree algorithms have been implemented
and tested empirically with encouraging results [128, 132]. Secondly, for
Max2Sat “parameterization” so far has found its limitations. An upper
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bound of the order 2K2/5 for Max2Sat, where K2 is the total number of
2-clauses, was proven [131]. For MaxSat, Chen and Kanj [59] give the param-
eterized bound 2k/2.15 which is better than their “unparameterized” bound
2K/2.36 when k < 0.92K, where K is the total number of clauses. In [132],
the parameterized bound 2k/2.73 for Max2Sat has been proven. However,
the above “unparameterized” bound 2K2/5 is better for all reasonable val-
ues of k: the parameterized bound is better only when k < 0.55K2, while an
assignment satisfying 0.5K+0.25K2 ≥ 0.75K2 clauses can be found in a poly-
nomial time [186, 264]. As ⌈K/2⌉ clauses can be easily satisfied, Mahajan and
Raman [186] propose to ask in the parameterized version of the problem for
an assignment satisfying ⌈K/2+k′⌉ clauses. Taking the parameterized bound
shown in [132] and plugging it into the results by Mahajan and Raman, we
can translate it into a bound with respect to this new parameter k′; in time
26k′/2.73 = 2k′/0.45 one can find an assignment to the variables that satisfies
at least ⌈K/2 + k′⌉ clauses or one can determine that no such assignment
exists. However, for k′ ≤ ⌈K2/4⌉, this question still can be handled in poly-
nomial time. Comparing for k′ > ⌈K2/4⌉ the bound 2k′/0.45 to the Max2Sat
bound shown we see, again, that the parameterized bound is worse for every
parameter value. It would be interesting, however, to consider, for a given k′′,
the parameterized complexity of the question whether there is an assignment
satisfying ⌈K/2 + K2/4⌉+ k′′ clauses.

3.6 Dominating Set on Planar Graphs

We finish the series of search tree examples with Dominating Set on planar
graphs. This problem stands for cases where the bounded search tree algo-
rithm does not employ many case distinctions and thus is comparatively easy.
By way of contrast, the proof of correctness of the considered branching and
analyzing the corresponding search tree size is hard. We follow parts of [5].

Recall from Section 3.1 the problems we face with handling Dominating
Set instead of Independent Set on planar graphs. The difficulties de-
scribed there lead us to the study of a more general version of Dominating
Set, i.e., Annotated Dominating Set:

Input: A graph G = (B ⊎W, E) with its vertices either colored
black or white and a nonnegative integer k.
Question: Is there a choice of at most k vertices V ′ ⊆ V = B⊎W
such that, for every vertex u ∈ B, there is a vertex u′ ∈ N [u]∩V ′?
In other words, is there a set of at most k vertices (which may be
either black or white) that dominates the set of black vertices?

Then, in each step of the search tree, we would like to branch according
to a low degree black vertex. Restricting Annotated Dominating Set to
planar graphs we can guarantee the existence of a vertex u ∈ B ⊎W with
deg(u) ≤ 5. However, as long as not all vertices have degree bounded by five



68 3. Search Trees—the Power of Systematics

this vertex needs not necessarily be black. Hence, a direct O(6kn) search tree
algorithm for (Annotated) Dominating Set seems out of reach for planar
graphs.

In what follows, we sketch a fixed-parameter algorithm for (Annotated)
Dominating Set on planar graphs with running time O(8kn2). For that
purpose, in analogy to MaxSat (cf. Subsection 3.5.2) we provide a set of
transformation rules and, then, use a bounded search tree in which we are
constantly simplifying the instance according to the transformation rules. The
branching in the search tree will be done with respect to low degree vertices.
More precisely, we always choose a black vertex with minimum degree seven
and branch on it by either putting itself or one of its at most seven neighbors
into the dominating set. This yields eight cases to branch into and the search
tree size 8k follows. The central technical obstacle herein that has to be sur-
mounted is to prove that whenever we want to do a branching on a minimum
degree black vertex then always a degree at most seven black vertex must
exist. To this end, we introduce a set of easy transformation rules in order to
continuously generate a “reduced” graph which possesses such a degree seven
black vertex. Then, by fairly technical means based on “Euler arguments”
for planar graphs it is possible to prove that planar reduced black-and-white
graphs always contain a vertex with maximum degree seven. The technically
demanding proof of this property is omitted and can be found in [2, 5].

Without loss of generality, we consider connected planar graphs, i.e., con-
nected graphs that admit crossing-free embeddings in the plane.

3.6.1 Transformation Rules

We consider the following transformation rules for simplifying the Anno-
tated Dominating Set problem on planar graphs. In developing the search
tree, we will always assume that we are branching from a reduced instance
(thus, we are constantly simplifying the instance according to the transfor-
mation rules). When a vertex u is placed in the dominating set D by a
transformation rule then the target size k for D is reduced to k − 1 and the
neighbors of u become colored white.

T1 Delete edges between white vertices.
T2 Delete a degree one white vertex.
T3 If there is a degree one black vertex w with neighbor u (either black or

white) then delete w, place u in the dominating set, and lower k to k−1.
T4 If there is a white vertex u of degree 2, with two black neighbors u1 and

u2 connected by an edge {u1, u2} then delete u.
T5 If there is a white vertex u of degree 2, with black neighbors u1, u3, and

there is a black vertex u2 and edges {u1, u2} and {u2, u3} in G then
delete u.
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T6 If there is a white vertex u of degree 2, with black neighbors u1, u3, and
there is a white vertex u2 and edges {u1, u2} and {u2, u3} in G then
delete u.

T7 If there is a white vertex u of degree 3, with black neighbors u1, u2, u3

for which the edges {u1, u2} and {u2, u3} are present in G (and possibly
also {u1, u3}) then delete u.

Let us call a set of simplifying transformation rules of a certain problem
sound if whenever (G, k) is some problem instance and instance (G′, k′) is
obtained from (G, k) by applying one of the transformation rules then (G, k)
has a solution iff (G′, k′) has a solution. The following is easily shown by a
simple case analysis.

Lemma 3.6.1. The transformation rules are sound. ⊓⊔

Suppose that G is a reduced graph, that is, none of the above transforma-
tion rules can be applied.

Lemma 3.6.2. Let G = (B⊎W, E) be a plane black and white graph. If G is
reduced, then the white vertices form an independent set and every triangular
face of G[B] is empty.

Proof. The result easily follows from the transformation rules T1, T2, T4,
and T7. ⊓⊔

Lemma 3.6.3. Applying transformation rules T1–T7, a given black and
white graph G = (B ⊎ W, E) can be transformed into a reduced graph
G′ = (B′ ⊎W ′, E′) in time O(n2), where n is the number of vertices in G.

Proof. The result is easy to see if we perform the transformation in the fol-
lowing order: First apply rule T1, and then, visit every white vertex, checking
whether rules T4–T7 can be applied. Finally, carry out rules T2 and T3. ⊓⊔

3.6.2 Main Result and Final Remarks

Based on the above transformation rules, the following technical, highly non-
trivial lemma can be established (for the proof see [2, 5]):

Lemma 3.6.4. If G = (B ⊎W, E) is a planar black and white graph that is
reduced then there exists a black vertex u ∈ B with degree at most seven. ⊓⊔

Interestingly, there exists an infinite set of plane reduced black and white
graphs with the property that all black vertices have degree seven (see [2, 5]).
Hence, in this limited sense, the upper bound provided in Lemma 3.6.4 is
optimal since these examples giving matching lower bounds. Note, however,
that it is completely open to prove (if, after all, possible) the existence of
a family of graphs which keeps this property after each branching that is
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performed in the course of the algorithm working on the graph. Moreover,
it is open whether extending the given reduction rules may lead to reduced
graphs with smaller maximum “black degree.” In this way, we obtain the
main result.

Theorem 3.6.1. (Annotated) Dominating Set on planar graphs can be
solved in time O(8kn2).

Proof. Use Lemma 3.6.4 for the construction of a search tree as described
in the beginning of the section. Note that performing the transformation in
each node of the search tree, by Lemma 3.6.3, can be done in time O(n2). ⊓⊔

We remark that slightly changing the above reduction rules and doing a
more refined analysis of the quadratic time factor n2 can be improved to a
linear one [145] (also cf. [2]).

The above sketched transformation rules lead to the first search tree al-
gorithm with correct bound on the search tree size for Dominating Set
on planar graphs. It improves on the original, flawed theorem stating an ex-
ponential term 11k [87, 88] which is now lowered to 8k. Unfortunately, the
proof of correctness has become fairly technical. Since the “optimality” of
Lemma 3.6.4 only holds with respect to the particular set of transformation
rules given above, it remains open to improve Lemma 3.6.4 by adding fur-
ther, more involved transformation rules. Moreover, a generalization of the
above considerations is possible and yields analogous bounded search tree al-
gorithms for Dominating Set on graphs of bounded genus [97]. Finally, we
stress that the above algorithm is fairly easy to implement [176]—specifically,
in comparison with the complicated case distinctions employed by the algo-
rithms in Section 3.4 and 3.5 which might need some “re-engineering” when
applied in practice (cf. discussion in Section 3.8).

3.7 Interleaving Search Trees and Kernelization

We now have seen several different problem types where the bounded search
tree paradigm applies. In Chapter 2, before we encountered several examples
for the reduction to problem kernel paradigm. One may say that these two
paradigms form the ground pillars of “feasible fixed-parameter tractability.”
One obvious way to combine these two methods is, as already indicated,
firstly, to do a preprocessing of the given input instance by performing a
reduction to problem kernel, and, secondly, to systematically process the
generated problem kernel using bounded search trees. What we show next
is that to do a kernelization repeatedly during the course of the search tree
algorithm may further accelerate the solution finding process for the given
problem. We follow [205] in the subsequent presentation.
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3.7.1 Basic Methodology

In the following, we will deal with a large class of fixed-parameter algorithms.
Let us summarize the conditions that these algorithms have to undergo: They
have to be fixed-parameter algorithms that work in two stages, reduction to
problem kernel and bounded search tree. Reduction to problem kernel takes
P (|I|) steps and results in an instance of size at most q(k), where both P
and q are polynomially bounded. The expansion of a node in the search tree
takes R(|I|) steps, which must also be bounded by some polynomial, the
search tree size being O(αk). The overall time complexity of the algorithm is
then

O(P (|I|) + R(q(k))αk),

where (I, k) is the instance to be solved. In the following we show how to mod-
ify the second stage of the algorithm in order to improve the time complexity
to

O(P (|I|) + αk).

Generally, we now use the following algorithmic steps to expand a node (I, k)
in the search tree:

if |I| > c · q(k) then replace (I, k) with R(I, k) fi;
replace (I, k) with (I1, k − d1), (I2, k − d2), . . . , (Ii, k − di)

Here c ≥ 1 is a constant that can be chosen with the aim of further optimiz-
ing the running time. There is a tradeoff in choosing c: The optimal choice
depends on the implementation of the algorithm but in the end it affects
only the constant factor in the overall time complexity. Therefore we neglect
optimizing c here.

A closer look shows that we in fact seem to increase the time needed to
expand a node in the search tree. This is generally speaking true: Sometimes
we apply reduction to problem kernel prior to branching into recursive calls.
However, these additional kernelizations also decrease the instance size in the
middle of the search tree. Since the time for branching is bounded polyno-
mially in the instance size, this also helps to decrease the time to expand a
node. It proves to be the case that, while we waste time near the root of the
search tree, we gain much more time near the leaves. Note that the technique
of interleaving reduction to problem kernel and bounded search trees was
already used for developing efficient fixed-parameter algorithms for Vertex
Cover [92, 249] (also called rekernelization there). There, however, it was
used to reduce the number of case distinctions in the search tree; it was not
considered with the aim of removing the factor R(q(k)) as we do.

In order to analyze the running time of the above approach mathemati-
cally, we describe the time to expand a node (I, k) and all its descendants by
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a recurrence. Let Tk denote an upper bound on the time to process (I, k).
The following recurrence holds for Tk:

Tk = Tk−d1
+ Tk−d2

+ · · ·+ Tk−di
+ O(P (q(k)) + R(q(k)))

The time to expand (I, k) itself is at most O(P (q(k)) + R(q(k))) because
|I| = O(q(k)) since |I| > c ·q(k) is constantly prevented. In order to solve this
non-homogeneous linear recurrence we need a special solution. To get its gen-
eral solution we add the general solution of the corresponding homogeneous
recurrence Tk = Tk−d1

+Tk−d2
+ · · ·+Tk−di

. However, we already know that
all solutions of this homogeneous recurrence are bounded by O(αk). Conse-
quently, we only need to find a small special solution of the non-homogeneous
recurrence. In our case the inhomogeneity is a polynomial. Therefore, there
exists a special solution that is also a polynomial in k. It is easy to construct
such a special solution explicitly. There is always a polynomial solution that
has the same degree as the inhomogeneity p. (If r is a polynomial special

solution then r(k)−∑i
j=1 r(k−dj) = p(k) and the highest degree monomials

on the left side cannot cancel each other.) All solutions of Tk are therefore
bounded by O(αk).

In order to illustrate this, let us consider the following recurrence.

Tk = 2Tk−1 + C · k2 + D · k + E,

where C, D and E are constants that depend on the implementation of the
algorithm. The initial conditions are simple, say, T0 = 0. The reflected char-
acteristic polynomial is 1−2z and its unique root is 1/2. The general solution
of the homogeneous recurrence is λ2k for λ ∈ R. Since it is a recurrence of
first order, the dimension of its space of solutions is one, too.

A special solution is Tk = −Ck2−(4C+D)k−(6C+2D+E). The general
solution is then λ2k − Ck2 − (4C + D)k − (6C + 2D + E) and the solution
for T0 = 0 is Tk = (6C + 2D + E) · 2k −Ck2 − (4C + D)k − (6C + 2D + E).

3.7.2 Interleaving is Necessary

Next, we show that an improved analysis alone cannot achieve the speedup
of the last section. That is, the interleaving of reduction to problem kernel
and the bounded search tree really is necessary to get the claimed improve-
ments. Without modification, the algorithms in general have a running time
of Ω(P (|I|) + R(f(k))αk). As an example, we can use Vertex Cover and
we assume that we use the trivial size 2k search tree algorithm.

Look at Fig. 3.4 for a definition of a family of instances of a Vertex
Cover defined for odd k. There is no solution of size at most k, since the
optimal vertex cover has size 5

2k− 3
2 (in the head k− 2 vertices and half the

vertices of the tail). The graph contains exactly (k − 1)(k − 2) + 1 vertices
in the head and 3k + 1 vertices in the tail (altogether k2 + 4). Reduction to
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Fig. 3.4. An instance of Vertex Cover. The following graph is the k = 15
member of a family of instances (Gk, k) for Vertex Cover. The graph Gk consists
of a tree with degree k − 1 and depth 2 to which a path with 3k + 1 vertices is
attached (called the tail). It is easy to see that the smallest vertex cover for Gk has
size 5

2
k − 3

2
and therefore the whole family has no members in Vertex Cover.

problem kernel does not affect this graph since the degree of every vertex is
at most k although its size is very near the maximum possible k(k +1). Now,
assume that the unmodified algorithm chooses edges from right to left. This
leads to a search tree of size 2k, the largest possible. While the algorithm
examines this graph, it removes vertices and edges but the head remains
unchanged. Consequently, instances have size Ω(k2) during each branching
step. The overall time complexity therefore is the worst possible—Ω(k22k). Of
course, a better time complexity can also be achieved by changing the order
of choosing edges. Nevertheless, the time bound is Θ(k22k) in the worst case.

After the modification the running time is decreased tremendously. After
the second edge is removed and k being decreased by two, the whole head is
removed from the graph.

3.7.3 Applications and Final Remarks

The presented interleaving technique applies in numerous settings and it al-
ready led to speedups in the solutions of (Weighted) Vertex Cover [60,
204, 207], 3-Hitting Set [208], Maximum Satisfiability [29, 59, 206],
Constraint Bipartite Vertex Cover [111] and a closely related prob-
lem [58], k-Leaf Spanning Tree [108], and several others. It thus belongs
into the tool-box for the development of efficient fixed-parameter algorithms.
In this context, it is important to note that the achieved improvements when
replacing O(αk ·q(k)+p(n)) by O(αk+p(n)) are not due to asymptotic tricks,
but that q(k) can be replaced by a small constant. And the improvement re-
ally matters. Simply compare a time O(2.27k · k3 + n) (without interleaving,
employing the search tree of size 2.27k (Section 3.4) and the problem ker-
nel of size O(k3) (Section 2.3)) with a time O(2.27k + n) (with interleaving)
algorithm for 3-Hitting Set.

Finally, applying the interleaving technique still needs carefulness. It
would have been tempting to apply it to Dominating Set on planar graphs,
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for which we know a linear size problem kernel (see Section 2.5) and a size 8k

search tree (see Section 3.6). We cannot (directly) apply interleaving because
the search tree works with black-and-white graphs, whereas the problem ker-
nelization only was designed for non-colored graphs. It seems possible, how-
ever, that the reduction to problem kernel as sketched in Section 2.5 can be
extended to black-and-white graphs. This, however, remains to be shown in
future work.

In summary, as a rule, the potential of improvement due to interleaving
increases the larger the problem kernel of the underlying parameterized prob-
lem is. It probably always pays off in practice when perhaps not applied at
every search tree node but in a regular manner after some branchings. In this
way, the additional administrative overhead can be compensated. The best
tradeoff, in the end, has to be determined empirically.

3.8 Concluding Discussion

Perhaps the main conclusion from the preceding sections is that the develop-
ment of bounded search tree fixed-parameter algorithms can mean a highly
nontrivial task. Sometimes the more challenging part is to prove the correct-
ness and the search tree size of the proposed method (cf. Sections 3.3 and 3.6)
and sometimes the more challenging part is to design and and overview in-
tricate case distinctions leading to good worst-case estimates for the search
tree size (cf. Sections 3.4 and 3.5). The latter type of search trees—there
are several more examples of these (e.g., [10, 60, 111, 204, 207])—leads to
the following question that should be pursued in future research. Given some
complicated branching strategy employed by a bounded search tree algo-
rithm, how can one achieve the same or “nearly the same” bounds on the
search tree size but with a significantly simplified case distinction? One may
consider this as a kind of “re-engineering” of case distinctions and it might
turn into a fruitful research topic with particular importance for the practical
side of search tree algorithms.

Other points in considering the practical sides of search tree algorithms
are as follows. Search tree algorithms . . .

• . . . can often be further accelerated by incorporating standard heuristic
techniques such as branch and bound (cf., e.g., [133])
• . . . are easily run on parallel machines because of the straightforward load

balancing which is directly implied by the construction process of search
trees (cf. [79]).
• . . . can easily be combined with approximation algorithms by stopping the

recursive search “near” the leaves and running an approximation algorithm
instead (cf. [75]).
• . . . in practice frequently have few cases of their case distinction that occur

very often and the remaining cases occur very seldomly [234].
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• . . . are still the most important technique to cope with the really hard
kernel of a problem.

Dealing with bounded search tree algorithms, it might sometimes appear
as unsatisfactory that there are no clear lower bounds on the search tree size.
For instance, the upper bounds on the search tree sizes for Vertex Cover
have been continuously improved in a series of papers [30, 92, 204, 249, 60]—
and the same holds for Maximum Satisfiability [51, 186, 206, 29, 59].
Thus, the impression could be that, at the cost of further extending (which
usually means further complicating) the case distinctions there will always be
some (tiny) progress achievable. Note, however, that it is not always only a
matter of refining case distinctions in order to get the search tree size down—
sometimes elegant, practically relevant techniques such as the Nemhauser-
Trotter problem kernel reduction for Vertex Cover came along with these
efforts (cf. [60]). Generally speaking, the research community has to decide
whether there is enough innovation in a newly proposed search tree—elegance
matters. Unfortunately, to prove, for instance, a lower bound for the search
tree size of Vertex Cover of size say 1.2k or 1.1k seems out of reach of
current possibilities.





4. Further Algorithmic Techniques

So far, we have concentrated on the currently two “main paradigms” for the
development of efficient fixed-parameter algorithms—reduction to problem
kernel and bounded search trees. There are, however, several more tools and
techniques to derive fixed-parameter tractability and which carry or already
have shown the potential for practical applicability. Here, we focus on inte-
ger linear programming (Section 4.1), dynamic programming (Sections 4.2
and 4.5), color-coding and hashing (Section 4.3) and tree decompositions
of graphs (Section 4.4). In particular, we omitted the famous and powerful
machinery of graph minor theory and related topics and also the elegant the-
ory of monadic second order logic—partly justified by the seemingly limited
scope of practical applicability of these and partly also due to the extensive
requirements in presenting these techniques; refer to the monograph [88] for
more on these theoretically highly interesting topics.

4.1 Integer Linear Programming

In spite of the enormous significance that integer linear programming gen-
erally has for approximation algorithms and combinatorial optimization
(see [200, 213, 237] for some surveys) it has nearly been neglected in the
context of fixed-parameter algorithms. One first link will be described now
and it will be illustrated using the aforementioned Closest String problem.

There is a famous result of Lenstra [177]1 that applies to fixed-parameter
algorithms (also see [161, 172] for more details). Lenstra’s result basically
says that integer linear programs (ILP’s for short) with a constant number
of variables can be solved in linear time. More precisely, with Kannan’s [161]
improvements we have the following theorem. It refers to the integer program
feasibility problem where one has to decide on the existence of (not necessarily
optimal) solutions fulfilling all constraints given by linear inequalities.

Theorem 4.1.1. (Lenstra) The integer programming feasibility problem can
be solved with O(p9p/2L) arithmetic operations in integers of O(p2pL) bits in

1 It won the Fulkerson Prize 1985 as an outstanding paper in the area of discrete
mathematics.
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size, where p is the number of ILP variables and L is the number of bits in
the input. ⊓⊔

Note that this fixed-parameter result also needs space exponential in the
parameter p.

Giving a detailed exposition of integer linear programming and, in par-
ticular, Lenstra’s result is beyond the scope of this work. By way of contrast,
we here consider this theory and Theorem 4.1.1 more or less as a black box
and we apply it to one (and so far seemingly the only one published) concrete
example that applies it to derive fixed-parameter tractability results. In this
way, we also illustrate the notion of ILP’s and we see that still some nontrivial
work has to be done in order to apply Theorem 4.1.1 in our fixed-parameter
sense.

The example problem we consider is Closest String (cf. Subsec-
tion 1.5.3 and Section 3.3). For convenience, we recall the definition here2:

Input: k strings s1, s2, . . . , sk over alphabet Σ of length L each,
and a nonnegative integer d.
Question: Is there a string s such that dH(s, si) ≤ d for all i =
1, . . . , k?

