Robustness of Stochastic Biochemical Systems Sven Dražan Robustness of Stochastic Biochemical Systems Sven Dražan 19. 3. 2013 Robustness of Stochastic Biochemical Systems Sven Dražan Contents • Systems + Properties + Perturbations = Robustness • Aims • Preliminary results Robustness of Stochastic Biochemical Systems Sven Dražan Biochemical system Reproduce k1 Hunt k2 Die k3 Robustness of Stochastic Biochemical Systems Sven Dražan Biochemical system – Continuous / ODEs S → 2 S W + S → 2 W W → k1 k2 k3 0 dS/dt = k1.[S] - k2.[W].[S] dW/dt = k2.[W].[S] - k3.[W] S W Robustness of Stochastic Biochemical Systems Sven Dražan S Biochemical system – Stochastic / CTMC W 0 a1 = k1.[S] a2 = k2.[W].[S] a3 = k3.[W] S → 2 S W + S → 2 W W → k1 k2 k3 Robustness of Stochastic Biochemical Systems Sven Dražan Biochemical system – Stochastic / CTMC a1 = k1.[S] a2 = k2.[W].[S] a3 = k3.[W] S → 2 S W + S → 2 W W → k1 k2 k3 S W 0,4 1,4 2,4 3,4 4,4 0,3 1,3 2,3 3,3 4,3 0,2 1,2 2,2 3,2 4,2 0,1 1,1 2,1 3,1 4,1 0,0 1,0 2,0 3,0 4,0 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 2k2 3k2 4k2 4k2 6k2 8k2 6k2 9k2 12k2 k2 2k2 3k2 Robustness of Stochastic Biochemical Systems Sven Dražan Biochemical system – Stochastic / CTMC / State space enumeration a1 = k1.[S] a2 = k2.[W].[S] a3 = k3.[W] S → 2 S W + S → 2 W W → k1 k2 k3 W 20 21 22 23 24 15 16 17 18 19 10 11 12 13 14 5 6 7 8 9 0 1 2 3 4 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 2k2 3k2 4k2 4k2 6k2 8k2 6k2 9k2 12k2 k2 2k2 3k2 S Robustness of Stochastic Biochemical Systems Sven Dražan Biochemical system – Stochastic / CTMC / Q matrix a1 = k1.[S] a2 = k2.[W].[S] a3 = k3.[W] S → 2 S W + S → 2 W W → k1 k2 k3 W 20 21 22 23 24 15 16 17 18 19 10 11 12 13 14 5 6 7 8 9 0 1 2 3 4 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k1 2k1 3k1 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 k3 2k3 3k3 4k3 2k2 3k2 4k2 4k2 6k2 8k2 6k2 9k2 12k2 k2 2k2 3k2 S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 0 1 k3 -∑ 2 2k3 -∑ 3 3k3 -∑ 4 4k3 -∑ 5 -∑ k1 6 k2 k3 -∑ k1 7 2k2 2k3 -∑ k1 8 3k2 3k3 -∑ k1 9 4k3 -∑ k1 10 -∑ 2k1 11 2k2 k3 -∑ 2k1 12 4k2 2k3 -∑ 2k1 13 6k2 3k3 -∑ 2k1 14 4k3 -∑ 2k1 15 -∑ 3k1 16 3k2 k3 -∑ 3k1 17 6k2 2k3 -∑ 3k1 18 9k2 3k3 -∑ 3k1 19 4k3 -∑ 3k1 20 0 21 4k2 k3 -∑ 22 8k2 2k3 -∑ 23 12k2 3k3 -∑ 24 4k3 -∑ Robustness of Stochastic Biochemical Systems Sven Dražan Properties / Continuous system Signal Temporal Logic φ = a | !φ | φφ | φU[a,b]φ | G[a,b]φ | F[a,b]φ Reachability F[0,7](x>3) Response G[0,3]((x<1)F[0,2](x>3)) Oscillation G[0,5]( (x<1)  F[0,3](x>2)  (x>2)  F[0,3](x<1) ) t x 3 2 1 t x 3 2 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 t x 3 2 1 0 1 2 3 4 5 6 7 8 9 Robustness of Stochastic Biochemical Systems Sven Dražan Properties / Stochastic system Continuous Stochastic Logic Φ = tt | a | !Φ | ΦΦ | P~s[φ] | S~s[φ] ~{ ,  ,  , }, s  [0,1] φ = XΦ | ΦU[a,b]Φ 0  a  b  ℝ F[a,b]Φ = tt U[a,b]Φ G[a,b]Φ = ! F[a,b] !Φ Reachability P>0.2 [F[0,7](x > 300)] t x 300 200 100 0 1 2 3 4 5 6 7 Robustness of Stochastic Biochemical Systems Sven Dražan Properties / Stochastic system t x 300 200 100 0 1 2 3 4 5 6 7 Continuous Stochastic Logic Φ = tt | a | !Φ | ΦΦ | P~s[φ] | S~s[φ] ~{ ,  ,  , }, s  [0,1] φ = XΦ | ΦU[a,b]Φ 0  a  b  ℝ F[a,b]Φ = tt U[a,b]Φ G[a,b]Φ = ! F[a,b] !