The goal is to give an ILP formulation for Closest String such that the
number of variables solely depends on the parameter value k, the number
of input strings. The key to this lies in the notion of column types. Given a
set of k strings of length L, we can think of these strings as a k × L char-
acter matrix. By columns of a Closest String instance we refer to the
columns of this matrix. In the following, we state that after reordering the
columns of the Closest String instance, we can easily obtain solutions for
the original instance from solutions for the reordered instance. For reorder-
ing the columns, we introduce a permutation on strings as follows. Given a
string s = c1c2 . . . cL of length L with c1, . . . , cL ∈ Σ and a permutation
π : {1, . . . , L} → {1, . . . , L}. Then, π(s) = cπ(1)cπ(2) . . . cπ(L). The following
lemma is obvious.

Lemma 4.1.1. Given a set of strings S = {s1, s2, . . . , sk}, each of length L,
and a permutation π : {1, . . . , L} → {1, . . . , L}. Then s is an optimal
closest string for {s1, s2, . . . , sk} iff π(s) is an optimal closest string for
{π(s1), π(s2), . . . , π(sk)}. ⊓⊔

Several columns can be identified due to isomorphism. The reason for this
is the fact that the columns are independent from each other in the sense that
the distance from the closest string is measured columnwise. For instance,
consider the case of the two columns (a, a, b)t and (b, b, a)t when k = 3.
Clearly, these two columns are isomorphic because they express the same
structure except that the symbols play different roles. For finding the optimal

2 We use the term “closest” string here for a string which has Hamming distance
at most d to all given strings.
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closest string, however, only the structure matters. Isomorphic columns form
column types.

This can be generalized as follows. W.l.o.g., let a always denote the let-
ter that occurs most often in a column, let b always denote the letter that
has the secondly most often occurrences and so on. This property of being
normalized, as we will refer to it in the following, can be easily achieved by
a simple linear time preprocessing of the input instance. In addition, solving
the normalized problem optimally, one again can compute the optimal solu-
tion of the original problem instance by simply reversing the above mapping
done by the preprocessing. Hence:

Lemma 4.1.2. To compute an optimal closest string it is sufficient to solve
a normalized and reordered instance. From this, the solution of the original
instance can be derived in linear time. ⊓⊔

In the following, we call two input instances isomorphic if there is a one-
to-one correspondence between the columns of both instances such that each
thus determined pair of columns is isomorphic. The following lemma shows
that it is sufficient to solve an instance with alphabet size |Σ′| ≤ k.

Lemma 4.1.3. A Closest String instance with arbitrary alphabet Σ,
|Σ| > k, is isomorphic to a Closest String instance with alphabet Σ′,
|Σ′| = k.

Proof. Assume that there is an input instance with |Σ| > k. Clearly, in
each column appear at most k different symbols from Σ. Since columns are
independent from each other, to solve the underlying closest string problem
it suffices to represent the “logical structure” of a column by an isomorphic
input instance. To do this, at most k symbols per column are enough. ⊓⊔

Example 4.1.1. For k = 3, the set of all possible column types for a Closest
String instance consists of

(a, a, a)t, (a, a, b)t, (a, b, a)t, (b, a, a)t, (a, b, c)t.

⊓⊔

Generally, the number of column types for k strings depends only on k
(namely, it is given by the so-called Bell number B(k) ≤ k!, cf., e.g., [210]).
Using the column types, Closest String can be formulated as an ILP hav-
ing only B(k) · k variables. Let the underlying alphabet be Σ. The ILP can
be formulated as follows. It uses B(k) · k variables xt,ϕ, where t denotes a
column type and ϕ ∈ Σ. The value of xt,ϕ denotes the number of columns of
column type t whose corresponding character in the desired solution string
of Closest String is set to ϕ. Thus, the ILP seeks to minimize

max
1≤i≤k

∑

t

∑

ϕ∈Σ−{ϕt,i}
xt,ϕ,
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where ϕt,i denotes the alphabet symbol at the ith entry of column type t.
The following two constraints have to be fulfilled when minimizing the above
function.

1. All variables xt,ϕ have to be nonnegative integers.
2. Let #t denote the number of columns of type t in the input instance

(taking into account isomorphism as described before). Then,

∑

ϕ∈Σ

xt,ϕ = #t

for every column type t.

Actually, Theorem 4.1.1 refers to the integer linear programming feasibility
problem and, moreover, a Closest String instance also gives the maximum
distance d allowed. Thus, we may obtain the following “feasibility formula-
tion” where the above two constraints remain unchanged but the goal func-
tion that had to be minimized now translates into a third set of constraints,
namely: ∑

t

∑

ϕ∈Σ−{ϕt,i}
xt,ϕ ≤ d

for every string i, 1 ≤ i ≤ k. Altogether, this yields fixed-parameter tractabil-
ity for Closest String with respect to parameter k. Note, however, that the
combinatorial explosion in k is huge and this approach appears to be imprac-
tical for k > 4 as some experimental investigations indicated. In this case,
however, ILP heuristics such as branch-and-bound strategies may extend the
range of practical applicability, still using (although not the algorithm behind
Lenstra’s theorem) the above ILP formulation.

The above ILP approach, however, at least serves as a tool to help de-
ciding whether a problem is fixed-parameter tractable and maybe after that
it is possible to come up with a more efficient, direct approach to solve the
given problem. As to Closest String, the ILP approach is the only one
known to us that yields fixed-parameter tractability with respect to param-
eter k. In [137], a direct combinatorial approach (avoiding ILP’s) was given
for k = 3 but already k = 4 remained open due to the enormous combinato-
rial complexity. Finally, note that there is an alternative ILP formulation for
Closest String, given by Ben-Dor et al. [34], where the variables have only
binary values but the number of variables is |Σ| ·L (for alphabet Σ and string
length L). Hence, this ILP formulation does not imply the fixed-parameter
tractability of Closest String with respect to parameter k. In conclusion,
it remains open to give further examples besides Closest String where the
described ILP approach turns out to be applicable. More generally, it would
be interesting to see more connections between fixed-parameter algorithms
and integer linear programming.
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4.2 Shrinking Search Trees by Dynamic Programming

The fundamental algorithmic paradigm of dynamic programming also plays
a prominent role in fixed-parameter applications. In this chapter, we de-
scribe two fairly different settings where dynamic programming occurs. In
this section, we show how it can be used to shrink the sizes of search trees, a
technique that goes back to Robson [231] and which was introduced into the
fixed-parameter context by the conference version of the paper by Chen et
al. [60]. The application there, however, was flawed. Still, it can be employed
in certain settings at the cost of modestly exponential space, thus trading
space for time (i.e., search tree size). We give the basic ideas and some tech-
nical details once more referring to Vertex Cover. We need two ingredients,
namely that Vertex Cover has a “regular” search tree algorithm [203, 204]
(the one by [60] is not suitable) and that Vertex Cover has a linear size
problem kernel consisting of 2k vertices (cf. Section 2.4, Theorem 2.4.1).

Note that search tree algorithms as described in Chapter 3 and, in par-
ticular, as available for Vertex Cover [60, 203, 204] do yield exponential
running times, but only use a polynomial amount of space. This is true be-
cause working through a search tree in a depth-first manner only requires to
store the data related to a path of bounded length. Robson introduced the
idea to improve the running time by dynamic programming [231]: Choose a
size s (i.e., number of vertices) and store all induced subgraphs of the input
graph G of size s in a database D. Solve all instances in D and store an opti-
mal solution for each of them. Then apply a “regular” search tree algorithm
for Vertex Cover, given graph G. Such a regular algorithm finds an op-
timal solution for G by recursively computing optimal solutions for induced
subgraphs of G. Regular search tree algorithm here means that the only op-
eration to reduce the size of a graph is the deletion of vertices. Normally, the
size of the graph is reduced further in the branches of the search tree until
the sizes of the graphs—note that each node of the search tree corresponds
to an induced subgraph of G—in the leaves reach 0. Having the database D
at disposal, the search tree algorithms can stop earlier: As soon as the size
of the graphs in the nodes of the search tree are as small as s, a dictionary
lookup replaces the remaining part of the search tree. In this way, one may
save time to (re-)compute optimal vertex covers for the same (small) induced
subgraphs again and again—this being the fundamental idea of dynamic pro-
gramming in general. Clearly, this cuts down the size of the search tree at the
cost of storing optimal solutions for all induced subgraphs of G consisting of
up to s vertices.

Before we continue our description of how to transfer Robson’s technique
into the fixed-parameter context we point out a subtle issue concerning the
applicability of the whole scenario. The fastest fixed-parameter algorithm for
(unweighted) Vertex Cover that uses only polynomial space takes time
O(1.2852k + kn) [60]. Unfortunately, it does not seem possible to apply dy-
namic programming to this algorithm as attempted in the conference version
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of [60] since this algorithm uses a technique, called “folding” by the authors,
that contracts edges. This leads to graphs that are not induced subgraphs of
the original instance. In a recent improvement of his algorithm, Robson had
to use very complicated case distinctions to be able to avoid having to use
foldings—otherwise he would not have been able to apply dynamic program-
ming [233] (see [232] for the fastest exact algorithm for Independent Set).
The second fastest polynomial-size fixed-parameter algorithm for Vertex
Cover [204] (see [203] for a complete version of the paper) does not use
foldings and applying dynamic programming to it results in the fastest fixed-
parameter algorithm for Vertex Cover as of today. The resulting running
time is O(1.2832kk + kn). Hence, the latter algorithm is a valid candidate to
try to speed it up by Robson’s technique as is the trivial 2k search tree size
algorithm for Vertex Cover as described in Section 1.4 and Chapter 3.

In the remainder of this section, we explain the dynamic programming
algorithm in detail because Robson’s technique cannot be directly applied to
parameterized problems. Instead of pruning the search tree and to look up the
optimal vertex cover of the remaining graph in a database when the size of
the graph drops below some predetermined size, in the parameterized setting
we prune the search tree when the parameter reaches or drops below some
predetermined value. Here, we make use of the fact that Vertex Cover
possesses a problem kernel of size 2k; that is, w.l.o.g. we may assume that the
given input graph for the search tree algorithm contains at most 2k vertices.
Thus, we can store all induced subgraphs of size up to s = αk in the database
and, as long as α < 1/2, there are at most 2 ·

(
2k
αk

)
many of them. The ratio

between s and k is called α and we will choose α rather than s directly. Now
fix that the threshold for the parameter value that implies pruning of the
search tree shall be αk/2, where k is the initial parameter value.

Next, we can estimate the running time of the “pruned search tree al-
gorithm with table look up” (which uses dynamic programming) as follows.
Let T̂ (k) be the running time of the search tree algorithm and let T (k) be
the time for the new algorithm that combines search trees with dynamic
programming. The new algorithm works as follows:

1. Build a dictionary of all induced subgraphs of up to αk vertices. Com-
pute (using the same algorithm recursively) optimal solutions for all of
them and store them in a database if the size of the optimal solution is
at most αk/2. This takes time O

(
T (αk/2)

(
2k
αk

)
k
)

because it takes time

O(k) to store such an induced subgraph, there are at most 2 ·
(
2k
αk

)
in-

duced subgraphs of size up to αk as long as α < 1/2, and it takes only
O(T (αk/2)) time to find a solution of size up to αk/2—if the optimal
solution is greater than αk/2 then we can stop after O(T (αk/2)) steps.

2. Apply the search tree algorithm to G. If the parameter in a branch reaches
αk/2, look up an optimal solution in the database. This works because
the size of the graph in question can be at most αk (implied by the
problem kernel size) and is therefore stored in the database if it has a
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vertex cover of up to αk/2 vertices. The resulting search tree has size
T̂ (k − αk/2).

To optimize the running time of this algorithm it is crucial to choose αk
wisely. Increasing α makes the database bigger and increases the time to
build it. Decreasing α increases the time for the search tree algorithm as the
size of the search tree grows.

The running time of this algorithm is

T (k) ≤ T̂ (k − αk/2) ·O(k) + T (αk/2) ·
(

2k

αk

)
· 2

= T̂ (k − αk/2) ·O(k) + T (αk/2) ·O
(

k−1/2
( 4

αα(2− α)2−α

)k
)

,

where the last O-term is obtained using Stirling’s formula and the extra O(k)
factor is the time needed to look up a graph in the database (using, e.g., a
trie data structure or perfect hashing) as well as for the work done by the
search tree algorithm in each node of the search tree. This factor cannot be
avoided by the interleaving technique presented in Section 3.7 because the
technique is roughly based on the fact that the work done near the leaves in
a search tree is asymptotically dominating as nearly all nodes are near the
leaves and that the size of the graphs processed in those nodes is very small.
Now their size is no longer small but up to αk vertices big.

We have to choose α such that both terms in the above recurrence, namely

T̂ (k − αk/2) and T (αk/2) ·
(
4/(αα(2− α)(2−α))

)k
, have the same size up to

a constant factor, since this yields the smallest running time possible. For
Vertex Cover we have T̂ (k) = O(1.29175k+kn) [204]. Equating both terms
and using a computer algebra system to solve it numerically, one obtains
α ≈ 0.052455 and T (k) = O(1.2832kk + kn), a slight improvement over the
previous exponential bound 1.29175k. Note that the space bound for this
choice of α is O(1.2748kk + n2), that is, clearly (!), the exponential demand
in space grows slower than the running time demand.

One might argue that these improvements are of purely asymptotical
(and, thus, purely theoretical) interest. Note, however, that the presented
dynamic programming method shrinks the search tree by a larger amount,
the bigger the original search tree and the smaller the (linear) problem kernel
is. For instance, if the best known search tree for Vertex Cover only were
of size 2k then we could reduce the search tree size to approximately 1.89k. By
way of contrast, the problem kernel for Dominating Set on planar graphs
(size 335k, see Section 2.5) is too big in order to significantly improve the
corresponding search tree (size 8k, see Section 3.6). If we had a size 2k prob-
lem kernel for Dominating Set on planar graphs (which might be possible
but is open, of course) the search tree size could be improved from 8k to
approximately 4.67k. Hence, then practical relevance would be within reach.
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4.3 Color-Coding and Hashing

Most graph problems studied in this work are special versions of the Sub-
graph Isomorphism problem:

Input: Two graphs G = (V, E) and G′ = (V ′, E′).
Question: Is G′ isomorphic to a subgraph in G?

For instance, Clique asks for a subset U of vertices such that in the
induced subgraph G[U ] each pair of vertices is connected by an edge; In-
dependent Set asks for a subset U of vertices such that in the induced
subgraph G[U ] there is no edge at all. Both problems are special instances of
Subgraph Isomorphism.

Alon et al. [13] introduced a randomized method called color.coding that
can be used to derive (randomized) fixed-parameter algorithms for several
subgraph isomorphism problems. We study this technique through an exam-
ple application to the NP -complete Longest Path problem:

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Is there a simple path in G containing k−1 edges and
k vertices?

Note that the restriction to simple paths where no vertex appears more than
once is crucial here—otherwise, computing the kth power of the adjacency
matrix of G, one can easily find in polynomial time all pairs of vertices that
are connected by a path of k − 1 edges.

The central idea behind color-coding is that to find the desired vertex
set U with |U | = k one randomly colors the whole graph with k colors and
“hopes” that all vertices in U will obtain different colors. If so, the task
to find U is greatly simplified. Color-coding makes strong use of dynamic
programming. Moreover, the derived randomized fixed-parameter algorithms
can be transformed into deterministic fixed-parameter algorithms through
the use of hashing techniques at the cost of increased running time. Color-
coding obviously is not powerful enough to derive fixed-parameter algorithms
for the W [1]-complete problems Clique and Independent Set.

In our subsequent presentation, we basically follow [13]. The key to solve
Longest Path lies in the concept of colorful paths which simply means that
each vertex of the path has another color. On the one hand, each colorful path
clearly is simple. On the other hand, coloring the graph vertices uniformly
at random with k colors, a simple path will consist of k different colors with
probability (k!)/kk. Using Stirling approximation, this probability is lower-
bounded by e−k. For the time being, let us assume that there is a colorful
simple path of k vertices in G. The following lemma shows that it can be
found quickly by dynamic programming.

Lemma 4.3.1. Let G = (V, E) and let C :→ {1, . . . , k} be a coloring. Then
a colorful path of k vertices can be found (if it exists) in time 2O(k) · |E|.
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Proof. In what follows, we describe an algorithm that finds all colorful paths
of k − 1 vertices starting at some vertex s. This is not really a restriction
because to solve the general problem, we may just add some extra vertex s′

to V , color it with the new color 0, and connect it with each of the remaining
vertices of V by an edge.

To find the described paths, we use dynamic programming. Assume that
for all v ∈ V already all possible color sets of colorful paths between s and v
consisting of i vertices have been found. For each v, there are at most

(
k
i

)
of

these sets. Let now F be such a color set belonging to v. We consider every F
belonging to v and every edge {u, v} ∈ E: Add C(u) to F if C(u) 6∈ F . In
this way, we obtain all color sets belonging to paths of length i + 1 and so
on. Thus, G obtains a colorful path with respect to coloring C iff there exists
a vertex v ∈ V that has at least one color set that corresponds to a path of
k − 1 vertices.

The described algorithm performs O(
∑k

i=1 i
(
k
i

)
·|E|) steps. Herein, factor i

refers to the test whether or not C(u) already is part of F . Factor
(
k
i

)
refers

to the number of possible sets F and factor |E| refers to the time needed to
test whether or not {u, v} ∈ E. The whole expression is upper-bounded by
O(k2k · |E|). ⊓⊔

Observe that in the proof of Lemma 4.3.1 it was crucial that not the
paths (i.e., all vertices on them) were stored but only their corresponding
color sets were recorded. Thus, for a path of i ≤ k vertices at most

(
k
i

)
=

O(ki) candidate colorings are possible. By way of contrast, there are
(
n
i

)
=

O(ni) different vertex sets of size i. This difference exactly reflects the gap
between fixed-parameter tractability (“combinatorial explosion f(k)”) and
fixed-parameter intractability (“combinatorial explosion nk”). It is not hard
to effectively construct a colorful path as described in Lemma 4.3.1.

Now, using standard techniques for randomized algorithms (see [197] for a
survey), a randomized fixed-parameter algorithm for Longest Path follows.

Theorem 4.3.1. Longest Path can be solved in expected running time
2O(k) · |E|.

Proof. According to the above remarks a simple path of k − 1 vertices is
colorful with probability at least e−k. According to Lemma 4.3.1, such a
colorful path can be found in time 2O(k) · |E|; more precisely, this implies
that all colorful path of k − 1 vertices can be found.

We repeat the following ek = 2O(k) times:

1. Randomly choose a coloring C : V → {1, . . . , k}.
2. Check using Lemma 4.3.1 whether or not there is a colorful path; if so

then this is a simple path of k − 1 vertices.

⊓⊔
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Theorem 4.3.1 is based on a randomized algorithm. Using hashing, it can
be de-randomized at the cost of some loss of efficiency. To this end, we need
a list of colorings of the vertices in V such that for each subset V ′ ⊆ V with
|V ′| = k there is at least one coloring in the list that gives to each vertex
in V ′ a unique color. This is formalized by the concept of a k-perfect family
of hash functions from {1, 2, . . . , |V |} onto {1, 2, . . . , k}.

Definition 4.3.1. A k-perfect family of hash functions is a family H of
functions from {1, . . . , n} onto {1, . . . , k} such that for each S ⊂ {1, . . . , n}
with |S| = k there exists an h ∈ H such that h is bijective when restricted
to S.

According to [13] and the literature cited there, the following holds.

Theorem 4.3.2. Families of k-perfect hash functions from {1, . . . , n} onto
{1, . . . , k} can be constructed which consist of 2O(k) log n hash functions. For
such a hash function h the value h(i), 1 ≤ i ≤ n, can be computed in linear
time. ⊓⊔

In this way, we obtain deterministic fixed-parameter tractability for
Longest Path.

Theorem 4.3.3. Longest Path can be solved deterministically in time
2O(k) · |E| · log |V |.

Proof. Color the graph using all possible hash functions from the family given
in Theorem 4.3.2. According to Definition 4.3.1 at least one of these colorings
must lead to colorful, simple path. Such a colorful path then can again be
found using Lemma 4.3.1.

Because the family from Theorem 4.3.2 consists of 2O(k) log n hash func-
tions, the time complexity of the algorithm from Lemma 4.3.1 has to be
multiplied with this factor. In total, we obtain the overall running time

2O(k) log |V | · 2O(k)|E| = 2O(k)|E| log |V |.

⊓⊔

Although (randomized) color-coding appears as an elegant and prospec-
tive tool for designing fixed-parameter algorithms, we are not aware of any im-
plementations and experimental results. Nevertheless, there are several other
applications of color-coding to subgraph isomorphism problems, see Alon et
al. [13] for details. Still, let us briefly discuss why W [1]-hard problems such
as Clique or Independent Set seem inaccessible to color-coding. Consider
Clique. In Lemma 4.3.1, it was decisive that a path could be represented by
its start vertex s, its end vertex v, and the color set corresponding to the path.
To extend a path by one further vertex, it was sufficient to consider edges
with endpoint v and to know the already used colors. By way of contrast,
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this would not be sufficient when constructing a clique in such a step-wise
fashion. Here, we would need to check the existence of edges of the new ver-
tex to all already selected vertices—the mere information about the colors
of these vertices would not suffice. Then, however, we get the “

(
n
i

)
-behavior”

instead of the “
(
k
i

)
-behavior” as discussed before.

We only mention in passing that families of k-perfect hash functions also
can be directly used to obtain fixed-parameter algorithms by—similar to the
above described de-randomization— systematically going through a search
space testing all hash functions. Refer to Downey and Fellows [88] for some
examples. To our knowledge, these approaches suffer from bad running times
and are far from practical applications.

We conclude with a few words about a potential application of subgraph
isomorphism and color-coding in the context of computational molecular bi-
ology. The point here is that searching for, e.g., “motifs” in RNA structures
can be formulated as subgraph isomorphism problems where the subgraph is
the motif and the supergraph models the structure of an RNA sequence. We
omit any details here. It is completely open, however, to investigate whether
this approach can attain practical usefulness (perhaps making use of special
graph structures or classes) and, so far, no closer considerations of this issue
have been undertaken.

4.4 Tree Decompositions of Graphs

How tree-like is a given graph? This question stands at the cradle of the con-
cept of tree decompositions of graphs, introduced by Robertson and Seymour
about twenty years ago [230]. The motivation behind is that many problems
that turn out to be hard on general graphs are comparatively easy to solve on
trees, a very simple class of graphs. For instance, it is easy to solve Vertex
Cover or Dominating Set in linear time when restricted to trees—start
at the leaves and work towards the root vertex. Hence, it is tempting to find
out how far one can go by, on the one hand, dealing with a more general
class of graphs than trees are, and, on the other hand, to preserve as much as
possible of the properties that make trees so nice for several, generally hard
algorithmic problems. Hence, in this sense, the notions of tree decomposition
and the related treewidth measure were introduced in order to find a kind
of compromise between the generality of graphs and the algorithmic feasi-
bility of trees. In summary, tree decompositions of small width demonstrate
algorithmic feasibility (and, in our sense, often fixed-parameter tractability)
for many problems on graphs that are “almost” trees. Thorup [257] gave an
impressive example for the meaningfulness of the treewidth concept in an ap-
plication to compiler optimization. He showed that structured (which means
goto-free) imperative programs have treewidth at most 6. More precisely,
this means that the so-called interference graph of the control-flow graph of
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the problem has treewidth at most 6. The corresponding tree decomposition
then is used to (approximately) solve the register allocation problem (i.e., a
coloring problem) for the given program. Refer to [257] for any details.

To find out whether or not a given graph has treewidth k turned out to
be one of the cornerstones of fixed-parameter tractability. After a series of
preceding work, Bodlaender [38] showed that this in general NP -complete
problem [17] is fixed-parameter tractable—for constant k he gave a linear
time algorithm whose constant factor exponentially depends on k.

In what follows, we will formally introduce the relevant notions and we
will show how tree decompositions can be constructed and used to design—
in a very general way—fixed-parameter algorithms for several NP -complete
problems on planar graphs.

4.4.1 Definitions and Preliminaries

Definition 4.4.1. Let G = (V, E) be a graph. A tree decomposition of G is
a pair 〈{Xi | i ∈ I}, T 〉, where each Xi is a subset of V , called a bag, and T
is a tree with the elements of I as nodes. The following three properties must
hold:
1.

⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;
3. for all i, j, k ∈ I, if j lies on the path between i and k in T then Xi∩Xk ⊆

Xj.

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth
of G is the minimum k such that G has a tree decomposition of width k.

Importantly, an ℓ×ℓ-grid graph has treewidth ℓ. This can be easily shown
by going—in a row-by-row manner—through the grid, always taking one
more vertex from the next row and deleting one from the previous row when
constructing the bags of the tree decomposition. We omit the details here. The
important consequence of this, however, is that even planar graphs in general
cannot be expected to have small treewidth. We will come back to that later
on when discussing treewidth in the context of parameterized problems on
planar graphs.

A tree decomposition with a particularly simple structure is given by the
following. Its usefulness will be exhibited when solving problems by dynamic
programming on tree decompositions, as will be shown in Section 4.5.

Definition 4.4.2. A tree decomposition 〈{Xi | i ∈ I}, T 〉 is called a nice tree
decomposition if the following conditions are satisfied:

1. Every node of the tree T has at most two children.
2. If a node i has two children j and k, then Xi = Xj = Xk (in this case,

i is called a join node).
3. If a node i has one child j, then one of the following situations must hold
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a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi (in this case, i is called an introduce
node), or

b) |Xi| = |Xj | − 1 and Xi ⊂ Xj (in this case, i is called a forget
node).

It is not hard to transform a given tree decomposition into a nice tree
decomposition. More precisely, the following result holds (see [167, Lemma
13.1.3]).

Lemma 4.4.1. Given a width k and n nodes tree decomposition of a graph G,
one can find a width k and O(n) nodes nice tree decomposition of G in linear
time. ⊓⊔

There are several equivalent definitions for graphs of treewidth k—the
best known of these is that of partial k-trees . (See, e.g., [40] for more on
that.) In addition, besides the central notion of treewidth there are other
concepts such as pathwidth, branchwidth, and cliquewidth that also have
been introduced to get algorithmic feasibility for otherwise hard graph prob-
lems. Here, we concentrate on treewidth and refer to [40, 44, 167] for more
information on other notions.

4.4.2 Tree Decomposition and Graph Separation

Tree decompositions also have close connections to graph separators , that is,
vertex sets whose removal from the given graph does separate the graph into
two or more connected components. Actually, each bag of a tree decompo-
sition forms a separator of the corresponding graph. Here, however, we are
more interested in the reverse direction, i.e., constructing tree decompositions
from graph separators. The main idea is to find small separators of the graph
and to merge the tree decompositions of the resulting subgraphs.

Definition 4.4.3. Let G = (V, E) be a graph. A subset S ⊆ V is called a
separator of G if the subgraph G[V − S] is disconnected.

For any given separator splitting a graph into different components, we
obtain a simple upper bound for the treewidth of this graph which depends
on the size of the separator and the treewidth of the resulting components.

Proposition 4.4.1. If a connected graph can be decomposed into components
of treewidth of at most t by means of a separator of size s then the whole graph
has treewidth of at most t + s.

Proof. The separator splits the graph into different components. Suppose that
we are given the tree decompositions of these components of width at most
t. The goal is to construct a tree decomposition for the original graph. This
can be achieved by firstly merging the separator to every bag in each of these
given tree decompositions. In a second step, add some arbitrary connections
preserving acyclicity between the trees corresponding to the components. It
is straightforward to check that this forms a tree decomposition of the whole
graph of width at most t + s. ⊓⊔
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4.4.3 Graph Separators and Parameterized Problems on Planar

Graphs

In case of planar graphs, there is a constructive way towards small separators.
This is partially based on the “layer view” of planar graphs, expressed by the
notion of r-outerplanarity.

Definition 4.4.4. A plane embedding of a graph G is called outerplanar
if each vertex lies on the boundary of the outer face. A graph G is called
outerplanar if it admits an outerplanar embedding in the plane.

The following generalization of the notion of outerplanarity was intro-
duced by Baker [24].

Definition 4.4.5. 1. A plane embedding of a graph G is called r-outerplanar
if, for r = 1, the embedding is outerplanar, and, for r > 1, induc-
tively, when removing all vertices on the boundary of the outer face and
their incident edges the embedding of the remaining subgraph is (r − 1)-
outerplanar.

2. A graph G is called r-outerplanar if it admits an r-outerplanar embed-
ding.

3. The smallest number r such that G is r-outerplanar is called the outer-
planarity number.

In this way, we may speak of the layers L1, . . . , Lr of an embedding of an
r-outerplanar graph.

Definition 4.4.6. For a given r-outerplanar embedding of a graph G =
(V, E), we define the ith layer Li inductively as follows. Layer L1 consists of
the vertices on the boundary of the outer face, and, for i > 1, the layer Li is
the set of vertices that lie on the boundary of the outer face in the embedding
of the subgraph G− (L1 ∪ . . . ∪ Li−1).

For plane graphs, i.e., planar graphs with a fixed embedding in the plane,
there is an iterated version of Proposition 4.4.1.

Proposition 4.4.2. Let G be a plane graph with layers Li, (i = 1, . . . , r).
For i = 1, . . . , ℓ, let Li be a set of consecutive layers, i.e.,

Li = {Lji
, Lji+1, . . . , Lji+ni

},

such that Li ∩Li′ = ∅ for all i 6= i′. Moreover, suppose that G can be decom-
posed into components, each of treewidth of at most t, by means of separa-
tors S1, . . . , Sℓ, where Si ⊆

⋃
L∈Li

L for all i = 1, . . . , ℓ.
Then, G has treewidth of at most t + 2s, where s = maxi=1,...,ℓ |Si|.
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Proof. The proof again uses the merging-technique illustrated in Proposi-
tion 4.4.1: Suppose that, w.l.o.g., the sets Li appear in successive order, i.e.,
ji < ji+1. For each i = 0, . . . , ℓ, consider the component Gi of treewidth at
most t which is cut out by the separators Si and Si+1 (by default, we set
S0 = Sℓ+1 = ∅). We add Si and Si+1 to every node in a given tree decom-
position of Gi. In order to obtain a tree decomposition of G, we successively
add an arbitrary connection between the trees Ti and Ti+1 of the so-modified
tree decompositions that correspond to the subgraphs Gi and Gi+1. ⊓⊔

Hence, for plane graphs the goal then can be set as follows: Decompose
the given graph into various “small” components by using “small” separators,
construct a tree decomposition for each component, and get an overall tree
decomposition by applying Proposition 4.4.2. It remains to be discussed how
to find these small separators and how to get the tree decompositions for the
graph components to be generated. This will be done next.

One easily observes the following central relation between the domination
number and the outerplanarity number of a planar graph.

Proposition 4.4.3. If a planar graph G = (V, E) has a k-dominating set
then all plane embeddings of G can be at most 3k-outerplanar.

Proof. For a given crossing-free embedding of G in the plane, each vertex in
the dominating set can dominate vertices from the previous, the next, or its
own layer only. Hence, each vertex in the dominating set can contribute to
at most three new layers. ⊓⊔

To understand the techniques used in the following, it is helpful to con-
sider the concept of a layer decomposition of an r-outerplanar embedding of
graph G. A layer decomposition of an r-outerplanar embedding of graph G
is a forest of height r − 1. The nodes of the forest correspond to different
connected components of the subgraphs of G induced by a layer. One easily
observes that the planarity of G implies that the layer decomposition must
indeed be a forest.

One more result needed is the following relation between r-outerplanarity
and tree treewidth stated in [175, Table 2, page 550] and in [40, Theorem
83]. A constructive proof can be found in [2, 3].

Theorem 4.4.1. An r-outerplanar graph has treewidth of at most 3r−1. ⊓⊔

Proposition 4.4.3 and Theorem 4.4.1 immediately imply the following re-
lationship between the domination number and the treewidth of a planar
graph.

Corollary 4.4.1. If a planar graph has a k-dominating set then its treewidth
is bounded by 9k − 1. ⊓⊔
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Subsequently, we will give an asymptotically stronger bound.
The basic idea of constructing a tree decomposition of small width is the

following. If the given graph has few layers, then directly use Theorem 4.4.1.
If not, find small graph separators that decompose the graph into chunks of
small outerplanarity, apply Theorem 4.4.1 to these graph chunks, and finally
combine the tree decompositions of the various chunks into a big one for the
overall graph using Proposition 4.4.2. Next, we describe how to find these
small graph separators if needed.

It is clear that considering the layer decomposition (L1, . . . , Lr) of a given
planar graph of outerplanarity r, each layer Li, 1 ≤ i ≤ r, forms a separator.
What makes the problem mathematically demanding is that the sizes of the
layers Li might be too large. Thus, it remains to be shown that, nevertheless,
small separators can be found in a layerwise fashion. To this end, one makes
use of the special properties of the underlying parameterized graph problem.
Here, we focus on Vertex Cover and Dominating Set to see how this
works. Both problems possess linear size problem kernels, that is, Vertex
Cover has a kernel of size 2k (see Section 2.4) and Dominating Set on
planar graphs has a kernel of size 355k (see Section 2.5). Hence, in both cases
we trivially have that |⋃r

i=1 Li| = O(k).

Theorem 4.4.2. A planar graph with a vertex cover or a dominating set of
size k has treewidth O(

√
k).

Proof. Using the graph layers Li as separators, go through the sequence of
layers L1, L2, L3, . . . and look for separators of size s(k) := O(

√
k). Due to

|⋃r
i=1 Li| = O(k) such separators of size at most s(k) must appear within

each n(k) := O(
√

k) sets in the sequence. In this manner, we obtain a set
of disjoint separators of size at most s(k) each, such that any two consec-
utive separators from this set are at most O(

√
k) layers apart. Clearly, the

separators chosen in this way fulfill the requirements in Proposition 4.4.2.
Observe that the components cut out in this way each have O(

√
k) layers

and, hence, their treewidth is bounded by O(
√

k) due to Theorem 4.4.1.
Using Proposition 4.4.2, we can upperbound the treewidth of the origi-

nally given graph by O(
√

k). ⊓⊔

Observe that the tree structure of the tree decomposition obtained in
the preceding proof corresponds to the structure of the layer decomposition
forest.

Remark 4.4.1. Up to constant factors, the relation exhibited in Theorem 4.4.2
is optimal. This can be seen, for example, by considering a grid graph Gℓ of
size ℓ × ℓ, i.e., with ℓ2 vertices and 2(l2 − l) edges. It is known that the
treewidth of Gℓ is exactly ℓ (see [40, Corollary 89]) and that a minimum ver-
tex cover as well as a minimum dominating set for Gℓ both consist of Θ(l2)
vertices, see [149, Theorem 2.39].
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Finally, we remark that a mathematically more refined analysis (not mak-
ing use of linear size problem kernels but employing a more direct way of
constructing the separators layerwisely) delivers that a planar graph with a
vertex cover of size k has treewidth at most 4

√
3k + 5 [7] and that a planar

graph with a dominating set of size k has treewidth at most 6
√

34k + 8 [3]
(refer to [2] for a comprehensive, unified exposition). The constant factors in
these upper bounds, however, seem to be rather worst-case and could possibly
be improved.

4.4.4 Construction of a Tree Decomposition

We join together the preceding considerations into an algorithm that con-
structs tree decompositions of width O(

√
k) in case that we are given a planar

graph that possesses a vertex cover or a dominating set of size at most k. It
is important to note here that the tree decompositions are only constructed
for the reduced graphs that are obtained by the reduction to problem kernel
for the underlying parameterized problem (Vertex Cover or Dominating
Set in this context). The algorithm proceeds in the following steps.

1. Perform a reduction to problem kernel that yields a reduced planar graph
whose number of vertices is O(k).

2. Embed the reduced planar graph G = (V, E) crossing-free into the plane.
Determine the outerplanarity number r of this embedding and all layers
L1, . . . , Lr. By default, we set Li = ∅ for all i < 0 and i > r.

3. Vertex Cover: If r > k, then exit (there exists no size k vertex cover).
This is justified by the fact that each layer contains at least one edge
which must be covered by a vertex from this layer.

Dominating Set: If r > 3k then exit (there exists no size k dominating
set). This is justified by Proposition 4.4.3.

4. Find separators of size O(
√

k) according to the proof of Theorem 4.4.2.
5. Decompose the graph into subgraphs by removing all the graph separa-

tors found in the preceding step. Note that each of these subgraphs has
outerplanarity O(

√
k).

6. Construct tree decompositions for all the subgraphs using Theorem 4.4.1.
In this way, all subgraphs obtain tree decompositions of width O(

√
k).

7. Merge the tree decompositions of all subgraphs into a tree decomposi-
tion of the overall graph. To do so, use the tree decompositions of the
subgraphs and the separators that generated these subgraphs (see fifth
step above) and apply the “separator merging technique” described in
the proof of Proposition 4.4.2.

The above algorithm outline constructively shows how to obtain tree de-
compositions of width O(

√
k) for parameterized problems such as Vertex

Cover or Dominating Set on planar graphs. Clearly, to demonstrate the
ultimate use of this approach it remains to be shown how the underlying
graph problem can be efficiently solved using dynamic programming on tree
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decompositions. This will be the topic of Section 4.2. Another point is the
question how the sketched results can be generalized to more problems as well
as to more general graph classes than planar graphs are. We discuss these
issues now.

4.4.5 Refinements and Generalizations

In our presentation above on the construction of tree decompositions of small
width we ignored at least the following three points.

1. What can we do if the given graphs are not planar?
2. What about the constant factors hidden in the O-notation used through-

out the previous considerations?
3. To what kind of parameterized graph problems does the whole scenario

apply to?

Concerning the first question referring to non-planar graphs, the following is
of interest. Firstly, very recently, Demaine et al. [81] showed how to apply the
methodology as sketched for planar graphs to the more general class of graphs
of bounded genus. Whether the approach then remains practical still needs to
be clarified. Of course, however, this is still far away from the case of general
graphs. Bodlaender’s [38] algorithm for tree decomposition construction is
considered as impractical due to large constant factors involved. Still, there
might be hope to improve the running time in future work. For the time
being, however, it is adequate to take approximative and heuristic solutions
into consideration. There is quite some ongoing work in this direction (cf.,
e.g., [168]). Also, there is a relatively easy and efficient factor-3 approximation
for constructing tree decompositions—the obtained treewidth is at most by a
factor 3 from the optimum value (see [225]).3 It has to be studied empirically
how far these approaches can reach and what their limitations in practice
are.

As to the second question concerning the constant factors involved, firstly
one should note that the given presentation traded comprehensibility for
exact determination of the considered running time and treewidth values.
Such a mathematical analysis can be found in [2, 3, 7]. As already indicated,
the proven upper bounds involve quite high constant factors. For instance,
based on the above approach and several more technical details the running

times O(24
√

3k ·n) and O(212
√

34k ·n) can be proven for Vertex Cover and
Dominating Set on planar graphs, respectively. The bounds are worst-case,
however. On the one hand, there seems some room for lowering the bounds
(cf. [115, 160] for recent new results in this direction) by refined mathemat-
ical analysis and, on the other hand, more importantly, there may be be
further algorithmic improvements. And, perhaps, even most importantly, a

3 Observe, however, that the approximation algorithm is a fixed-parameter algo-
rithm in the sense that its running time is exponential in the treewidth.
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theoretical worst-case bound may say little about the practical behavior of an
algorithm. Implementation and extensive experimentation with “real-world”
graph instances will bring the “final truth.” Initial results in this direction,
however, appear to be promising [2, 4].

As to the third question, it is only natural to ask in how far the problems
Vertex Cover and Dominating Set are special or in how far the described
approach can even be lifted to whole classes of problems on (planar) graphs.
An at least partial answer to this question is given by means of the so-called
Layerwise Separation Property as introduced in [7] (also see [2]). We only
briefly discuss the fundamental concept here and refer to the given references
for any further details. The basic idea is to exploit the layer-structure of a
plane graph in order to gain a “nice” separation of the graph. It is important
then that a “yes”-instance (G, k) (where G is a plane graph) of the consid-
ered graph problem G admits a so-called “layerwise separation” of small size.
By this, one means, roughly speaking, a separation of the plane graph G
(i.e., a collection of separators for G) such that each separator is contained in
the union of constantly many subsequent layers. For (fixed-parameter) algo-
rithmic purposes, it will be important that the corresponding separators are
“small.” More precisely, in order to generalize the methodology as presented
in Subsection 4.4.3, the goal is to choose a set of separators such that the
size of each of these is bounded by O(

√
k) and—at the same time—the sub-

graphs into which these separators cut the original graph have outerplanarity
bounded by O(

√
k). In this way, in the same style as described in the proof of

Theorem 4.4.2, tree decompositions of small width in a manner analogous to
Subsection 4.4.4 can be constructed. Refer to [2, 7] for any details. Let us only
mention in passing here that the Layerwise Separation Property in particular
(and more or less trivially) holds for all problems on planar graphs (such as
Vertex Cover and Dominating Set) that possess a linear size problem
kernel—one more point that underpins the importance of good kernelization
algorithms.

4.4.6 Final Remarks

Summarizing, the notions of tree decompositions and treewidth lead to math-
ematically elegant and clean ways to cope with the computational intractabil-
ity of graph problems in some cases. Clearly, graphs of bounded treewidth
may be considered as one form of a special graph class and there are nu-
merous others [44]. Opposite to many other special graph classes, the task
to determine for a given graph (maybe together with a given graph problem
to solve) its treewidth has turned into an already “classical” fixed-parameter
complexity question. Of course, there are other graph parameters such as
pathwidth or branchwidth deserving similar attention as treewidth received
(see [115] for a recent example concerning branchwidth). It continues to re-
main an important research topic to identify as many graphs (and graph
problems) with practical relevance where small treewidths occur.
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Concerning the practical feasibility of tree decompositions, besides bound-
ing their widths as such it is of same importance to efficiently make use of
them. The standard approach to this is dynamic programming as will be ex-
plained in the subsequent section. Notably, to get this dynamic programming
as efficient and practical as possible is not only a question of running time
but also of memory consumption. Finally, observe that these dynamic pro-
gramming approaches provide optimal solutions to the considered problems.
This gives rise to the importance of also approximative (c.f., e.g., [225]) or
heuristic (c.f., e.g., [168]) algorithms for constructing tree decompositions as
long as the treewidths remain small enough.

4.5 Dynamic Programming on Tree Decompositions

In Subsection 4.4, we became familiar with the concept of treewidth and, in
particular, we saw how to construct a tree decomposition of “small” width
for parameterized problems on planar graphs. Now, it is time to see how to
make use of the “treelikeness” of graphs, that is, to see how the underlying
graph problems can be solved by dynamic programming on tree decomposi-
tions. Typically, tree decomposition based algorithms proceed according to
the following scheme in two stages (cf. [39]):

1. Find a tree decomposition of bounded width for the input graph, and
2. solve the problem by dynamic programming on the tree decomposition.

4.5.1 Solution for Vertex Cover

Dynamic programming is comparatively easy to explain in case of Vertex
Cover—the algorithmic details get more involved in case of Dominating
Set. This is due to the fact that the “combinatorics” behind Dominating
Set is more elusive than the one behind Vertex Cover. Nevertheless, the
basic ideas are already exhibited when dealing with Vertex Cover.

Theorem 4.5.1. For a graph G with given tree decomposition 〈{Xi | i ∈
I}, T 〉 an optimal vertex cover can be computed in time O(2ω · |I|). Here, ω
denotes the width of the tree decomposition.

Proof. The basic idea is to check for all of the |I| many bags all of at most
2|Xi| possibilities to obtain a vertex cover for the subgraph G[Xi] of G induced
by the vertices from Xi. This information is stored in tables Ai (i ∈ VT ). In
a second step, these tables are compared against each other. Each bag of
the tree decomposition thus has a table associated with it. The comparison
process works in a bottom-up fashion from the leaves to the root of the tree
decomposition, comparing “neighboring” tables (whose corresponding tree
nodes are connected by an edge) against each other and updating the current
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information. During this updating process it is guaranteed that the “local”
solutions for each subgraph associated with a bag of the tree decomposition
are combined into a “globally optimal” solution for the overall graph G.

The algorithmic details are as follows.

Step 0: For each Xi = {xi1 , . . . , xini
}, |Xi| = ni, compute a table

Ai =

xi1 xi2 · · · xini−1
xini

m
0 0 · · · 0 0
0 0 · · · 0 1

...
1 1 . . . 1 0
1 1 . . . 1 1






2ni

The table consists of 2ni rows and |ni|+ 1 columns. Each row represents
a so-called “coloring” of subgraph G[Xi]. By this we mean a 0-1 sequence
of length ni that determines which of the respective bag vertices from Xi

should be put into the current vertex cover (=̂ “1”) and which should be
not (=̂ “0”). Formally, a coloring is a mapping

Ci : Xi = {xi1 , . . . , xini
} → {0, 1}.