Φ Reachability P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Perturbations a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / kinetic parameter a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / kinetic parameter a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / kinetic parameter a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / external parameter a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / external parameter a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / external parameter a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / system structure a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / system structure a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / system structure a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / initial conditions a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / initial conditions a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 3, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / initial conditions a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S[2,3] W[2,3] Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan Perturbations / property a1 = f(k1.[S],t) a2 = f(k2.[W].[S],t) a3 = f(k3.[W],t) S → 2 S W + S → 2 W W → k1 k2 k3 S W System Initial conditions S = 2, W = 3 Property P>0.2 [F[0,7](x > 300)] Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness? Robustness is the ability of a system to maintain its property against internal and external perturbations. “Kitano, 2004” Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness? Robustness is the ability of a system to maintain its property against internal and external perturbations. “Kitano, 2004” Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness good for? What is Robustness good for? Robustness of Stochastic Biochemical Systems Sven Dražan To get a bigger picture Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness good for? Comparing systems 98.8% common DNA Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness good for? Temperature Pressure Temperature Pressure = 0.0 > 0.2 > 0.4 > 0.6 > 0.8 Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness good for? Temperature Pressure = 0.0 > 0.2 > 0.4 > 0.6 > 0.8 Temperature Pressure Robustness of Stochastic Biochemical Systems Sven Dražan What is Robustness good for? Temperature Pressure = 0.0 > 0.2 > 0.4 > 0.6 > 0.8 Temperature Pressure R = 0.338 R = 0.195 Robustness of Stochastic Biochemical Systems Sven Dražan State of the art – Robustness for Deterministic ODEs Breach (A. Donzé and O. Maler, 2010) COPASI (S. Hoops et. al. 2006.) BioCham (F. Fages et. al. 2004) Robustness of Stochastic Biochemical Systems Sven Dražan Aims Definition of Robustness for Stochastic Systems Efficient computational algorithms 0 1 2 3 4 5 6 7 8 9 10 11 12 0 0 1 k3 -∑ 2 2k3 -∑ 3 3k3 -∑ 4 4k3 -∑ 5 -∑ k1 6 k2 k3 -∑ k1 7 2k2 2k3 -∑ k1 8 3k2 3k3 -∑ 9 4k3 -∑ 10 -∑ 11 2k2 k3 -∑ 12 4k2 2k3 -∑ Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results Full CSL Bounded time CSL Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results S W 1,3 2,3 3,3 1,2 2,2 3,2 1,1 2,1 3,1 k1 2k1 2k3 3k3 3k2 4k2 Local minimum Local maximum Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results / Error control Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results / 1D parameter space refinement Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results / 1D model, 1 parameter, 0.01 error Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results / 1D model, 1 parameter, 0.001 error Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results / State space distribution in each interval Robustness of Stochastic Biochemical Systems Sven Dražan Preliminary results / 2D parameter space refinement 0.1 0.0825 0.0725 0.0625 0.05 degrA degrA degrB 0.005 0.0525 0.1 0.005 0.0525 0.1 State #17 Φ := R =? [C<1000] (B = 8,7,9) Parameter space / Robustness Parameter space / Error Robustness of Stochastic Biochemical Systems Sven Dražan Complexity What affects the complexity? • # of perturbed parameters and their disc/cont • dimension of system (# of species) • size of each dimension (# of particles of each species) • temporal size of property formulae • structural complexity of property formulae Robustness of Stochastic Biochemical Systems Sven Dražan Conclusion State of Art • Robustness = System + Property + Perturbations • Robustness of biochemical systems is important • Existing approaches mainly for deterministic ODEs Aims • Define robustness for stochastic systems • Find efficient algorithms to compute robustness How • Exploit structure of biochemical CTMCs • Parallelization on massively parallel platforms Robustness of Stochastic Biochemical Systems Sven Dražan Thank you for your attention Robustness of Stochastic Biochemical Systems Sven Dražan Previous results • L. Brim, J. Fabriková, S. Dražan and D. Šafránek. Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation. In Proceedings of the 3rd International Workshop on Computational Models for Cell Processes (COMPMOD 2011, EPTCS, pages 97–112, 2011. My contribution is 10% of the whole. I implemented input parsing in the prototype algorithm and participated during discussions. • J. Barnat, L. Brim, I. Černá, S. Dražan, J. Fabriková, J. Láník, D. Šafránek and M. Hongwu. BioDiVinE: A Framework for Parallel Analysis of Biological Models. In Proceedings of 2nd International Workshop on Computational Models for Cell Processes (COMPMOD 2009), EPTCS, pages 31–45, 2009. My contribution to the paper is 10%. I participated in the implementation phase and evaluated the algorithm’s scaling ability on a cluster. • J. Barnat, L. Brim, I. Černá, S. Dražan, J. Fabriková and D. Šafránek. Computational Analysis of Large-Scale Multi-Affine ODE Models. In International Workshop on High Performance Computational Systems Biology (HiBi 2009). IEEE Computer Society, pages 81–90, 2009. My contribution is 15% of the whole paper. I carried out the comparison of the different heuristics and visualized the results. Robustness of Stochastic Biochemical Systems Sven Dražan Sources • General definition of robustness • Kitano H (2007) Towards a theory of biological robustness. Molecular Systems Biology 3. • CSL – Continuous Stochastic Logic • Aziz A, Sanwal K, Singhal V, Brayton R (1996) Verifying continuous time Markov chains. In: Computer Aided Verification, Springer, volume 1102 of LNCS. p. 269–276. URL http://dx.doi.org/10.1007/3-540-61474-5 75. • Baier C, Haverkort B, Hermanns H, Katoen J (2003) Model-checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering 29: 524–541. • STL – Signal Temporal Logic • O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In FORMATS/FTRTFT, p. 152–166, 2004. • Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals. Formal Modeling and Analysis of Timed Systems, p. 92–106. Springer. doi:10.1007/978-3-642-15297-9_9 Robustness of Stochastic Biochemical Systems Sven Dražan Sources • Software • NetLogo – http://ccl.northwestern.edu/netlogo • Copasi - http://www.copasi.org • Biocham - http://contraintes.inria.fr/BIOCHAM • Breach - http://www-verimag.imag.fr/~donze/breach_page.html • Vector field visualization • http://kevinmehall.net/p/equationexplorer/vectorfield.html • Wikipedia • http://en.wikipedia.org/wiki/Lotka_Volterra_equation • Google Images • http://onlinelibrary.wiley.com/store/10.1111/j.1742-4658.2012.08719.x/asset/image_m/FEBS_8719_f1gam.gif • http://ars.els-cdn.com/content/image/1-s2.0-S1096717605000522-gr3.gif • http://wolf-happy-blog.blog.cz/profil • http://www.publicdomainpictures.net/view-image.php?picture=ovce-a-jeji-dite&image=124 • http://www.nipcam.com/images/fire_ant_control_products_large.jpg • http://upload.wikimedia.org/wikipedia/commons/2/24/Giant_Sequoia_Sequoiadendron_giganteum_Tyler_Tree_2000px.jpg • http://www.surftravelcompany.com/big-wave-pics/big-wave.jpg • http://upload.wikimedia.org/wikipedia/commons/f/f8/Terraforming_Mars_transition_horizontal.jpg • http://limages.vr-zone.net/body/15884/47675_TeslaKeplerGK110_FNL_800_PR.jpg.jpeg • Other • Human vs. Chimp: http://www.sciencedirect.com/science/article/pii/S0002929707640968