For each of the 2ni different possibilities for a coloring, the table has one
further entry. This last column stores (for each coloring Ci) the num-
ber mi(Ci) of vertices that a minimal vertex cover that contains those
vertices from Xi selected by the coloring Ci would need. More precisely,
that means that it contains the value

mi(Ci) = min{|V ′| : V ′ ⊆ V is a vertex cover

for G, such that v ∈ V ′ for all v ∈ (Ci)
−1

(1)

and v /∈ V ′ for all v ∈ (Ci)
−1

(0)}.
This value is determined by dynamic programming as described in Step 2
to follow.
Of course, not every possible coloring may lead to a vertex cover. Such a
coloring is called invalid. To check whether or not a coloring Ci is valid,
for each {u, v} of the subgraph G[Xi] induced by Xi, consider Ci(u)
and Ci(v). If there is at least one edge where Ci(u) = Ci(v) = 0 then the
coloring is invalid; otherwise, it is valid.

Step 1: Table initialization.
For all tables Xi and each coloring Ci : Xi → {0, 1} set

mi(Ci) :=

{∣∣∣(Ci)
−1

(1)
∣∣∣ , if Ci is valid

+∞, otherwise
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Step 2: Dynamic Programming.
As mentioned before, we now go through the decomposition tree T from
the leaves to the root and compare the corresponding tables against each
other.
Let j ∈ I be the parent node of i ∈ I. We show how the table Xj can be
updated by the one for Xi. To this end, assume that

Xi = {z1, . . . , zs, u1, . . . , uti
}and

Xj = {z1, . . . , zs, v1, . . . , vtj
},

that is, Xi ∩Xj = {z1, . . . , zs}.
For each possible coloring

C : {z1, . . . , zs} → {0, 1}

and each extension4 Cj : Xj → {0, 1} we set

mj(Cj)← mj(Cj)

+ min{ mi(Ci) | Ci : Xi → {0, 1} is an extension of C} (∗)
−

∣∣C−1(1)
∣∣

Additionally, we record at this point a coloring C∗
i : Xi → {0, 1} which

led to a minimum value in (*). That is, we introduce a pointer from the
row of coloring Cj in table Xj to the row of coloring C∗

i in table Xi.
In this way, all entries of the last column of Aj are updated by those
from Ai.
If a node j ∈ VT has several children i1, . . . , il ∈ VT then table Aj is
successively updated against all tables Ai1 , . . . , Ail

in the basically same
way.
All this is repeated until the root node will finally be updated.

Step 3: Construction of an optimal vertex cover.
The size of an optimal vertex cover is derived from the minimum entry of
the last column of the root node table Ar. The coloring of the correspond-
ing row shows which of the vertices of the “root bag” Xr are contained
in an optimal vertex cover. By taking down during Step 2 how the re-
spective minimum of each bag was determined by its “children values,”
one can easily compute all vertices of an optimal vertex cover.

1. Correctness of the algorithm.

a)The first condition in the definition of a tree decomposition (see Defini-
tion 4.4.1), i.e., V =

⋃
i∈I Xi, makes sure that each graph vertex is taken

into account during the computation.

4 By an extension of a coloring C : W → {0, 1} (where W ⊆ V ) we mean a

coloring C̃ : W̃ → {0, 1} with W̃ ⊇W and C̃|W = C.
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b)The second condition in Definition 4.4.1, i.e., ∀e ∈ E ∃i0 ∈ I : e ∈ Xi0)
makes sure that after the treatment of invalid colorings right after the
initialization in Step 0, during the dynamic programming process only
actual vertex covers are dealt with.

c)The third condition in Definition 4.4.1 guarantees the consistency of the
dynamic programming. If a vertex v ∈ V occurs in two different bags Xi1

and Xi2 then is made sure that for the computed optimal vertex cover this
vertex does not receive different colors in the two respective rows in the
tables Ai1 and Ai2 . Such a conflict would have been resolved in the bag of
the least common ancestor i0 of i1 and i2 in T . This is because of the third
condition which guarantees that v also has to occur in Xi0 .

2. Running time of the algorithm.
Keeping the tables sorted in an adequate way, the comparison of a table Aj

against a table Ai can be done in time

O(#rows of Ai + #rows of Aj) = O(2|Xi| + 2|Xj |) = O(2ω).

For each edge e ∈ ET in tree T such a comparison has to be done, that is,
the overall running time of the algorithm is given by

O(2ω · |ET |) = O(2ω · |I|).

⊓⊔

Combining Theorem 4.5.1 with Theorem 4.4.2 and the corresponding al-
gorithm that constructs a tree decomposition (see Subsection 4.4.4) results in
a fixed-parameter algorithm for Vertex Cover on planar graphs that pro-
vides an exponential speedup compared to the best known fixed-parameter
algorithms for Vertex Cover on general graphs (where we have running
time O(1.29k + kn) [60, 204]).

Corollary 4.5.1. Vertex Cover on planar graphs can be solved in time

2O(
√

k)n, where k denotes the size of the vertex cover and n is the number of
graph vertices. ⊓⊔

Doing a more refined analysis, the exponential factor in Corollary 4.5.1

can be bounded by 24
√

3k (cf. [2, 7]).

4.5.2 A Glimpse on Dominating Set

The basic technique for solving Dominating Set on a “tree-decomposed”
graph is the same as for Vertex Cover. We have already seen, however,
that from a combinatorial point of view Dominating Set is a problem that
is more elusive than Vertex Cover. This now also reflects in the larger
overhead needed to solve Dominating Set in the dynamic programming
way. The very first observation is that we need three colors for the dynamic
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programming tables instead of only two as we had for Vertex Cover: Sup-
pose that G = (V, E) and V = {x1, . . . , xn}. Assume that the vertices in
the bags are given in increasing order when used as indices of the dynamic
programming tables, i.e., Xi = (xi1 , . . . , xini

) with i1 ≤ . . . ≤ ini
. We use

three different “colors” that will be assigned to the vertices in the bag:

• “black” (represented by 1, meaning that the vertex belongs to the domi-
nating set),
• “white” (represented by 0, meaning that the vertex is already dominated

at the current stage of the algorithm), and
• “grey” (represented by 0̂, meaning that, at the current stage of the algo-

rithm, one still asks for a domination of this vertex).

Again, mapping Ci : {xi1 , . . . , xini
} → {0, 0̂, 1}ni will be called a coloring

for the bag Xi = (xi1 , . . . , xini
), and the color assigned to vertex xit

by Ci

given by Ci(xit
).

For each bag Xi (with |Xi| = ni), use a mapping

mi : {0, 0̂, 1}ni −→ N ∪ {+∞}.

For a coloring Ci, the value mi(Ci) stores how many vertices are needed for
a minimum dominating set (of the graph visited up to the current stage of
the algorithm) under the restriction that the color assigned to vertex xit

is
Ci(xit

) (t = 1, . . . , ni). Now, performing a table updating process analogous
to Vertex Cover case described before, it is not too hard to finally come

up with a time O(9O(
√

k)n) algorithm (also cf. [255, 256] concerning the dy-
namic programming) for Dominating Set on planar graphs, which parallels

Corollary 4.5.1. We wrote 9O(
√

k) instead of the equivalent 2O(
√

k) in order
to emphasize that the exponential factor is basically 9ω for Dominating
Set and 2ω for Vertex Cover, where ω denotes the width of the given
tree decomposition. The significant increase from base value 2 to 9 is due
to to the more complicated “dependence structure” in the combinatorics of
Dominating Set when implemented in a basically straightforward way. The
base 9 can be lowered to 4 by making use of a kind of monotonicity property
that holds for the colors 0̂ and 0: On the color set {0, 0̂, 1}, let ≺ be the
partial ordering given by 0̂ ≺ 0 and d ≺ d for all d ∈ {0, 0̂, 1}. This ordering
naturally extends to colorings in a “component-wise” fashion, then using the
notion C ≺ C ′.

It is essential for the improved dynamic programming that the mappings
mi are monotonous from ({0, 0̂, 1},≺) to (N ∪ {+∞},≤), i.e., that for col-
orings C : {xi1 , . . . , xini

} → {0, 0̂, 1} and C ′ : {xi1 , . . . , xini
} → {0, 0̂, 1},

C ≺ C ′ implies m(c) ≤ m(c′). Roughly speaking, the use of this kind of
monotonicity allows us to omit several (in fact, very many) comparisons be-
tween corresponding entries in two different tables during the bottom-up up-
dating process of dynamic programming. We omit the technical details and
refer to [2, 3, 12] for these. As a last point, we mention in passing that the
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Algorithm ω = 5 ω = 10 ω = 15 ω = 20
9ωn 0.05 sec 1 hour 6.5 years 3.9 · 105 years
4ωn 0.001 sec 1 sec 18 minutes 13 days

Table 4.1. Comparing the O(4ωn) algorithm for Dominating Set with the O(9ωn)
algorithm of Telle and Proskurowski in the case n = 1000 (number of nodes of the
tree decomposition), we assume a machine executing 109 instructions per second
and we neglect the constants hidden in the O-terms (which are comparable in both
cases).

above sketched improved dynamic programming for Dominating Set also
is essentially based on the use of nice tree decompositions as introduced in
Subsection 4.4.1 (Definition 4.4.2). Nice tree decompositions significantly sim-
plify the reasoning about the updating process in more complicated dynamic
programming contexts as used for Dominating Set. We mention in passing
that these kinds of improvements apply to a whole class of domination-like
problems such as Perfect Code, Total Dominating Set, Independent
Dominating Set, etc. (see [2, 3, 12]) for details).

4.5.3 Final Remarks

The most important point in dynamic programming on tree decompositions
are the sizes of the tables involved. The table sizes usually are bounded by cω,
where ω denotes the width of the underlying tree decomposition and c usually
depends on the underlying combinatorial problem. Hence, two optimization
goals are immediate:

1. Keep the width of the tree decomposition as small as possible (see Sec-
tion 4.4), and

2. closely investigate the combinatorics of the underlying graph problem in
order to keep the base c as small as possible.

Dominating Set provides a striking example for the second goal, as the
constant could be improved from 9 to 4. To illustrate the significance of such
a result, Table 4.1 compares (hypothetical) running times of the O(9ωn)
algorithm of Telle and Proskurowski [255, 256] to the O(4ωn) monotonicity
based algorithm for some realistic values of ω and n = 1000. Improving
exponential terms always is a “big issue” for fixed-parameter algorithms.

It must be emphasized that besides (exponential) running time also (ex-
ponential) memory use is an important issue in making tree decomposition
based algorithms useful in practice. Aspvall et al. [21] present some ways how
to reduce the memory requirement of the table computations in dynamic pro-
gramming as discussed above. In order to avoid the “memory boundedness”
of dynamic programming on tree decompositions, all tricks and techniques
should be tried—another promising future research challenge connected with
the development of efficient fixed-parameter algorithms.
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4.6 Concluding Discussion

Several promising techniques for the design of efficient fixed-parameter al-
gorithms have been presented in this chapter. It is to be hoped that, on
the one hand, these further develop into practically useful tools and, on the
other hand, that new ways for showing fixed-parameter tractability results
will emerge. Perhaps there is also more practical potential in methodologies
such as monadic second order logic, graph minor theory, or tree automata
(see [88] for some survey) which have been neglected here. Future research
has to decide on this.

We conclude with summarizing some main problems, tasks, and challenges
stirred up by the considerations in this chapter.

• Linking integer linear programming and fixed-parameter complexity in a
stronger way is a highly desirable goal.
• We saw two completely different ways of dynamic programming, one cor-

responding to search trees and the other corresponding to tree decompo-
sitions. Extending described results and opening up new “fixed-parameter
dynamic programming” methods is of particular interest when, on the one
hand, thinking of the enormous importance of the dynamic programming
paradigm in the algorithms applied in computational biology and, on the
other hand, noticing the fruitful grounds for parameterization to be found
there.
• Width parameters of graphs such as treewidth or branchwidth will continue

to play an important role in the fixed-parameter context and many things
remain to be investigated and improved here.
• The real practical usefulness of color-coding and hashing techniques still

remains to be investigated.
• Most of the considered techniques still lack (sufficient) experimental vali-

dation of their merits in practice—algorithm engineering and making avail-
able benchmark test instances are major challenges here.
• As an ultimate goal one might consider to gain more insight about which

techniques are doomed to remain pure “classification tools” and which
techniques at least carry the potential to survive in practical applications.

From today’s standpoint, however, it should be emphasized that the two most
important techniques in achieving “practical fixed-parameter tractability”
continue to be reduction to problem kernel (Chapter 2) and bounded search
trees (Chapter 3).
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The purpose of this chapter is to present some further concrete problems that
have been amenable to fixed-parameter approaches. The selection of these
problems is based on personal preference and is more or less restricted to own
work. It is tried to highlight some useful, maybe generalizable observations
in the work with fixed-parameter algorithms and the like.

A generally important thing when browsing through the meanwhile ex-
tensive literature is to always keep in mind that many publications present
fixed-parameter tractability results “in disguise.” That is, many published ex-
act algorithms have not been explicitly termed “fixed-parameter algorithms”
(although they clearly are) and they do not use any other terms of parame-
terized complexity. We come back to that point in Section 5.3.

This chapter focuses on two main fields where the fixed-parameter ap-
proach has been successfully applied—computational biology and graph resp.
network problems. Whereas the second field is “classic” for parameterized
complexity, computational biology is a newer, seemingly almost inexhaustible
and very prospective area of fixed-parameter investigation. Here, we will fur-
ther substantiate our observation that computationally hard problems arising
in (molecular) biology often carry natural parameters that make them prime
candidates for fixed-parameter complexity studies. We begin our exposition
with this fast growing field. After that, we return to the already more fa-
miliar setting of graph and network problems—still a rich and by far not
exhausted source of fixed-parameter algorithmic challenges. Finally, in Sec-
tion 5.3, we briefly survey several other interesting application fields and also
name some concrete challenges for future research on efficient fixed-parameter
algorithms.

5.1 Computational Biology

Dealing with biologically motivated, algorithmic problems has become a
vast area of research. Even topics such as the reconstruction of phyloge-
netic trees, the analysis of gene expression data (also closely related to
clustering problems), the comparison and structure prediction of protein,
RNA, and DNA molecules, or the search for motifs and signals in sequences
(closely related to string searching problems) form subfields that are hard
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to overview. Some surveys on computational biology are provided by the
books [144, 155, 220, 238, 261]. Clearly, the considerations in this section
form a very small selection of biologically motivated problems in the fixed-
parameter context. Additionally, observe that some of the problems discussed,
(e.g., problems on strings), may have applications also in other fields such as,
for instance, information retrieval or coding theory.

Before we come to some more concrete examples of fixed-parameter anal-
ysis in the computational biology context, however, the following assessment
shall be put forward. In coping with NP -hard problems, the main theoret-
ical, also much better investigated “competitors” of fixed-parameter algo-
rithms are approximation algorithms. In this respect, we quote one of the
anonymous referees of the paper [135], whose statement is to support:

“...fixed-parameter algorithms do seem laudable approaches to NP -
hard problems in biology, better than approximation methods in
most cases.”

A second point that makes computational biology a particularly fruitful
area for fixed-parameter studies is the fact that often there are several (and
frequently all of them reasonable at the same time) parameters in a given
problem and “usually” at least one of them can be considered as small. For
instance, recall Closest String (with applications in primer design and
motif search) from Sections 3.3 and 4.1. Here, two very natural parameters
are the number of input strings k as well as the maximally allowed Hamming
distance d to the closest string that is to be found. Both k as well as d in
practice are small numbers (e.g., k ≈ 10 and d ≈ 5), hence parameterizations
in both directions make sense and both actually lead to fixed-parameter al-
gorithms (see Sections 3.3 and 4.1). Last but not least it goes without saying
that computational biology offers a vast amount of NP -hard problems, thus
triggering research for approximative or heuristic and now increasingly also
fixed-parameter studies.

In the following concrete examples for fixed-parameter results in compu-
tational biology we mainly concentrate on the parameterization issues and
the basic ideas of the corresponding fixed-parameter algorithms. For more
involved technical details, we always refer to the cited literature. In one case,
we will also encounter parameterized intractability (W [1]-hardness), see Sub-
section 5.1.3, and we discuss the arising algorithmic consequences.

5.1.1 Phylogenetic Trees: Minimum Quartet Inconsistency

We follow parts of [133]. To determine the evolutionary relationship of a
set of taxa, e.g., based on DNA or protein sequence data, is an important
question in computational biology. A common model for this relationship is
an evolutionary tree, a binary tree T in which the leaves are bijectively labeled
by the taxa. In recent years, quartet methods for reconstructing evolutionary
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Fig. 5.1. Possible quartet topologies for quartet {a, b, c, d}, which are (from left to
right) [ab|cd], [ac|bd], and [ad|bc].

trees have received considerable attention [63, 156]. Here, a quartet is a size
four subset {a, b, c, d} of the set of taxa and the quartet topology for {a, b, c, d}
induced by T simply is the four leaves subtree of T for {a, b, c, d}. The three
possible quartet topologies for {a, b, c, d} are [ab|cd], [ac|bd], and [ad|bc]. They
are shown in Fig. 5.1.1 The fundamental goal of quartet methods is, given a
set of quartet topologies, to reconstruct the corresponding evolutionary tree.
Herein, the given set of quartet topologies can be incomplete, may contain
errors or more than one topology for one quartet. Hence, to reconstruct (a
good estimation of) the original evolutionary tree becomes an optimization
problem.

We focus on the Minimum Quartet Inconsistency (MQI) problem.

Input: A set S of n taxa and a set QS of
(
n
4

)
quartet topo-

logies such that there is exactly one topology for every quartet
corresponding to S and a nonnegative integer k.
Question: Is there an evolutionary tree T where the leaves are
bijectively labeled by the elements from S such that the set of
quartet topologies induced by T differs from QS in at most k
quartet topologies?

MQI is NP -complete [35, 157]. It is worth noting, as was pointed out by
Steel [246], that the quartet cleaning algorithm by Berry et al. [35] finds the
optimal solution for instances with k < (n−3)/2. Therefore, MQI is NP -hard
only for k ≥ (n−3)/2. It is known that MQI is polynomial time approximable
with a factor n2 [156], and it is an open question of [156] whether MQI can be
approximated with a factor at most n or even with a constant factor. Refer
to [80] for some recent partial progress on approximating MQI. Heuristics
for the problem include semidefinite programming [33] and the widely used
quartet puzzling [253]. The parameterized complexity of MQI, however, so far,
has apparently been neglected. For the case that the number k of “wrong”
quartet topologies is small in comparison with the total number of given
quartet topologies, MQI is fixed-parameter tractable. It can be solved exactly
in worst-case time O(4kn+n4). Observe that the input size is O(n4). The more
general variant of MQI where the set QS is not required to contain a topology
for every quartet is NP -complete even if k = 0 [245]. Hence, this excludes
fixed-parameter complexity studies and also implies inapproximability.

1 A fourth possible topology is the star topology which is not considered here
because it is not binary.
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There are several reasons why quartet methods are widely used in prac-
tice. They are founded on the fact that an evolutionary tree is uniquely
characterized by the quartet topologies for its size four sets of taxa [47].
From this set of topologies, we can efficiently compute the tree in polynomial
time O(n4) [28]. Quartet methods clearly divide the tree construction process
in two stages—one can use an arbitrary, even computationally expensive tree
construction method for inferring the quartet topologies, while the recombi-
nation of topologies can be handled independently of the method chosen for
inference. Another reason to use quartet methods is data disparity as dis-
cussed by Chor [63]: In practice, one often does not have the same amount
of data for all considered taxa, e.g., not the same set of sequenced proteins.
In general, tree construction methods cannot take advantage of information
available only for a subset of taxa. Quartet methods, however, allow to use
the maximum amount of information available for the four taxa of a quartet
to compute its topology. The limitation of quartet methods in practice is
caused by the process of quartet inference which can be erroneous. There-
fore, one cannot be sure that there exists a tree inducing the inferred set of
quartet topologies. Assuming that the number of errors is small compared
to the number of correct topologies, we overcome this problem by searching
for a tree that matches the inferred topologies as “closely” as possible. Refer
to [129, 133] for some survey on results with respect to MQI.

A Fixed-Parameter Algorithm for MQI

The key to develop a fixed-parameter solution for MQI is that it is sufficient to
examine the size three sets of quartet topologies and to recursively branch on
local conflicts. Roughly speaking, this means that the fixed-parameter algo-
rithm solving MQI can process as follows: If the give set of quartet topologies
is non-conflicting and if there is exactly one topology for each possible quartet
then one can construct the corresponding evolutionary tree in time O(n4) [28].
Otherwise, as long as the given set of quartet topologies is conflicting then
by results of Colonius and Schultze [67] and Bandelt and Dress [25] one can
deduce that there must exist a subset of three quartet topologies whose set of
taxa altogether contains five elements. Then, these three topologies contra-
dict each other in the sense that there is no binary tree with five leaves labeled
by the given taxa such that it induces these three topologies, see [129, 133]
for details. In addition, one can efficiently maintain a conflict list containing
all current “local” conflicts of the above kind. Thus, the idea for a bounded
search tree algorithm becomes immediately clear. The only thing one still has
to observe is that there are four ways to get rid of such a local conflict by
changing one of the three given quartet topologies. This leads to a branching
into four cases, each of which decreases the parameter k of maximally allowed
quartet topology changes by one. In summary, one ends up with the following
fixed-parameter result.
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Theorem 5.1.1. MQI can be solved in time O(4k · n + n4). ⊓⊔

The algorithm behind Theorem 5.1.1 can be tremendously sped up in
practice by adding several heuristic improvements that do not violate the
optimality of the obtained solution. A simple addition is to guarantee that
no quartet topology is changed more than once. Another one is the fact that
if there is a topology t that is involved in more than 3k local conflicts (each
consisting of three quartet topologies) then t has to be changed (so-called
“forced change”). Finally, there are two more involved observations that may
allow recognizing “hopeless situations” where, as a consequence, subtrees of
the search tree can be discarded from further consideration [129, 133]. All
this indicates that the performance of fixed-parameter algorithms often can
be boosted significantly by adding heuristics (such as branch-and-bound) to
further shrink the size of the search tree by possibly omitting some subcases
from further consideration. For instance, experiments with synthetic data for
MQI for n = 50 and k = 100 gave a reduction of the search tree size from
4100 to 46000 nodes [133, 134]. Moreover, results with real fungi data led to
encouraging results with a positive biological interpretation.

A Glimpse on Future Work

From a parameterized point of view, it remains open to find an efficient re-
duction to problem kernel for MQI. As suggested by Chor [64], one might
consider other parameters, e.g., asking whether we can satisfy (m/3) + k
quartets for m given quartet topologies. It might also help to identify param-
eters inherent to the problem. Since MQI can be solved in polynomial time
for k < (n−3)/2 [35], we can ask—in the spirit of parameterizing above guar-
anteed values (cf. Subsection 1.5.2)—whether it is fixed-parameter tractable
to find a tree that violates at most (n− 3)/2 + k, k ≥ 0, quartet topologies.
The answer remains to be given.

5.1.2 Breakpoint Medians and Breakpoint Phylogenies

Gene orderings have grown into a popular measure to investigate the evo-
lutionary relationship between species that share a common set of genes in
their genome. More precisely, the relative order of the genes on the respective
genome, pairwisely compared to each other, is used as a distance measure (so-
called breakpoint distance) to construct phylogenetic trees whose leaves are
labeled by the given species. Still, however, approaches in this direction hold
some heuristic element due to the enormous number of combinatorial possibil-
ities involved. Here, we describe a new approach to the central Breakpoint
Median problem together with a new heuristic for constructing “breakpoint
phylogenetic trees” based on the developed fixed-parameter algorithm for
Breakpoint Median. We mainly follow [135].
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Problem Definition

Breakpoint Median is defined as follows.

Input: Signed orderings π1, π2, . . . , πk on n elements and a non-
negative integer d.
Question: Is there a signed ordering π such that∑k

i=1 dbp(πi, π) ≤ d?

Herein, dbp(πi, π) denotes the breakpoint distance (defined below) between
orderings πi and π. Given a set G = {1, . . . , n}, an ordering π on G is a
one-to-one function π : G → G. We require that every ordering is extended
by two special elements s, marking the start, and t, marking the end, and
we write ordering π as 〈 s π(1) π(2) . . . π(n) t 〉. We write Gs for G ∪ {s}
(Gt and Gs,t, analogously). An ordering π is signed iff every π(x), x ∈ G,
is equipped with a sign {+,−}, denoting the “orientation” of the element,
such that π(x) can be, for y ∈ G, a “positive” element +y (or, for sake of
brevity, only y), having left-to-right orientation, or a “negative” element −y,
having right-to-left orientation. Note that a signed ordering contains either y
or −y but not both at the same time. The special elements s and t are always
unsigned. For x ∈ G± we define succπ(x) := y if we can find l ∈ G such that
one of the following two conditions applies:

1. π(l) = x and π(l + 1) = y, or
2. π(l) = −x and π(l − 1) = −y.

Note that this definition also includes x < 0. For the special cases that
x = s or that y ∈ {s, t}, we define succπ(s) := y if π(1) = y; for x ∈ G±,
succπ(x) := t if π(n) = x, and succπ(x) := s if π(1) = −x.

Given two signed orderings π1 and π2, both over G, we call a pair (x, y),
x ∈ G±

s and y ∈ G±
t , a breakpoint of π1 with respect to π2, if

1. x = s or π1(l) = x for some l ∈ G, and
2. succπ1

(x) = y and succπ2
(x) 6= y.

Using the notion of breakpoints, the breakpoint distance dbp between two
signed orderings is defined as follows:

dbp(π1, π2) =
∣∣{ (x, y) | x, y ∈ G±

s,t,x, y is breakpoint of π1 w.r.t. π2 }
∣∣

Due to symmetry, dbp(π1, π2) = dbp(π2, π1).
Breakpoint Median fits into the larger field of consensus analysis prob-

lems, which occur in many computational biology settings (also cf. [129]).
Subject to different types of input strings (here we have orderings) and dif-
ferent kinds of distance measures (here we have breakpoint distance), various
complexity results and algorithms were published in this context during the
last years, e.g., [55, 106, 151, 179, 240]. Not surprisingly, in general Break-
point Median is NP -complete, and remains so even in the case of only
three input orderings [46, 218]. In the case of three input orderings, Pe’er
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and Shamir [219] developed a polynomial-time algorithm with approxima-
tion factor 7/6. Keeping an eye on its application in the phylogenetic context,
however, note that Moret et al. [195] emphasize that “because suboptimal so-
lutions can yield very different evolutionary reconstructions, exact solutions
are strongly preferred over approximate solutions.” Hence, fixed-parameter
algorithms are of concern.

Fixed-Parameter Algorithm for Breakpoint Median

The following intuitive lemma from [46] gives a way to simplify a given input
instance by preprocessing:

Lemma 5.1.1. Given signed orderings π1, π2, . . . , πk, all on a set G of n
elements, and elements x, y ∈ G±

s,t which are adjacent in π1, π2, . . . , πk, i.e.,
succπr

(x) = y for all r = 1, . . . , k. Then x and y are also adjacent in an
optimal breakpoint median π, i.e., succπ(x) = y. ⊓⊔

Using Lemma 5.1.1, we can preprocess the instance by “contracting” el-
ements adjacent in all input sequences. This can be interpreted as a “reduc-
tion to problem kernel,” where the original instance consisting of k orderings
of n elements each is reduced to a new instance consisting of k orderings
of at most d elements each (still, of course, all orderings have exactly the
same number of elements). Therefore, we can assume that in the given set
Π = {π1, π2, . . . , πk}, for every element x, there are at least two orderings in
which x has different successors.

Surprisingly, an optimal breakpoint median can have adjacencies that are
not present in any of the input orderings [46].

Lemma 5.1.2. Given signed orderings π1, π2, . . . , πk, all on a set G of n
elements, and an optimal breakpoint median π. Then there can be ele-
ments x, y ∈ G±

s,t with succπ(x) = y and succπr
(x) 6= y for all r = 1, . . . , k.

⊓⊔

Here, we only sketch the basic idea behind the search tree algorithm and
refer to [129, 135] for any details.

The algorithm starts its search for a median ordering π with the set of
unconnected elements G, i.e., no element is assigned a successor or a prede-
cessor. Then, the algorithm searches a median by introducing link by link
into π until all elements in π are linked to a successor or predecessor (except
for s and t, which only have a successor or a predecessor, respectively). Im-
portantly, in its search for the median, the algorithm prefers links that are
also present in the input orderings. However, due to Lemma 5.1.2, we also
have to consider links that are not present in the input orderings. In this case,
the algorithm defers the determination of a successor (or predecessor) and a
special “nil” successor or predecessor is chosen. Thus, the recursive algorithm
builds a search tree to construct π from initially unconnected elements; in
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one node of the search tree, it selects an element x ∈ G±
s,t without successor

or predecessor in π. It decides on a set of possible successor (or predecessor)
values and recursively considers these values by branching into one subcase
for each successor (or predecessor) value in the set. In this search, it keeps
track of the number of induced breakpoints and stops the recursion if more
than d breakpoints are introduced.

Altogether, the following result is obtained [129, 135].

Theorem 5.1.2. Breakpoint Median for k ≥ 3 can be solved in time
O((2.15)d · kn). ⊓⊔

Notably, the worst-case branching vector of the recursion is of the form
(k− 1, 1, k/2). Hence, the constant base c = 2.15 only occurs for k = 3 given
orderings. For k = 5, e.g., we obtain c = 1.68 and for k = 20 we obtain
c = 1.21. Observe that this decrease is “necessary” from an applied point of
view because with increasing number k of given orderings also the parameter
value d should grow—d “sums up” the breakpoint distances of the median
ordering to all given orderings. It is open whether the problem remains fixed-
parameter tractable in case of setting the maximum distance as the measure
instead of the sum of distances. Also see [129, 135] for further discussion of
the phenomenon of decreasing exponential bases and required “normalized”
distance parameters as a challenge for future research.

Application to Breakpoint Phylogeny Reconstruction

In [129, 135], the following heuristic based on the fixed-parameter algo-
rithm for Breakpoint Median was proposed and successfully applied to
the “benchmark” data set of the plant family Campanulaceae [70, 71].

Given gene orderings Π = {π1, . . . , πk} for a set of k taxa, the algorithm
starts by computing a root node, called virtual root of the tree (only nec-
essary for the construction) and, then, the algorithm recursively divides the
set of taxa into two subsets, associating new nodes with these subsets; the
new nodes become child nodes of the virtual root and roots for the subtrees
corresponding to the subsets. The recursion ends when the subsets have size
exactly one.

To label the virtual root node, the heuristic computes the breakpoint
median πr for the given set of gene orderings. To obtain a bipartition of the
set of taxa it considers all 2k−1 distinct bipartitions of Π into non-empty sets
Π1 and Π2. It computes the optimal breakpoint medians π1 for Π1 ∪ {πr},
inducing a score of d1 breakpoints, and π2 for Π2 ∪ {πr}, inducing a score
of d2 breakpoints. Among all these bipartitions, it chooses the ones with
a minimum total number of induced breakpoints, i.e., the ones for which
d1+d2 is minimum. The breakpoint medians π1 and π2 corresponding to such
an optimal bipartition are chosen to label the two child nodes of the node
labeled πr. Now, if Π1 (Π2 is completely analogous) consists of two elements
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only then create two child nodes of the π1 node, each child labeled with one
element from Π1. If Π1 contains more than two elements then process this
set recursively, taking the π1 node as the virtual root and Π1 as the set of
gene orderings, again considering all bipartitions of Π1.

In comparison to previous approaches that search through the whole space
of all

∏k
j=3(2j−5) possible trees over k taxa [193, 194, 236], the search space

of the new heuristic is determined by k2k−1 considered bipartitions.
The whole scenario was applied to the Campanulaeceae data set and

phylogenetic trees were found as good as those known in the literature in less
than two minutes—significantly faster than previous approaches (see [129,
135]).

A Glimpse on Future Work

It remains open whether the closely related Breakpoint Center, where,
by way of contrast to Breakpoint Median, not the sum of distances but
the maximum distance shall be minimized, is also fixed-parameter tractable
with respect to d.

In the multiple sequence alignment context, there also arises a median
problem, but then with edit distance instead of breakpoint distance. It is
interesting to ask whether this median problem is fixed-parameter tractable
with respect to the corresponding distance parameter—an approach simi-
lar to the one employed here seems possible. Note, however, that trying to
confine the combinatorial explosion to the number k of input species again
seems fruitless, since it can be deduced from results of [41] and [151] that the
problem is W [t]-hard for all t (see [129, 135] for more on that).

As to Breakpoint Median, future theoretical research might deal with
the mentioned normalization effects for d. Also, it would be desirable to ex-
tend the algorithm to the case in which not all orderings are over the same
set of elements or when elements occur more than once in one ordering; these
cases apply when genomes have a different set of genes or contain duplicated
genes. Further experiments could address the application of the presented
breakpoint phylogeny heuristic to new biological datasets or to synthetic
datasets. Also, with respect to the desired application to phylogeny recon-
struction, it might be useful to extend the considerations and experiments to
weighted variants of Breakpoint Median. Finally, it would be desirable to
identify further applications of Breakpoint Median besides the breakpoint
phylogeny application presented here.

5.1.3 Motif Search

Motif search problems are of central importance for sequence analysis in com-
putational molecular biology. These problems have applications in fields such
as genetic drug target identification or signal finding (see [45, 174, 178, 179,
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221] and the references cited therein for more details and further applica-
tions). In Sections 3.3 and 4.1, we already introduced the Closest String
problem. It is directly applicable in motif search if the input consists of al-
ready aligned strings such that one can easily shift a “comparison window”
throughout the given strings (cf. [129, 137, 251, 252] for more details) when
searching for a common motif. In the more general case of unaligned input
strings, however, we arrive at the problems Closest Substring [178] and
Consensus Patterns [179]:

Input: k strings s1, s2, . . . , sk over alphabet Σ and nonnegative
integers d and L.
Question in case of Closest Substring: Is there a string s
of length L, and for every i = 1, . . . , k, a substring s′i of length L
such that, for all i = 1, . . . , k, dH(s, s′i) ≤ d?
Question in case of Consensus Patterns: Is there a string s
of length L, and for every i = 1, . . . , k, a substring s′i of length L

such that
∑k

i=1 dH(s, s′i) ≤ d?

Here dH(s, s′i) denotes the Hamming distance between s and s′i. What is
currently known about these two problems is summarized as follows. Clos-
est Substring is NP -complete, and remains so for the special case Closest
String, where the string s that we search for is of same length as the in-
put strings. Closest String is NP -complete even for the further restriction
to a binary alphabet [116, 174]. On the positive side, both Closest Sub-
string and Closest String admit polynomial time approximation schemes
(PTAS’s) where the objective function to minimize is the distance of the
“closest string” s [178, 179]. In the PTAS’s for both Closest String and
Closest Substring, the exponent of the polynomial bounding the running
time depends on the goodness of the approximation. These are not efficient
PTAS’s (EPTAS’s) in the sense of [57] and, therefore, probably are of limited
interest for bioinformatics practice.

Consensus Patterns is NP -complete and remains so for the restric-
tion to a binary alphabet [178]; it admits a PTAS [179] where the objective
function to minimize is the distance of the “consensus string” s. The known
PTAS’s for Consensus Patterns are not EPTAS’s.

The key distinguishing point between Closest Substring and Con-
sensus Patterns lies in the definition of the distance measure d between
the “solution” string s and the substrings of the k input strings. Closest
Substring uses the maximum distance metric and Consensus Patterns
uses the sum of distances metric. This is of particular importance when dis-
cussing values of parameter d occurring in practice. Whereas it makes good
sense for many applications to assume that d is a fairly small number in case
of Closest Substring, this is a less reasonable assumption in the case of
Consensus Patterns. This will be of some importance when discussing the
result for Consensus Patterns.
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Parameter Constant size alphabet Unbounded alphabet
d ? W [1]-hard
k W [1]-hard W [1]-hard

d, k ? W [1]-hard
L FPT W [1]-hard

d, k, L FPT W [1]-hard

Table 5.1. Overview on the parameterized complexity of both Closest Substring
and Consensus Patterns with respect to different parameterizations, where k is
the number of given strings, L is the length of the substrings we search for, and d is
the Hamming distance allowed. The FPT results for constant size alphabet can be
achieved by enumerating all length L strings over Σ. Cases where the parameterized
complexity is not known are indicated by a question mark.

Many algorithms applied in practice try to solve motif search problems
exactly, often using enumerative approaches in combination with heuris-
tics [36, 45, 221]. Until recently, the parameterized complexity of Closest
Substring and Consensus Patterns was completely open. Of course, sim-
ilar fixed-parameter tractability results for parameters both d and k as those
described for Closest String in Sections 3.3 and 4.1 would be highly de-
sirable. Unfortunately, the news in this respect are bad [106]: Closest Sub-
string and Consensus Patterns are W [1]-hard with respect to the pa-
rameter k of the number of input strings even in case of a binary alphabet.
For unbounded alphabet size, the problems are W [1]-hard for the combined
parameters L, d, and k. In the case of constant alphabet size, the complexity
of the problems remain open when parameterized by d and k together, or
by d alone. Note that in the case of Consensus Patterns these result gains
particular importance because here the distance parameter d usually is not
small, whereas assuming small k is reasonable. Until now, it was only known
that if one additionally considers the substring length L as a parameter then
running times exponential in L can be achieved [36, 100, 235]. An overview
on known parameterized complexity results for Closest Substring and
Consensus Patterns is given in Table 5.1 (taken from [106, 129]). Thus,
the above results give strong theory-based support for the common intuition
that Closest Substring (W [1]-hard) seems to be a much harder problem
than Closest String (in FPT [137]). Notably, this could not be expressed
by “classical complexity measures” since both problems are NP -complete as
well as both do have a PTAS. The parameterized complexity of Closest
Substring and Consensus Patterns, parameterized by “distance param-
eter” d, remains open for alphabets of constant size. If these problems are
also W [1]-hard, then an efficient and practically useful PTAS would appear
to be impossible [57, 88] unless further structure of natural input distribu-
tions is taken into account in a more complex aggregate parameterization of
these basic computational problems of bioinformatics.
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In order to give some flavor of the in general technically involved W [1]-
hardness proofs, following [106] we sketch the construction for the case of
unbounded alphabet size. Then, Closest Substring is W [1]-hard with re-
spect to every combination of the parameters k, L, and d. Note that the
transfer to binary alphabet for parameter k still needs significantly more
technical effort. Refer to [106, 129] for all the details.

We describe a reduction of the W [1]-complete Clique problem to Clos-
est Substring which is a parameterized m-reduction with respect to the
aggregate parameter (L, d, k) in case of unbounded alphabet size.

Reduction of Clique to Closest Substring

A Clique instance is given by a graph G = (V, E) with V = {v1, v2, . . . , vn},
a set E of m edges, and a nonnegative integer k denoting the desired clique
size. We describe how to generate a set S of

(
k
2

)
strings such that G has a

clique of size k (k-clique for short) iff there is a string s of length L := k + 1
such that every si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d :=
k− 2. If a string si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d, we
call s′i a match. We assume k > 2, because k = 1, 2 are trivial cases.
Alphabet. The alphabet of the produced instance is given by the disjoint
union of the following sets:

• {σi | vi ∈ V }, i.e., an alphabet symbol for every vertex of the input graph;
we call them encoding symbols;
• {ϕj | j = 1, . . . ,

(
k
2

)
}, i.e., a unique symbol for every of the

(
k
2

)
produced

strings; we call them string identification symbols;
• {#} which we call the synchronizing symbol.

This makes a total of n +
(
k
2

)
+ 1 alphabet symbols.

Choice strings. We generate a set of
(
k
2

)
choice strings Sc = {c1,2, . . . , c1,k,

c2,3, c2,4, . . . , ck−1,k} and we assume that the strings in Sc are ordered as
shown. Every choice string will encode the whole graph; it consists of m
concatenated strings, each of length k +1, called blocks; by this, we have one
block for every edge of the graph. The blocks will be separated by barriers
which are length k strings consisting of k identification symbols corresponding
to the respective string. A choice string ci,j which, according to the given
order, is the i′th choice string in Sc, is given by

ci,j := 〈block(i, j, e1)〉 (ϕi′)
k 〈block(i, j, e2)〉 (ϕi′)

k . . . (ϕi′)
k 〈block(i, j, em)〉,

where e1, e2, . . . , em are the edges of G and 〈block()〉 will be defined below.
The solution string s will have length k+1 which is exactly the length of one
block.
Block in a choice string. Every block is a string of length k + 1 and it
encodes an edge of the input graph. Every choice string contains a block for
every edge of the input graph; different choice strings, however, encode the
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edges in different positions of their blocks: For a block in choice string ci,j ,
positions i and j are called active and these positions encode the edge. Let e
be the edge to be encoded and let e connect vertices vr and vs, 1 ≤ r < s ≤ n.
Then, the ith position of the block is σr in order to encode vr and the jth
position is σs in order to encode vs. The last position of a block is set to
the synchronizing symbol #. Let ci,j be the i′th choice string in Sc; then,
all remaining positions in the block are set to ci,j ’s identification symbol ϕi′ .
Thus, the block is given by

〈block(i, j, (vr, vs))〉 := (ϕi′)
i−1 σr (ϕi′)

j−i−1 σs (ϕi′)
k−j #.

Values for L and d. We set L := k + 1 and d := k − 2.

Correctness of the Reduction

To prove the correctness of the proposed reduction, we have to show an
equivalence consisting of two directions. The easier direction is to see that a
k-clique implies a closest substring fulfilling the given requirements.

Proposition 5.1.1. For a graph with a k-clique, the above construction pro-
duces an instance of Closest Substring which has a solution, i.e., there
is a string s of length L such that every ci,j ∈ Sc has a substring si,j with
dH(s, si,j) ≤ d.

Proof. Let the input graph have a clique of size k. Let h1, h2, . . . , hk denote
the indices of the clique’s vertices, 1 ≤ h1 < h2 < · · · < hk ≤ n. Then, we
claim that a solution for the produced Closest Substring instance is

s := σh1
σh2

. . . σhk
#.

Consider choice string ci,j , 1 ≤ i < j ≤ k. As the vertices vh1
, vh2

, . . . , vhk

form a clique, we have an edge connecting vhi
and vhj

. Choice string ci,j

contains a block si,j := 〈block(i, j, (vhi
, vhj

))〉 encoding this edge:

si,j := (ϕi′)
i−1 σhi

(ϕi′)
j−i−1 σhj

(ϕi′)
k−j#,

where i′ is the number (according to the given order) of the choice string
in Sc. We have dH(s, si,j) = k−2, and we can find such a block for every ci,j ,
1 ≤ i < j ≤ k. ⊓⊔

For the reverse direction, we show in Proposition 5.1.2 that a solution in
the produced Closest Substring instance implies a k-clique in the input
graph. To this end, we need two technical lemmas which show that a solution
to the instance constructed in Subsection 5.1.3 has encoding symbols at its
first k positions and the synchronizing symbol # at its last position. The
proofs are omitted and can be found in [106, 129].
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Lemma 5.1.3. A closest substring s contains at least two encoding symbols
and at least one synchronization symbol. ⊓⊔

Based on Lemma 5.1.3, one can now exactly specify the numbers and
positions of the encoding and synchronizing symbols in the closest substring.

Lemma 5.1.4. A closest substring s contains encoding symbols at its first
k positions and a symbol # at its last position. ⊓⊔

Proposition 5.1.2. The first k characters of a closest substring correspond
to k vertices of a clique in the input graph.

Proof. By Lemma 5.1.4, a closest substring s has encoding symbols at its first
k positions and a synchronizing symbol at its last position. Consequently, the
blocks are the only possible matches of s in the choice string. Now, assume
that s = σh1

σh2
. . . σhk

# for h1, h2, . . . , hk ∈ {1, . . . , n}. Consider any two
hi, hj , 1 ≤ i < j ≤ k, and choice string ci,j . Recall that in this choice string,
the blocks encode edges at their ith and jth position, they have # at their
last position, and all their other positions are set to a string identification
symbol unique for this choice string. Thus, we can only find a block that
is a match if there is a block with σhi

at its ith position and σhj
at its jth

position. We have such a block only if there is an edge connecting vhi
and vhj

.
Summarizing, the closest substring s implies that there is an edge between
every pair of {vh1

, vh2
, . . . , vhk

}; these vertices form a k-clique in the input
graph. ⊓⊔

Propositions 5.1.1 and 5.1.2 establish the following hardness result. Note
that hardness for the combination of all three parameters also implies hard-
ness for each subset of the three.

Theorem 5.1.3. Closest Substring with unbounded alphabet is W [1]-
hard for every combination of the parameters L, d, and k. ⊓⊔

Some Positive News

We briefly sketch a possible way how to “circumvent” the above W [1]-
hardness misery. We present an enumerative type algorithm that uses Clos-
est String as a subproblem. Similar to [221], in a first phase enumerate
candidates, where, in our case, the “filtering process” is more elaborate since,
in a second phase, we check the outcome of the first phase:

1. Identify the “k-cliques” of substrings, taking one substring from each
given string, with pairwise distance at most 2d each time.

2. For each such candidate set, use a Closest String algorithm to test
whether it gives rise to a motif.
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Step 1 is a recursive algorithm that enumerates all possible sets of sub-
strings: For each length L substring s1 of the first input string, it considers
each length L substring s2 of the second input string with distance at most d
to s1. For each such pair s1, s2 it considers each length L substring s3 with
distance at most d to s1 and s2, and continues recursively. A refinement of the
algorithm exploits information gained from the cases where two substrings
in the set have distance exactly 2d: then we can restrict the set of possi-
ble closest strings since each of its characters must match the corresponding
character in one of the two substrings.

The poster abstract [136] reports on successful experiments with this ap-
proach.

5.1.4 Structure Comparison for RNA

Structure comparison for RNA and for protein sequences has become a
central computational problem bearing many challenging computer science
questions. In this context, the Longest Arc Preserving Common Sub-
sequence problem (LAPCS) recently has received considerable attention
[98, 99, 158, 183]. It is a sound and meaningful mathematical formalization
of comparing the secondary structures of molecular sequences:2 For a se-
quence s, an arc annotation A of s is a set of unordered pairs of positions
in s. Focusing on the case of two given arc-annotated input sequences, LAPCS
in its general version is defined as follows.

Input: Two arc-annotated sequences s1 and s2 and nonnegative
integers k1 and k2.
Question: Can one delete at most k1 letters (also called bases)
from s1—when deleting a letter at position i, then all arcs with
endpoint i are also deleted—and at most k2 letters from s2 such
that in both cases the same arc-annotated sequence t emerges?

Thus, t forms an arc-annotated subsequence of s1 as well as s2. For related
studies concerning algorithmic aspects of (protein) structure comparison us-
ing “contact maps,” refer to [123, 173].

Whereas the Longest Common Subsequence problem for two se-
quences without arc annotations is solvable in quadratic time (it only be-
comes NP -complete when allowing for an arbitrary number of input se-
quences3), LAPCS for two sequences is NP -complete [98, 99]. According
to Lin et al. [183] LAPCS for nested arc annotations is “generally thought

2 As usual in computational biology, we identify the terms “sequence” and “string”
here. Note, however, that the terms “subsequence” and “substring” have to be
clearly distinguished from each other, the first concept being the much more
general one.

3 Fixed-parameter studies for this problem with mostly “negative” results (i.e.,
intractability results) have been undertaken in [41, 42, 222] (also cf. [88]).
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of as the most important variant of the LAPCS problem.” Here, one re-
quires that no two arcs share an endpoint and no two arcs cross each other,
referred to by LAPCS(nested,nested). Answering an open question of
Evans [98], Lin et al. [183] showed that LAPCS(nested,nested) is NP -
complete. In addition, they gave polynomial time approximation schemes
for (also NP -complete) special cases of LAPCS(nested,nested). Here,
matches between two given input sequences are allowed only in a “local area”
(of constant size) with respect to matching position numbers. As to the gen-
eral LAPCS(nested,nested) problem, Jiang et al. [158] gave a quadratic
time approximation algorithm with approximation ratio 1/2.

By way of contrast, here we briefly sketch a fixed-parameter algorithm
that solves the general LAPCS(nested,nested) problem in running time
O(3.31k1+k2 · n) where n is the maximum input sequence length. We refer
to [10, 143] for any details.

The fixed-parameter algorithm for LAPCS(nested,nested) employs a
bounded search tree. The case distinction in the search algorithm works as
follows. For sake of clarity, we choose the presentation in a recursive style:
Based on the current instance, we make a case distinction, branch into one
or more subcases of somehow simplified instances and invoke the algorithm
recursively on each of these subcases. The algorithm works through both
given sequences from left to right and it considers the following main cases.
Either

1. both sequences differ in the symbols at the current respective positions
or

2. they carry the same symbols at this position. Then, either
a) there are no arcs attached to these positions or
b) there is only one arc, i.e., one of the sequences has an arc at its

position and the other does not have an arc at its position or
c) both positions have arcs attached to them but

i. either the symbols at the right points of these arcs differ
ii. or an arc match is really possible.

Actually, Case 2.c)ii. is the most complicated one and has to be split in several
subcases. Refer to [10, 143] for the details. The worst-case branching vector
is (1, 1, 2, 1). It implies the worst-case upper bound 3.31k1+k2 on search tree
size. Finally, the following result can be proven.

Theorem 5.1.4. LAPCS(nested,nested) for two sequences s1 and s2

with |s1|, |s2| ≤ n can be solved in time O(3.31k1+k2 · n) where k1 and k2

are the number of deletions needed in s1 and s2. ⊓⊔
The parameterized complexity of LAPCS(nested,nested) when pa-

rameterized by subsequence length instead of number of deletions is open.
Depending on what (relative) length of the longest common subsequence is
to be expected one or the other parameterization might be more appropri-
ate. The complexity analysis is worst-case, however, and it is a topic of future
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investigations to study the practical usefulness of the above search tree al-
gorithm. In this context, it is also meaningful to take a closer look at the
(special case) problem “APS(Nested,Nested)” where one asks whether a
given sequence forms an arc-preserving subsequence of another. Very recent
work [130] shows that APS(nested,nested) can be solved in quadratic
time. This further supports the hope for practical implementations of the
whole scenario. In addition, it was observed [130] that APS(nested,nested)
generalizes a problem occurring in information retrieval [165, 166], thus show-
ing that these string problems also occur in completely different contexts.

5.1.5 Final Remarks

Computational biology is a fruitful research area concerning fixed-parameter
questions. We have seen that there often are several natural ways to param-
eterize given NP -hard problems. In what follows, we briefly list few more
fixed-parameter results in various fields of computational biology.

Perfect Phylogeny

Agarwala and Fernández-Baca [1] (also cf. [88]) approach the question of
building a phylogenetic tree for a given set of species in the following model.
For a given set C of m characters they allow a character c ∈ C to take one
state of a fixed set of character states Ac. These characters may, e.g., rep-
resent properties of single organisms or the positions in its DNA sequence
with the nucleotide bases being the character states. In this setting, we are
given a set S of n species, for which we intend to construct a tree. Each
species s ∈ S is represented by a vector of character states s ∈ A1×· · ·×Am.
The Perfect Phylogeny problem is then to determine whether there is
a tree T with nodes V (T ) ⊆ A1 × · · · × Am where each leaf of the tree is
a species. In addition, we require for every c ∈ C and every j ∈ Ac the set
of all nodes u of the tree with u’s character c being in state j to induce a
subtree. Downey and Fellows [88] refer to this problem as Bounded Char-
acter State Perfect Phylogeny. This indicates that the parameter
here is the maximum number of character states r = maxc∈C |Ac|. Using a
dynamic programming approach and building perfect phylogenies from bot-
tom up, Agarwala and Fernández-Baca present an O(23r(nm3 + m4)) time
algorithm which was improved by Kannan and Warnow to O(22rnm2) [162].
A generalization of Perfect Phylogeny is the l-Phylogeny problem in
which the question is to construct a tree T such that, given the fixed integer
l, each character state does not induce more than l connected components
in T . A parameterized analysis of the problem was initiated by Goldberg et
al. [121].
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Gene Duplication

For a given set of species, we may obtain several phylogenetic trees, e.g.,
by building trees based on different gene families. These so-called gene trees
are a good hypothesis for a species tree, i.e., the evolutionary relationship
of the species, if they are all the same. However, the gene trees can differ
from the species tree. A way to explain the contradictions in the trees is the
possibility that genes are duplicated in the evolutionary history and evolve in-
dependently. This observation motivates the following model to infer a species
tree from several, possibly contradictory gene trees, the Gene Duplication
problem: Given a set of species and a set of trees (the gene trees) with their
leaves labeled from the species set, the question is, intuitively speaking, to
find a tree (the species tree) that requires a minimum number of gene dupli-
cations in order to explain the given gene trees (refer to [107, 247] for further
details). Note that in this model we count duplication events copying only
one gene at a time. Stege [247] gives a fixed-parameter algorithm for Gene
Duplication, with the allowed number of duplications as the parameter.
As a duplication event in evolutionary history copies a piece of DNA with
possibly many genes on it, Fellows et al. [107] study the Multiple Gene
Duplication problem. In contrast to Gene Duplication, here, one du-
plication event copies a set of genes. With the upper bound on the number
of duplications as parameter, they show even the easier version to be W [1]-
hard where we are also given the species tree and only ask for the minimum
number of required duplications.

Genome Rearrangements

Knowing the succession of genes on a chromosome, a way to measure the
similarity of two corresponding chromosomes from different organisms with
the same set of genes, is to count the number of mutation events required
to obtain one succession of genes from the other. Examples of such mutation
events are, e.g., inverting a subsequence, called reversal, or their deletion and
insertion at another position, called transposition. Reversals are the most
common kind of these mutations. Restricting to them, the comparison of
two sequences of the same set of genes is modeled in the Sorting by Re-
versals problem: Given a permutation π of {1, 2, . . . , n}, the question is to
find the minimum number of reversals we need to transform π into the iden-
tity function. Sorting by Reversals is NP -complete [54]. Hannenhalli and
Pevzner’s results [146], however, imply a fixed-parameter algorithm for the
problem when parameterized by the number of reversals. Another genome-
level distance measure that was shown to be fixed-parameter tractable is the
Syntenic Distance [109]. Herein, a genome is represented as a set of chro-
mosomes and a chromosome is represented as a set of genes (which itself can
be represented as positive integers). The mutation events in this model are
the union of two chromosome sets, the splitting of a chromosome set into
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two sets, and the exchange of genes between two sets. Given two genomes
G1 and G2, the Syntenic Distance problem is to compute the minimum
number of mutation events needed to transform G1 into G2. DasGupta et
al. [77] showed that computing the Syntenic Distance is NP -hard and
fixed-parameter tractable when parameterized by the distance. The currently
best exact solution with respect to parameter d is due to Liben-Nowell [180],
who gave an algorithm with running time O(n2 + 2O(d log d)), where n is the
number of genes in the given genome.

Several more problems and solutions with “fixed-parameter” flavor can
be found—just to name a few let us mention various applications of suffix
trees in the biological context [226, 235], the analysis of repeats such as in
the Single Gene Duplication Problem of [254], or the emerging field of
studying “single nucleotide polymorphisms haplotyping” with applications
including medical diagnostic and drug design [227].

5.2 Graph and Network Problems

Here, we come to our second main problem field in the context of fixed-
parameter solving algorithms. We only pick a small, personally biased se-
lection to have a somewhat closer look at. It goes without saying that this
huge field alone bears many opportunities for designers of fixed-parameter
algorithms. We start with our favorite ground problem.

5.2.1 Weighted Vertex Cover Problems

Vertex Cover without weights on the graph vertices is the most popular
fixed-parameter tractable problem. Now, let us see what happens in the case
that the input consists of a graph with various weights on its vertices:

Input: A graph G = (V, E), a weight function ω : V → R+, and
k ∈ R+.
Question: Does there exist a vertex cover set such that the sum
of the weights of its vertices can be bounded by k?

Clearly, in the special case that ω assigns the value 1 to all vertices we have
the standard unweighted Vertex Cover problem. We consider three natural
variants of Weighted Vertex Cover, following [207].

1. Integer-WVC, where the weights are arbitrary positive integers.
2. Real-WVC, where the weights are real numbers ≥ 1.
3. General-WVC, where the weights are positive real numbers.

Whereas all three versions are clearly NP -complete, it turns out that their
parameterized complexity differs significantly: While Integer-WVC and
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Real-WVC are fixed-parameter tractable, General-WVC is not fixed-
parameter tractable unless P = NP .

Before we come to the three subproblems named above, we briefly note
that for Integer-WVC and Real-WVC clearly Buss’ reduction to problem
kernel (cf. beginning of Chapter 2) applies. Moreover, there are also weighted
versions of the Nemhauser-Trotter theorem (cf. Theorem 2.4.1) that apply
and that yield linear size problem kernels. As we want to apply the bounded
search tree technique in the following, due to the interleaving technique pre-
sented in Section 3.7 the particular problem kernel size is of minor importance
in the following and it will be neglected, therefore.

General- and Integer-WVC

Integer- and General-WVC are easily dealt with: General-WVC is
NP -complete for any fixed k > 0, and there is a straightforward reduction
from the unweighted Vertex Cover to General-WVC with k = 1. This
implies, however, that there cannot be a time f(k) · nO(1) or even nO(k)

algorithm for General-WVC unless P = NP . This is true because otherwise
we would obtain a polynomial time algorithm for an NP -complete problem.
Hence, we have:

Proposition 5.2.1. General-WVC is not fixed-parameter tractable unless
P = NP. ⊓⊔

In the remainder, we exhibit that we can easily reduce Integer-WVC to
unweighted Vertex Cover via a simple parameterized many-one reduction
that does not change the value of the parameter. To prove the following
theorem, we may safely assume that the maximum vertex weight is bounded
by k (the according preprocessing needs only polynomial time).

Theorem 5.2.1. Integer–WVC can be solved as fast as unweighted Ver-
tex Cover up to an additive term polynomial in k.

Proof. An instance of Integer–WVC is transformed into an instance of
Vertex Cover as follows: Replace each vertex i of weight u with a clus-
ter i′ consisting of u vertices. We do not add intra-cluster edges to the graph.
Furthermore, if {i, j} is an edge in the original graph, then we connect every
vertex of cluster i′ to every vertex of cluster j′. Now, it is easy to see that
both graphs (the instance for Integer-WVC and the new instance for Ver-
tex Cover) have minimum vertex covers of same weight/size. Herein, it is
important to observe that the following is true for the constructed instance
for Vertex Cover: Either all vertices of a cluster are in a minimum vertex
cover or none of them is. Assume that one vertex of cluster i′ is not in the
cover but the remaining are. Then all vertices in all neighboring clusters have
to be included and, hence, it makes no sense to include any vertex of cluster i′

in the vertex cover.
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Let t(k, n) be the time needed to solve Vertex Cover. The run-
ning time of the algorithm on the “cluster instance” is clearly bounded by
t(k, wn) ≤ t(k, kn), where w ≤ k is the maximum vertex weight in the given
graph. Using the interleaving technique (see Section 3.7, the running time is
not increased by a polynomial factor, but only by a polynomial amount of
additional processing is needed. ⊓⊔

Real-WVC

Real-WVC allows a bounded search tree algorithm that is similar in fla-
vor, but nevertheless significantly different from the search tree algorithm for
unweighted Vertex Cover. We only sketch some integral parts of the al-
gorithm and refer to [207] for further details. Recall that the weights are
real numbers ≥ 1. We indicate that Real-WVC can be solved in time
O(1.40k+kn). Observe, however, that the search tree algorithm, as usual, can
only guarantee to find at least one optimal vertex cover, but not necessarily
all of them. The basic outline is as follows. First, one observes that if a graph
has maximum vertex degree two, then there is an easy dynamic programming
solution. After that, one distinguishes three main cases (in the given order):
when there is a vertex of degree one in the graph, when there is a triangle
(i.e., a cycle of size 3) in the graph, and when there is no triangle in the
graph. The overall structure of the algorithm is as follows. The subsequent
instructions are executed in a loop until all edges of the graph are covered or
k ≤ 0 which means that no cover could be found.

1. If there is no vertex with degree greater than two then solve Real-WVC
in linear time by dynamic programming.

2. Execute the lowest numbered, applicable step of the following.
a) If there is a vertex x of degree at least four then branch into the

two cases of either bringing itself or all its neighbors into the vertex
cover. The corresponding branching vector is at least (1, 4), implying
branching number 1.39 or better.

b) If there is a degree-one vertex then one can obtain the branching
vector (1, 4) or better, implying branching number 1.39 or better.

c) If there is triangle in the graph then one can obtain the branching
vector (3, 4, 3) or better, implying branching number 1.40 or better.

d) If there is no triangle in the graph then one can obtain the branching
vector (3, 4, 3) or better, implying branching number 1.40 or better.

Since in solving unweighted Vertex Cover degree-one vertices form a
trivial case (that is, just put the neighbor of the degree-one vertex into the
vertex cover), it is of interest to see why this case gets more complicated for
Real-WVC. Thus, we provide the details of Case 2.b) above in the following.

Assume that there is at least one vertex that has degree one. Let x be
such a vertex and let a be its only neighbor. In addition, let w be the weight
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of x and let w′ be the weight of a. If w ≥ w′ then it is optimal to include
a into the vertex cover. In the following, we handle the more complicated
situation that w < w′.

Case 1: a has degree 2. Then, a path starts at x that proceeds over ver-
tices with degree 2 and ends in a vertex y that has degree 1 or 3. If y has
degree 1 then we can find an optimal cover for this graph component by dy-
namic programming. Otherwise, we branch on y, bringing either y or its three
neighbors into the vertex cover. This gives branching vector (1, 3). If we put
y into the vertex cover then we create a new graph component that includes
x and a and has only vertices with degree at most 2. We can again apply
dynamic programming and we get a branching vector at least (2, 3) for the
whole subgraph. We only mention in passing here that such a kind of “bonus
point system” where we obtain “easy graph components” that can be han-
dled without branching of the recursion will be reconsidered (and discussed)
in Subsection 5.2.2.

Case 2: a has degree 3 and it has at least one neighbor with degree 3. Let y
be a’s degree-3 neighbor. We branch on y. If y is in the cover, then a will
have degree 2 and Case 1 applies. The (1, 3) branching vector thus can be
improved to (1 + 2, 1 + 3, 3) = (3, 4, 3).

Case 3: a has degree 3 and it has two neighbors with degree 2. Let y and b
be a’s degree-2 neighbors. We branch on x. If x is in the cover, then a is
not and a’s other neighbors y and b are in the cover. This gives branching
vector (1, 3), which is not yet good enough. Hence, by considering several
more subcases, we do a more complicated branching.

Let z be y’s other neighbor and assume that y has weight u, z has weight v,
and u ≥ v. Then we can branch on a and get branching vector (2, 3); note
that if a is in the cover, then it is optimal to also include z (instead of y).

Assume next that the weight w′ of a is at least 2: Then, branching on a,
we have branching vector (2, 3). Let w be the weight of x. We can assume in
the following that w′ < w + v and u < v.

Let us return to the branch on x: If x is in the cover, so are y and b.
We can now assume that z is not in the cover. Otherwise, we could replace
x and y with a, which is better and is already covered by the branch that
does not include x in the vertex cover. Then all neighbors of z are in the
cover, too, and among them must be some vertex other than x, y, or b. If
not, interchange the roles of y and b. In this way, we get a branching vector
of at least (1, 4) (unless the component has only six vertices and, thus, can
be handled in constant time).

Case 4: Remaining cases. What remains to be considered are the case when
a has degree 3 and all its neighbors have degree 1, and when a has degree 3
and two of its neighbors have degree 1 and one has degree 2. The first case
is easily handled in constant time, because we then have a graph component
of constant size. For to the second subcase, basically the same strategy as in
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Case 1 applies, because the second degree 1 neighbor of a (besides x) only
makes necessary a slight, obvious modification to what is done in Case 1.

The other two main cases 2.c) and 2.d) above need (in size) similar case
distinctions. In this way, the following can be proven (see [207] for details):

Theorem 5.2.2. Real-WVC can be solved in time O(1.40k + kn). ⊓⊔

5.2.2 Constraint Bipartite Vertex Cover

Constraint Bipartite Vertex Cover (CBVC for short) is defined as follows.

Input: A bipartite graph G = (V1, V2, E) and two nonnegative
integers k1 and k2.
Question: Are there two subsets C1 ⊆ V1 and C2 ⊆ V2 of sizes
|C1| ≤ k1 and |C2| ≤ k2 such that each edge in E has at least one
endpoint in C1 ∪ C2?

The existence of two parameters and two vertex sets makes Constraint
Bipartite Vertex Cover (CBVC) quite different from the original Ver-
tex Cover problem. Thus, whereas classical Vertex Cover (with only
one parameter) restricted to bipartite graphs is solvable in polynomial time
(because it is equivalent to a polynomial time solvable maximum matching
problem for bipartite graphs [82, 171]), by a reduction from Clique it has
been shown that CBVC is NP -complete [171]. For the application in recon-
figurable VLSI design, see [171, 111].

A Fixed-Parameter Algorithm for CBVC

The algorithm works in basically the same way as the fixed-parameter algo-
rithms for Vertex Cover do. The main part is to build a bounded search
tree: To cover an edge, we have to put at least one of its two endpoints into
the (optimal) vertex cover sets. Thus, starting with an arbitrary edge, we
can make a binary decision between its two endpoints. In each subcase, we
delete the corresponding vertex chosen and its incident edges and repeat this
until we have built a search tree of size 2k1+k2 . As a consequence, it is easy
to obtain an algorithm running in time O(2k1+k2(n + m)), where n denotes
the number of vertices and m denotes the number of edges in the graph. The
exponential base can be significantly improved, however.

The algorithm as a whole consists of three pieces:

1. A reduction to problem kernel;
2. a search tree processing;
3. a special treatment of graphs consisting of vertices with maximum degree

two and some slightly more general graphs.
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Only the second part of the algorithm has exponential time complexity. As
is usually the case, we achieve a reduction of the search tree size by distin-
guishing between the degree of graph vertices. Since for CBVC we have to
minimize with respect to two parameters, this gets significantly harder than
in the classical Vertex Cover case. For instance, in the classical instance,
taking the neighbor of a degree-one vertex will always lead to an optimal ver-
tex cover. Thus, a branching in the search tree is avoided. This is no longer
possible in the CBVC case because the neighbor belongs to the second vertex
set in the bipartite graph and we have to minimize with respect to two vertex
cover set sizes. In particular, the size of a minimal solution for CBVC is no
longer uniquely determined because the signature s := (|C1|, |C2|) of a ver-
tex cover C1 and C2 is a tuple of numbers instead of simply a number. The
algorithm provides, however, for each minimal s a corresponding minimal
solution.

Before getting a bit more detailed about the cases under consideration,
we firstly observe that the idea of getting rid of high-degree vertices (see
Buss’ reduction to problem kernel for Vertex Cover) also works in this
setting. This simple observation was already used by Kuo and Fuchs [171]
in 1987, which led to the so-called “must-repair-analysis” preprocessing in
their algorithms. Deleting all these “high-degree-vertices” together with their
incident edges, we can infer that after reduction to problem kernel the graph
consists of at most 2k1k2 + k1 + k2 vertices and at most 2k1k2 edges. By
assuming appropriate input data structures, this reduction to problem kernel
can be implemented to run in time O((k1 +k2)n), where n := |V1 ∪V2| is the
number of vertices in G.

Let us briefly begin with the easy special case that all graph vertices have
maximum degree two. Clearly, we can deal with each connected component
separately. So, let us assume that the graph is connected. If the maximum
vertex degree of a graph is at most two, then CBVC is easy to solve: We
know that, in this case, the graph is either a cycle or a path. In both cases,
however, it is fairly easy to compute the linear number of possible minimal
vertex covers in linear time. We omit the lesser details. In addition, as previ-
ously mentioned, here we have to take into consideration that our given graph
may be split into several connected components. Since the various compo-
nents are “independent” from each other, we simply can combine them using
component-wise addition and then again looking for the minimal values. Con-
sequently, by using simple data structures, this can be done in O((k1 + k2)

2)
time, because 1 + min(k1, k2) is an upper bound for the number of minimal
vertex covers belonging to a component. Furthermore, we can assume that
there are at most k1 + k2 components since otherwise the graph is not cov-
erable and we know that each output of merging two minimal vertex covers
always is bounded by O(k1 + k2). As a result of this, we have k1 + k2 merge
steps each of time complexity O((k1 + k2)

2). Summarized, this gives:
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Proposition 5.2.2. For bipartite graphs with maximum vertex degree two
CBVC can be solved in time O((k1 + k3)

3). ⊓⊔
Because of Proposition 5.2.2 in the following description of the basic struc-

ture of our search tree algorithm we now may concentrate on graphs with
maximum degree at least three.

The following algorithm skeleton leads to the so far best fixed-parameter
algorithm for CBVC. The technical details of the branchings and the cor-
responding numerous case distinctions are quite awkward and are omitted.
We refer to [111] for the complete algorithm. Here, we only sketch the basic
structure of the algorithm. It is of central importance for the correctness of
our algorithm to execute the various steps in the given order—that is, we
always choose an applicable step with minimal number:

1. If there is a vertex v with degree at least four, then branch according
to v and its neighbors.
Branching vector and branching number: (1, 4) and 1.39.

2. If the graph is three-regular then pick any vertex v and branch according
to v and its neighbors. (This step has to be applied at most once and
thus does not influence the algorithm’s asymptotic complexity. Similarly,
if G contains only a small constant number of vertices of degree three,
such a branching does not affect the overall time analysis.)

3. Deal with tails (i.e., a degree-three vertex followed by a (possibly empty)
sequence of degree-two vertices, followed by one degree-one vertex) of
size at least two.
Branching vector and branching number: (2, 3) and 1.33.

4. Deal with cycles of length four.
Branching vector and branching number: (2, 2) and 1.42. This can be im-
proved to (6, 7, 7, 7, 7, 9, 9, 9, 9, 8, 8, 10, 10, 10, 10, 12) and 1.40 by a lengthy
case analysis [111].

5. Deal with chains (i.e., paths consisting of degree-two vertices) of length
at least three.
Branching vector and branching number: (3, 4, 3) and 1.40.

6. Deal with degree-three vertices with three neighbors of degree two.
Branching vector and branching number: (4, 6, 6, 7, 3) and 1.40.

7. Deal with degree-three vertices with two neighbors of degree two.
Branching vector and branching number: (6, 7, 4, 2) and 1.40.

8. Deal with degree-three vertices with one neighbor of degree two.
Branching vector and branching number:
(8, 9, 8, 10, 11, 10, 10, 11, 10, 10, 12, 11, 9, 10, 9, 10, 12, 11, 7, 9, 8, 9, 10, 9) and
1.40.

The above steps can be easily shown to provide a complete case distinction
handling all cases that may occur. More specifically, from this point of view,
steps 3–5 even would be superfluous—they are, however, necessary in order
to get a small search tree size by handling “nice special cases” in advance.
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The harder cases shown above are 4, 6, 7, and 8. The worst case branching
vector occurs in case 8 and it implies a search tree size 1.3999k1+k2 , rounded
to 1.40k1+k2 .

Combining the above sketched search tree algorithm with the reduction to
problem kernel from the beginning, and applying the interleaving technique
from Subsection 3.7, the following can be proven [111].

Theorem 5.2.3. Constraint Bipartite Vertex Cover can be solved in
running time O(1.40k1+k2 + (k1 + k2)n). ⊓⊔

The Deferred Analysis Trick

Concerning the analysis of the search tree size above, we want to point to
a small trick that might be useful elsewhere. The idea is to use a kind of
bonus points to reduce the search tree size, i.e., to measure the expected pa-
rameter reduction for certain graph components which are analyzed in detail
later with a polynomial-time algorithm. More precisely, the trick of deferred
analysis works as follows. We have noted that we can cope with a graph hav-
ing vertices of degree at most two in polynomial time (Proposition 5.2.2).
Therefore, if we create a non-empty line component starting at a degree-two
vertex v we can make use of the fact that in order to cover that component
at least one vertex from that component is needed in the cover. Although
we do not know which vertex to take into the cover, we can safely decrease
the parameter value by one more unit. In other words: the exact analysis of
the path component is deferred to the third polynomial-time phase of the
algorithm which deals with all remaining degree-two components as a whole.
Nevertheless, already at that point of time (i.e., during the search tree pro-
cessing) we have the “bonus” to decrease the search tree depth bound by one
more unit.

A Simplified Version of CBVC

Chen and Kanj [58] considered a simplified version of CBVC which allows
for a more efficient fixed-parameter algorithm. The Constrained Minimum
Vertex Cover problem is defined as follows.

Input: A bipartite graph G = (V1, V2, E) and two nonnegative
integers k1 and k2.
Question: Is there a minimum vertex cover of G with at most
k1 vertices in V1 and at most k2 vertices in V2?

Note that the decisive difference to CBVC as considered before is that here
one asks for a minimum vertex cover (i.e., adding up the number of vertices
from both vertex sets of the bipartite graph) under the given “constraints”
k1 and k2 whereas CBVC minimizes with respect to the constraints. In par-
ticular, the previously defined term signature does not make sense for Con-
strained Minimum Vertex Cover.



5.2 Graph and Network Problems 129

The nice thing about Constrained Minimum Vertex Cover is that
due to its somewhat simpler combinatorial structure it allows for simpler
and more efficient algorithms than CBVC does. In particular, classical re-
sults from matching theory become applicable and allow for a much simpler
search tree structure. The key tool is the so-called Gallai-Edmonds structure
theorem from matching theory (cf. [185]) which implies a reduction to prob-
lem kernel. More precisely, based on this theorem it can be shown that there
is a linear problem kernel consisting of only 2(k1+k2) vertices, and, moreover,
the corresponding kernel graph has a perfect matching (see [58] for details.)
Then, the so-called Dulmage-Mendelsohn decomposition [185] for graphs with
a perfect matching is applied. This leads to a much simpler search tree proce-
dure than the one known for CBVC. In summary, Constrained Minimum
Vertex Cover thus can be solved in time O(1.26k1+k2 + kn), where n is
the number of graph vertices [58].

5.2.3 Maximum Cut

The NP -complete Maximum Cut (MaxCut) problem is another example
for a graph and network problem that plays an important role in algorithm
theory and practice (refer to Poljak and Tuza [223] for a survey).

Input: A graph G = (V, E) where edges are assigned integer
weights and a nonnegative integer k.
Question: Is there a cut of maximum weight, i.e., is there a par-
tition of V into V1 and V2 such that the sum of weights over those
edges (s, t) ∈ E for which s ∈ V1 and t ∈ V2 is at least k?

The special thing about MaxCut is that we can easily treat it as Maximum
2-Satisfiability (Max2Sat) problem, that is, we can easily reduce Max-
Cut to Max2Sat. The resulting formulas expose a very special structure.
After presenting the reduction, we formulate, in the following, a condition
that tries to capture this structure. Then, to derive an exact algorithm for
MaxCut one can develop an exact algorithm for a special kind of Max2Sat.
We follows parts of [131] in our presentation.

For the reduction of MaxCut to Max2Sat [223], translate a graph G =
(V, E) into a formula in conjunctive normal form with clauses containing two
literals (2-CNF) that has the vertices as variables and that has clause set

C = { (w, {i, j}) | edge {i, j} ∈ E having weight w }
∪ { (w, {̄i, j̄}) | edge {i, j} ∈ E having weight w }.

In this way, a graph having n vertices and m edges of total weight M re-
sults in a formula having n variables and 2m clauses of total weight 2M .
All these clauses are 2-clauses. The graph G has a cut of weight k iff the
formula has simultaneously satisfiable clauses of weight M +k; every optimal
assignment to the formula translates into a maximum cut, namely with all
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vertices corresponding to satisfied variables on one side and all vertices cor-
responding to falsified variables on the other side. An assignment satisfying a
maximum number of clauses in the resulting formula will satisfy at least one
of the clauses (w, {i, j}) and (w, {̄i, j̄}), which are created for an edge {i, j}
of weight w, but will satisfy both clauses only if the edge is in the cut.

As we can see, the formulas created by this reduction exhibit a charac-
teristic structure which we call MaxCut Condition (MCC):

For each 2-clause of weight w containing literals x and y, there is
also a 2-clause of weight w containing literals x̄ and ȳ.

Now, it can be shown that there is an exact algorithm for this special
kind of Max2Sat problem that makes use of (MCC) and keeps (MCC) as an
invariant of the algorithm when applying transformation and splitting rules in
a way analogous to the general MaxSat problem (cf. Section 3.5). Thus, one
may obtain a time poly(|F |) · 2K2/6 algorithm, where K2 is the total weight
of 2-clauses in F and |F | is the length of representation of the input. This
translates back into an exact algorithm for MaxCut, see [131] for details.
Then, given a graph G having n vertices and edges of total weight M , we can
solve (weighted) MaxCut in time poly(|G|) ·2M/3, where |G| is the length of
representation of the input. Very recently, Fedin and Kulikov [101] reported
on an improvement of this time bound to poly(|G|) · 2M/4 by employing a
direct search tree approach for MaxCut.

Similar to the case of Max2Sat (cf. Subsection 3.5.4), a parameterization
of MaxCut with the parameter “total weights of the edges in the cut” so
far obviously does not lead to potentially faster algorithms than the above
discussed, non-parameterized algorithm. MaxCut (besides MaxSat) has
been considered in the parameterizing above guaranteed values setting (cf.
Subsection 1.5.2) by Mahajan and Raman [186]. Here, analogous remarks as
for MaxSat and Max2Sat apply (cf. concluding discussion of Section 3.5).

5.2.4 Planar Graphs Revisited

With Sections 4.4 and 4.5 we already exhibited special fixed-parameter al-
gorithms for NP -complete planar graph problems. These algorithms were
based on dynamic programming on tree decompositions of graphs where the
point was that many parameterized planar graph problems allow for small
treewidth. Here, we briefly sketch a similar approach but now based on the
divide-and-conquer strategy using well-known graph separation theorems.
The underlying material can be found in much greater depth in [8].

Definition 5.2.1. Let G = (V, E) be a graph. A separator S ⊆ V of G
divides V into two parts A1 ⊆ V and A2 ⊆ V such that4

4 In general, of course, A1, A2 and S will be non-empty. In order to cover boundary
cases we did not put this into the separator definition.
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• A1 + S + A2 = V , and
• no edge joins vertices in A1 and A2.

We write δA1 (or δA2) as shorthand for A1 + S (or A2 + S, respectively).
The triple (A1, S, A2) is also called a separation of G.

Clearly, this definition can be generalized to the case where a separator par-
titions the vertex set into ℓ subsets instead of only two. The techniques we
mention here all are based on the existence of “small” graph separators, which
means that |S| is bounded by o(|V |).
Definition 5.2.2. According to Lipton and Tarjan [184], an f(·)-separator
theorem (with constants α < 1, β > 0) for a class G of graphs which is
closed under taking subgraphs is a theorem of the following form: If G is any
n-vertex graph in G, then there is a separation (A1, S, A2) of G such that

• neither A1 nor A2 contains more than αn vertices, and
• S contains no more than βf(n) vertices.

Again, this definition easily generalizes to ℓ-separators with ℓ > 2.
Stated in this framework, the planar separator theorem due to Lipton

and Tarjan [184] is a
√·-separator theorem with constants α = 2/3 and β =

2
√

2 ≈ 2.83. The currently best value for α = 2/3 is β =
√

2/3+
√

4/3 ≈ 1.97
[84]. Djidjev has shown a lower bound of β ≈ 1.55 for α = 2/3 [83]. For
α = 1/2, the “record” of β = 7 + 1/

√
3 ≈ 7.58 due to Venkatesan [259] was

recently outperformed by Bodlaender [40], yielding β = 2
√

6 ≈ 4.90. A lower
bound of β ≈ 1.65 is known in this case [244]. For α = 3/4, the best known

value for β is
√

2π/
√

3 · (1 +
√

3)/
√

8 ≈ 1.84 with a known lower bound of

β ≈ 1.42, see [244].
The basic idea to develop divide-and-conquer algorithms then simply is

to divide the graph into parts using graph separators, solving the arising
subproblems recursively, and then to “glue” together the solutions of the
subproblems to obtain the solution of the whole problem. The paper [8] pro-
vides a formal framework to characterize problems that allow for such an
approach in the fixed-parameter context, coining the very technical notions
of “select& verify” problems and “glueability” of graph problems. The techni-
cal expenditure is too big in order to present it within this work.5 Let us just
mention that the key notion of glueable select&verify problems captures intri-
cate graph problems such as Dominating Set or Total Dominating Set.

Various glueable select&verify problems allow time c
√

k ·nO(1)-algorithms on
graph classes that admit a

√
k-separator theorem. Then, the constant c is de-

termined in terms of some problem-specific parameters. By exploiting further
ideas on the use of separator theorems, one may lower these constants.

5 Meanwhile, Alber [2] developed a significantly simplified exposition of this frame-
work.
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Observe that time c
√

k ·nO(1) algorithms easily follow from this framework
for parameterized planar graph problems with linear size problem kernel.
Since constants occurring in separator theorems directly contribute to the
constant c above, work on improving these is desirable in order to lower c.
So far, however, the constant c and the further overhead involved still seem
too big in order to give hope for a practical implementation of this approach.
It might at least serve as a classification tool for fixed-parameter tractability
and, interestingly, this approach in principle is also applicable to non-planar
graphs, as well. Refer to [8] for more details and to [2] for a comprehensive
overview on this framework.

5.2.5 Final Remarks

Compared to computational biology problems, as a rule, graph and network
problems usually are easier to formalize and to understand. They are not eas-
ier to solve, though. In what follows, we briefly list few more fixed-parameter
results and problems in this area.

Graph Modification

The NP -complete Minimum Fill-In problem asks whether a graph can be
triangulated by adding at most k edges. Kaplan et al. [163] developed a
search tree based O(24km) time algorithm (which improves to O((4k/(k +
1)3/2)(m + n)) due to a refined analysis by Cai [50]) and a more intricate
O(k2nm + k624k) algorithm for the problem. In those fixed-parameter al-
gorithms, n denotes the number of vertices and m denotes the number of
edges in the graph. This also illustrates that it can be very important (and
difficult!) to make the exponential term “additive” (as in the second case)
instead of only “multiplicative” (as in the first case). In addition, Kaplan et
al. show that Proper Interval Graph Completion (with a motivation
from computational biology) and Strongly Chordal Graph Comple-
tion, both NP -hard, are fixed-parameter tractable (see [163] for details).
Closely related graph modification problems (with applications to clustering
problems) are considered in [198, 239]. They deserve more attention from a
parameterized point of view.

Layout Problems

Two classical problems here and to some extent also in the parameterized
complexity field are Cutwidth and Bandwidth. We start with Cutwidth.
A layout of a graph G = (V, E) is a one-to-one function f : V → {1, . . . , |V |}.
If we regard [1, |V |] as an interval on real numbers and consider α ∈ [1, |V |]
then we call the number of edges {u, v} ∈ E with f(u) < α and f(v) > α the
value of the cut at α. The cutwidth of a layout f of G then is the maximum
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of the value of the cut over all α. The Cutwidth problem for G is to find the
minimum of the cutwidths of all possible layouts of G. The decision version of
this problem is NP -complete [119]. In the parameterized version, for a given
nonnegative integer k we ask whether a given graph has cutwidth ≤ k. It is
known that Cutwidth is fixed-parameter tractable [88] but the bounds on
the exponential term seem to be huge. By way of contrast, Bandwidth, is
W [t]-hard for all t [88] and thus appears to be fixed-parameter intractable.
The bandwidth of a layout f of G is the maximum of |f(u) − f(v)| over
all edges {u, v} ∈ E. The bandwidth of G then is the minimum bandwidth
of all possible layouts of G. The decision version of this problem is NP -
complete [119]. Again, the parameterized version asks, given a graph G =
(V, E) and a nonnegative integer k, does G have bandwidth ≤ k? Despite
of its great practical importance, bandwidth seems to be a problem where
parameterized complexity studies cannot help in general. A recent survey
paper [102] sketches various approaches how to cope with the hardness of
bandwidth, rising many open questions also concerning the development of
exact algorithms.

Graph Parameters and Graph Classes

Many in general hard graph problems can efficiently be solved when restricted
to special graph classes. For instance, this holds for problems such as Vertex
Cover or Dominating Set when restricted to graphs of bounded treewidth
(cf. Sections 4.4 and 4.5). Two other graph parameters (and, thus, consider
the graph classes implied in this way) are the crossing number and the genus
of a graph. Both these parameters deal with the “degree of non-planarity”
of a graph. The crossing number measures how many edge crossings are
needed to draw a graph in the plane. To determine the (minimum) crossing
number of a graph is NP -complete [120]. Recently, Grohe [139] has shown
that this problem is fixed-parameter tractable—the underlying algorithm,
however, seems to be impractical. By way of contrast, Mohar [191] gave a
fixed-parameter algorithm for determining the genus of a graph. Again, this
algorithm seems to be impractical. Besides asking for improvements of these
algorithms, it is also important to investigate whether or to what extent
fixed-parameter results achieved for planar graphs can be transferred to those
more general graph classes. First positive news in this direction, referring to
graphs of bounded genus, are reported in [97, 115]. Further special graph
classes extending the concept of planarity in a more general way are that of
disk graphs [66] (cf. [2, 9] for a recent result in this direction) and map graphs
as introduced in the context of geographic information systems [61, 62]; for
map graphs obviously no fixed-parameter studies have been undertaken so
far. Refer to [44] for a general survey on graph classes.
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Hypergraph Problems

The 3-Hitting Set problem as we have studied in Sections 2.3 and 3.4 is
the only hypergraph problem we have considered so far. Simply speaking,
hypergraphs mean a generalization of the graph concept such that an edge
may consist of more than two vertices. In the 3-Hitting Set problem, for
instance, we had hypergraphs where edges had up to three vertices. Hyper-
graph problems have many applications in fields such as constraint satisfac-
tion, data bases, model checking, or artificial intelligence and non-monotonic
reasoning [96, 126, 127]. One key open question in this context refers to the
concept of hypertree decompositions [125]. Besides the “right” definition of
this concept there are many open questions concerning parameterized com-
plexity, e.g., what the fixed-parameter complexity of recognizing hypergraphs
of bounded treewidth is [125]. Clearly, most parameterized problems studied
in the graph context also make sense in the hypergraph context. So far, little
has been explored here.

Again, much more could be reported concerning the fixed-parameter com-
plexity of graph and network problems—may it be with respect to concrete
problems such as the Directed Steiner Network problem [103] or the
Max Leaf Spanning Tree problem [108] or may it be the still challeng-
ing step from abstract graph problems (together with corresponding fixed-
parameter results) to real life applications and their special features including
implementations and experiments.

5.3 Concluding Discussion

With few exceptions, the parameterized problems studied in this work either
were drawn from computational biology or they were related to graphs and
networks. But the quest for fixed-parameter solutions adheres to all fields
of computation where hard problems have to be attacked. Hence, not sur-
prisingly, there are many more fixed-parameter results in a great variety of
application areas; subsequently, we sketch two of these in a little more detail.
As a rule of thumb, however, one might say that nearly always when the inves-
tigation of approximation algorithms makes sense then also fixed-parameter
algorithms are something to ask for. In this way, the list of problems (with
approximation results) given in [23, 74] can be regarded as a good source of
problems to be seen through parameterized glasses. Two more problem fields
briefly discussed in the following are propositional logic and databases.

Propositional Logic

We have already taken a closer look at the Maximum Satisfiability prob-
lem (see Sections 2.2 and 3.5). Another, more special example of a problem
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drawn from logic with a special kind of parameterization is the Falsifiabil-
ity Problem for Pure Implicational Formulas. The complexity of
this problem was first studied by Heusch [150]. A Boolean formula is in pure
implicational form if it contains only positive literals and the only logical
connective being used is the implication. Heusch considered the special case
when all variables except at most one (denoted z) occur at most twice. This
problem still is NP -complete [150]. However, he proved that if the number of
occurrences of z is restricted to be at most k then there is an O(|F |k) time
algorithm for certifying falsifiability. Franco et al. [117] subsequently showed
how to solve the Falsifiability Problem for Pure Implicational For-
mulas in time O(kkn2); thus, the problem is fixed-parameter tractable.

Databases

Downey et al. [93] and Yannakakis [265] initiated the consideration of
database problems in the parameterized context. Papadimitriou and Yan-
nakakis [216] analyzed the complexity of database queries. Here, the basic
observation is that the size of the queries is typically orders of magnitude
smaller than the size of the database. They analyze the complexity of the
queries (e.g., conjunctive queries, first-order, Datalog, fixpoint logic etc.) with
respect to two types of parameters: the query size itself and the number of
variables that appear in the query. In this setting, they classify the relational
calculus and its fragments at various levels of the W -hierarchy, hence showing
parameterized intractability. On the positive side, they show that the exten-
sion of acyclic queries with inequalities is fixed-parameter tractable (refer
to [216] for details). In the last few years, however, progress has been made
concerning the fixed-parameter tractability for various restricted classes of
database instances—refer to Grohe’s survey paper [141] for more on this.
Finally, observe that there also are close connections to model checking as
described in [112, 118, 140].

We conclude this chapter with an enumeration of several more application
areas with ongoing fixed-parameter research, pointing to some of the litera-
ture that may serve as starting points for further investigations (also cf. [104]
for some recent survey):

• graph drawing [94, 95];
• automata theory [260];
• type checking in logic programs [56, 182];
• artificial intelligence [127, 196];
• routing in networks [14, 242];
• scheduling [187].





6. Further Topics and Future Challenges

This work left several topics of parameterized complexity more or less
untouched—some of them consciously and some of them probably due to
the lack of insight. Here, we want to provide a brief (and undoubtedly incom-
plete) survey on current and future issues in relation with fixed-parameter
complexity that go beyond the contents of this text.

6.1 Implementation and Experiments

The ultimate goal of algorithmic research is to see the developed algorithms
implemented and applied. The design and analysis of fixed-parameter algo-
rithms is a relatively new field and today only few empirical evaluations of
fixed-parameter algorithms are available. And still, even given these first ex-
perimental investigations as in the case of Vertex Cover [4, 79, 234] it is
still open whether these implementations will turn out to be useful in “real
practice” where problems to be solved normally lack compact mathematical
formalizations but carry several constraints and side conditions to be taken
into account. Fixed-parameter algorithmics is at the very beginning here.

Well, one might argue that it is a common attitude in theoretical computer
science to assume that the real work is done when the algorithm is proven cor-
rect and the running time is analyzed mathematically. Just consider the vast
number of results concerning approximation algorithms for hard problems.
It is hard to give any numbers but it seems more than obvious that the great
majority of algorithms never made it into an implementation. Nevertheless
this research plays a major role in theoretical computer science and beyond.
Hence, to some extent this also applies to fixed-parameter algorithms and so
let us allow the purely theoretical game also here. Of course, this is not com-
pletely satisfactory by obvious reasons but for fixed-parameter complexity
analysis there is still more on that.

Why are implementation and experiments of particular importance with
respect to fixed-parameter tractability? There are several aspects that have
to be taken into account, some of them enumerated in the following.

1. In the definition of fixed-parameter tractability the growth of the func-
tion “f” depending on the parameter may be completely arbitrary, per-



138 6. Further Topics and Future Challenges

haps already making the considered algorithm impractical already for
tiny parameter values.

2. Fixed-parameter complexity means worst-case analysis and many fixed-
parameter algorithms can be much faster in average than they are ac-
cording to the worst-case analysis.

3. Many fixed-parameter algorithms are suitable for combination with
heuristic approaches and the practical benefits from this can only be
determined by experimental investigations.

4. Very often, more than one parameterization of a problem exists and one
may turn out to be better than the other because of the respective pa-
rameter values occurring in practice.

5. Ideas for new, alternative parameterizations of a problem often go in
hand with practical experiences.

6. Exponential time algorithms such as those based on tree decompositions
of graphs additionally may suffer from the need for a large amount of
memory. Thus, space may become the bottleneck instead of time and
often the mutual tradeoff has to be investigated empirically.

In summary, there are many good reasons to experiment with fixed-
parameter algorithms. And, indeed, this is a growing area. In particular,
fixed-parameter algorithms derived for problems from computational biol-
ogy have been tested in practice, cf., e.g., [36, 133, 135, 226, 254]. Generally
speaking, however, there are some difficulties that have to be overcome and
which do not only apply to testing fixed-parameter algorithms. The most im-
portant ones are that it usually means hard work to get realistic sets of data
(synthetically generated and, more importantly, from real-world instances)
and to experiment with them.1 Moreover, as a rule of thumb, the theoretical
fixed-parameter algorithms additionally need quite some algorithm engineer-
ing to show their full performance. All this needs a lot of (wo)manpower and
the community of people developing fixed-parameter algorithms still seems
rather small when compared to other communities. But things start to get
better here and the future prospects appear to be promising.

6.2 Heuristics, Approximation, and Parallelization

In this section, we deal with three theoretically and/or practically important
ways in order to get fast solutions of computationally hard problems. All of
them are related to fixed-parameter algorithms.

Heuristics

In the previous section it already was indicated that heuristics may help to
significantly speed up fixed-parameter algorithms. As a rule, these are special
1 Starting a publically accessible collection of data sets for core parameterized

problems would be a very useful contribution waiting for its realization.
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kinds of heuristics which are designed to lower the running time without
destroying the optimality of the solution. Since heuristic approaches are of
high importance in the practice of computing it is worth pursuing further links
between parameterized complexity and heuristics. Specifically, considering
fixed-parameter algorithms as particular heuristics (namely of a kind with
reliable statements concerning the quality of the solution and guaranteed
worst-case upper bounds on the running time) may deliver a new way to
better understand in at least some cases why many heuristic approaches work
well in practice although they deal with NP -hard problems. Moreover, there
are so many facets and methodologies all covered by the word “heuristics”
such that we are at the starting point of an investigation concerning the
mutual links and possible stimulations of both fields. We expect that topics
such as local search or evolutionary and memetic algorithms will become
new subjects of fixed-parameter studies; [90, 196] contain first investigations
in this direction.

Approximation

As the major theory-based tool of attacking intractability so far are approxi-
mation algorithms,2 it is not surprising that some tight connections between
approximation and fixed-parameter complexity have already been detected.
For instance, it is fairly straightforward to prove that if an optimization prob-
lem possesses a fully polynomial time approximation scheme (FPTAS) then
its natural parameterized counterpart (where the value to be optimized is
turned into the parameter as, e.g., in the case of Vertex Cover) is fixed-
parameter tractable [51]. Observe that this result implies that if a parameter-
ized problem is shown to be W [1]-hard then its natural optimization counter-
part does not have an FPTAS unless FPT = W [1]. Also, all parameterized
variants of the optimization problems in the maximization class MaxSNP
(and also another minimization class) are fixed-parameter tractable, see [51]
for details.

Currently, the following two topics in the intersection between approxi-
mation and fixed-parameter complexity deserve particular attention. Firstly,
there is a strong interest on what parameterized complexity can say about the
practical feasibility of polynomial time approximation schemes (PTAS). An
important contribution to this was made by Cesati and Trevisan [57]. They
distinguished between a PTAS (where the degree of the polynomial running
time may depend on the approximation ratio) and an efficient PTAS (where
the degree of the polynomial running time may not depend on the approx-
imation ratio but—contrary to the FPTAS case—may only contribute an
exponentially (or worse) growing factor to the running time. Cesati and Tre-
visan related the existence of the (practically more relevant) efficient PTAS

2 Of course, also approximation algorithms may serve as special kinds of heuristics
with proven quality bounds.
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to the concept of W [1]-hardness in the sense that W [1]-hardness for the cor-
responding parameterized version of an optimization problem excludes an
efficient PTAS for that optimization problem unless FPT = W [1] (see [57]
for details). Cai et al. [52] recently continued and extended these studies, ex-
amining upper and lower bounds on efficient PTAS’s for a variety of problems
contained in syntactically defined approximation complexity classes. Specif-
ically, they state concrete lower bounds for the asymptotically best running
times achievable for efficient PTAS’s for several problems on planar graphs
based on the hypothesis that FPT 6= W [1].

The second point deserving more attention is a little more vague but ap-
pears to be of big practical importance. In Chapter 2, we emphasized the
great significance of data reduction by efficient preprocessing. Small problem
kernels may be considered as key achievements of fixed-parameter complex-
ity and decisively contribute to the practicability of the whole methodology.
Clearly among the best kernelizations known so far is that due to Nemhauser
and Trotter (see Theorem 2.4.1 and [199]) providing a size 2k problem kernel
for Vertex Cover. Interestingly, this results seems optimal in the sense
that a problem kernel of size (2 − ǫ)k for constant ǫ > 0 would mean a
polynomial-time approximation algorithm for Vertex Cover with approx-
imation ratio better than 1/2. It is a longstanding open problem [23, 152],
however, whether such an approximation algorithm for Vertex Cover ex-
ists. By way of contrast, it is hoped that a corresponding lower bound can be
proven which, of course, would also show the optimality of the Nemhauser-
Trotter kernelization. In case of restricting Vertex Cover to planar graphs
(where a PTAS for Vertex Cover is known [24]), however, there is still
hope for a problem kernel of size less than 2k. Maybe again results devel-
oped in the approximation context can help here. More generally, the future
challenge is to provide and exploit stronger links between approximation and
fixed-parameter complexity in order to develop new results for problem ker-
nels.

Parallelization

Parallel algorithms are, strictly speaking, not really an answer to the com-
putational intractability of NP -hard problems. The point is that, at the cur-
rent state of the art where usually say hundreds or thousands of processors
make a parallel machine, a speedup of at most the same dimensions can
be expected—strictly speaking, however, this “only” means a constant fac-
tor speedup. As a consequence, dealing with NP -hard problems where we
encounter exponential growth of the running time it is first of all more im-
portant to get the involved combinatorial explosion as small as possible. This
is the main theme of this work. There may come, however, the point where
further shrinking the size of the combinatorial explosion seems, in spite of
serious efforts, hopeless. Then, it could still matter whether one has to wait
say two weeks or few hours for a desired solution—and here parallelization



6.3 Zukunftsmusik 141

comes into play. Fixed-parameter algorithms based on bounded search trees
are easy to parallelize because of the inherent partitioning into subtasks given
by a search tree. Moreover, little communication is necessary because of the
independence of the tasks. Dehne et al. [79] provided stimulating work in this
direction, giving a parallelization for a Vertex Cover search tree algorithm.
It is a matter of future research to investigate how good other parameterized
problems and fixed-parameter techniques such as reduction to problem kernel
or dynamic programming parallelize.

6.3 Zukunftsmusik

The good prospects for fixed-parameter algorithms as predicted in the 1998
survey [202] have become reality. Fixed-parameter tractability will surely
continue to prosper in various ways. The emphasis of this work was on al-
gorithms. The main part of the monograph [88] deals with more structural
and complexity-theoretical questions. Also in this respect there is ongoing
fruitful research. Let us only stress two things here—the recent development
of parameterized counting complexity classes [113, 188] or the investigation
of complexity classes between FPT and W [1] [105] as an effort to capture
parameterized problems whose complexity could not have been classified.
Further important topics here are the whole area of lower bounds [53] or
alternative characterizations of parameterized complexity classes [114, 138].

We avoid listing concrete algorithmic challenges at this point since nu-
merous of them are spread (many of them implicitly) all over the text. And,
clearly, to come up with completely new ones, a simple trick, for instance,
is to have a somewhat closer look at the vast literature on approximation
algorithms and to study the fixed-parameter complexity of one of the corre-
sponding problems. As fixed-parameter algorithms are still under-represented
in the literature, this seems an easy thing to do. Another point that has been
neglected so far is that fixed-parameter tractability may, in some cases, also
be an alternative to polynomial time solvability. Imagine one only has an
algorithm with a high-degree polynomial running time for some problem.
A fixed-parameter algorithm for that problem with a perhaps linear time
component in the overall input size and an exponential time component ex-
clusively depending on a small parameter (so-called “linear fixed-parameter
tractability”) still might be beneficial in this case.

Finally, two things that should further accelerate the maturing process
of fixed-parameter complexity into a well-established research field (with the
corresponding publicity it deserves) and which are worth striving for are

• a collection of fixed-parameter results (perhaps in the style of Crescenzi
and Kann’s webpage [74]) and
• a publically available source of well-documented implementations and

sound data for testing (new) fixed-parameter algorithms.
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All this does not come for free and it will need many people to join the
fixed-parameter track. Be invited!
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by Journal of Computer and System Sciences.

9. → 133
J. Alber and J. Fiala. Geometric separation and exact solutions for the param-
eterized independent set problem on disk graphs. In Proc. 17th IFIP World



144 References

Computer Congress, 2nd IFIP International Conference on Theoretical Com-
puter Science (TCS 2002), pp. 26–37, Kluwer Academic Publishers, 2002.

10. → 74, 118
J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally solving the
longest common subsequence problem for sequences with nested arc annotations
in linear time. In Proc. 13th CPM Springer-Verlag LNCS 2373, pp. 99–114,
2002.

11. → 1
J. Alber, J. Gramm, and R. Niedermeier Faster exact solutions for hard prob-
lems: a parameterized point of view. Discrete Mathematics, 229(1-3):3–27, 2001.

12. → 22, 100, 101
J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problems. In Proc. 5th LATIN , Springer-Verlag LNCS 2286,
pp. 613–627, 2002.

13. → 84, 86
N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995.

14. → 135
R. S. Anand, T. Erlebach, A. Hall, and S. Stefanakos. Call control with k re-
jections. In Proc. 8th SWAT, Springer-Verlag LNCS 2368, pp. 308–317, 2002.

15. → 13, 27
K. Appel and W. Haken. Every planar map is four colorable. I. Discharging.
Illinois J. Math., 21:429–490, 1977.

16. → 13, 27
K. Appel and W. Haken. Every planar map is four colorable. II. Reducibility.
Illinois J. Math., 21:491–567, 1977.

17. → 11, 88
S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Algebraic Discrete Methods, 8:277–284, 1987.

18. → 66
S. Arora and C. Lund. Hardness of approximations. In D. S. Hochbaum (ed.)
Approximation Algorithms for NP-Hard Problems, pp. 399–446, PWS Publish-
ing Company, 1997.

19. → 15
V. Arvind and V. Raman. Approximation algorithms for some parameterized
counting problems. Technical Report TR02-031 (Revision 1), Electronic Collo-
quium on Computational Complexity (ECCC), Trier, Germany, June 2002.

20. → 66
T. Asano and D. P. Williamson. Improved approximation algorithms for MAX
SAT. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 96–105, 2000.

21. → 101
B. Aspvall, A. Proskurowski, and J. A.Telle. Memory requirements for table
computations in partial k-tree algorithms. Algorithmica, 27:382–394, 2000.

22. → 5
M. J. Atallah. Algorithms and Theory of Computation Handbook. CRC Press,
1999.

23. → 1, 5, 134, 140
G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Springer-Verlag, 1999.

24. → 13, 90, 140
B. S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM, 41:153–180, 1994.



References 145

25. → 106
H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from observed
dissimilarity data. Advances in Applied Mathematics, 7:309–343, 1986.

26. → 55
R. Battiti and M. Protasi. Reactive Search, a history-base heuristic for MAX-
SAT. ACM Journal of Experimental Algorithmics, 2:Article 2, 1997.

27. → 54
R. Battiti and M. Protasi. Approximate algorithms and heuristics for MAX-
SAT. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial
Optimization, volume 1, pages 77–148. Kluwer Academic Publishers, 1998.

28. → 106
V. Berry and O. Gascuel. Inferring evolutionary trees with strong combinatorial
evidence. Theoretical Computer Science, 240:271–298, 2000. Software available
through http://www.lirmm.fr/~vberry/PHYLOQUART/phyloquart.html.

29. → 66, 73, 75
N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In
Proc. 10th ISAAC, Springer-Verlag LNCS 1741, pp. 247–258, 1999.

30. → 12, 75
R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed param-
eter algorithm for vertex cover. Information Processing Letters, 65(3):163–168,
1998.

31. → 13
R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

32. → 12, 13, 27, 31, 33
R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem. Annals of Discrete Mathematics, 25:27–45, 1985.

33. → 105
A. Ben-Dor, B. Chor, D. Graur, R. Ophir, and D. Pelleg. Constructing phyloge-
nies from quartets: elucidation of eutherian superordinal relationships. Journal
of Computational Biology, 5:377–390, 1998.

34. → 80
A. Ben-Dor, G. Lancia, J. Perone, R. Ravi. Banishing bias from consensus
sequences. In Proc. 8th CPM, Springer-Verlag LNCS 1264, pp. 247–261, 1997.

35. → 19, 105, 107
V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham. Quartet cleaning:
improved algorithms and simulations. In Proc. 7th ESA, Springer-Verlag LNCS
1643, pp. 313–324, 1999.

36. → 113, 138
M. Blanchette, B. Schwikowski, and M. Tompa. Algorithms for phylogenetic
footprinting. Journal of Computational Biology, 9(2):211–224, 2002.

37. → 9
A. Blummer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36:929–965,
1989.

38. → 11, 22, 88, 94
H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

39. → 96
H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proc. 22nd
MFCS, Springer-Verlag LNCS 1295, pp. 19–36, 1997.



146 References

40. → 89, 91, 92, 131
H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209:1–45, 1998.

41. → 111, 117
H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Ware-
ham. Parameterized complexity analysis in computational biology. Computer
Applications in the Biosciences, 11:49–57, 1995.

42. → 117
H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The
parameterized complexity of sequence alignment and consensus. Theoretical
Computer Science, 147:31–54, 1995.

43. → 7
R. B. Boppana and M. Sipser. The complexity of finite functions. In J. van
Leeuwen, editor, Algorithms and Complexity, volume A of Handbook of Theo-
retical Computer Science, chapter 14, pages 757–804. Elsevier, 1990.

44. → 14, 22, 89, 95, 133
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Tübingen, Germany, in preparation, 2002.

86. → 9
R. G. Downey, P. Evans, and M. R. Fellows. Parameterized learning complexity.
In 6th Annual Conference on Learning Theory (COLT), pp. 51–57. ACM Press,
1993.

87. → 9, 70
R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In
P. Clote, J. Remmel (eds.): Feasible Mathematics II, pp. 219–244. Birkhäuser,
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J. Hromkovič. Algorithmics for Hard Problems (Introduction to Combinato-
rial Optimization, Randomization, Approximation, and Heuristics). Springer-
Verlag, 2001.

155. → 104
T. Jiang (ed.). Current Topics in Computational Molecular Biology. The MIT
Press, 2002.

156. → 105
T. Jiang, P. Kearney, and M. Li. Some open problems in computational molec-
ular biology. Journal of Algorithms, 34:194–201, 2000.

157. → 19, 105
T. Jiang, P. Kearney, and M. Li. A polynomial time approximation scheme for
inferring evolutionary trees from quartet topologies and its application. SIAM
Journal on Computing, 30(6):1942-1961, 2001.



154 References

158. → 117, 118
T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. In Proc. 11th CPM, Springer-Verlag
LNCS 1848, pp. 154–165, 2000. Full paper accepted by Journal of Discrete
Algorithms.

159. → 54
D. S. Johnson and M. A. Trick, editors. Cliques, Coloring and Satisfiability,
Second DIMACS Implementation Challenge, volume 26 of DIMACS Ser. Discr.
Math. Theor. Comput. Sci. AMS, 1996.

160. → 94
I. A. Kanj and L. Perkovic. Improved parameterized algorithms for planar dom-
inating set To appear in Proc. 27th MFCS , Springer-Verlag LNCS, Warszawa
- Otwock, Poland, August 2002.

161. → 77
R. Kannan. Minkowski’s convex body theorem and integer programming. Math-
ematics of Operations Research, 12:415–440, 1987.

162. → 119
S. Kannan and T. Warnow. A Fast algorithm for the computation and enumer-
ation of perfect phylogenies. SIAM Journal on Computing, 26(6):1749–1763,
1997.

163. → 132
H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized comple-
tion problems on chordal, strongly chordal, and proper interval graphs. SIAM
Journal on Computing, 28(5):1906–1922, 1999.

164. → 31
S. Khuller. Algorithms column: the vertex cover problem. ACM SIGACT News,
33(2):31–33, 2002.

165. → 119
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Set. Study Work, Universität Tübingen, Germany, in preparation, 2002.

177. → 77
H. W. Lenstra. Integer programming with a fixed number of variables. Mathe-
matics of Operations Research, 8:538–548, 1983.

178. → 111, 112
M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences. To
appear in Journal of Computer and System Sciences, 2002.

179. → 108, 111, 112
M. Li, B. Ma, and L. Wang. On the closest string and substring problems.
Journal of the ACM, 49(2):157–171, 2002.

180. → 121
D. Liben-Nowell. Gossip is synteny: incomplete gossip and the syntenic distance
between genomes. Journal of Algorithms, 43(2):264–283, 2002.

181. → 25
P. Liberatore. Monotonic reductions, representative equivalence, and compila-
tion of intractable problems. Journal of the ACM, 48(6):1091–1125, 2001.

182. → 135
O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their specification. In Proc. 12th Annual ACM Symp. on Principles of
Prog. Lang. (POPL), pp. 97–107, 1985.

183. → 117, 118
G.-H. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence
problem for sequences with nested arc annotations. In Proc. 28th ICALP,
Springer-Verlag LNCS 2076, pp. 444–455, 2001.

184. → 131
R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal of Applied Mathematics, 36(2):177–189, 1979.

185. → 129
L. Lovasz and M. D. Plummer. Matching Theory. Annals of Discrete Mathe-
matics, 29, North Holland, 1986.

186. → 13, 19, 29, 66, 67, 75, 130
M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat
and MaxCut. Journal of Algorithms, 31:335–354, 1999.

187. → 135
C. McCartin. An improved algorithm for the jump number problem. Informa-
tion Processing Letters, 79:87–92, 2001.



156 References

188. → 15, 141
C. McCartin. Parameterized counting problems. To appear in Proc. 27th MFCS ,
Springer-Verlag LNCS, Warszawa - Otwock, Poland, August 2002.

189. → 2, 11
K. Mehlhorn. Graph Algorithms and NP-Completeness. Springer-Verlag, 1984.

190. → 1
Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer-
Verlag, 2000.

191. → 133
B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Mathematics, 12(1):6–26, 1999.

192. → 13
B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation al-
gorithm for the vertex cover problem. Acta Informatica, 22:115–123, 1985.

193. → 111
B. M. E. Moret, D. A. Bader, and T. Warnow. High-performance algorithm
engineering for computational phylogenetics. Journal of Supercomputing, 22:99–
111, 2002.

194. → 111
B. M. E. Moret, S. K. Wyman, D. A. Bader, T. Warnow, and M. Yan. A new
implementation and detailed study of breakpoint analysis. In Proc. 6th Pacific
Symposium on Biocomputing, pp. 583–594. 2001.

195. → 109
B. M. E. Moret, L. Wang, T. Warnow, and S. K. Wyman. New approaches to
phylogeny reconstruction from gene order data. Bioinformatics 17:S165–S173,
2001.

196. → 135, 139
P. Moscato. New optimization and decision problems on graphs arising from
the theory of memetic algorithms. Manuscript, December 2000.

197. → 1, 85
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

198. → 132
A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Discrete Applied Mathematics, 113(1):109–128, 2001.

199. → 12, 26, 27, 31, 33, 140
G. L. Nemhauser and L. E. Trotter Jr. Vertex packings: Structural properties
and algorithms. Mathematical Programming, 8:232–248, 1975.

200. → 77
G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1988.

201. → 6
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