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News and Events on May 14, 2012

Part II
Cyanobacteria: understanding phototrophic growth
Dynamics of large-scale networks
Applications to biotechnology
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Water, water, everywhere, ...

Bacterial abundance in in stratified
oligotrophic waters can be high (> 105 cells ml  -1)

May 14, 2012, 0am



  

outline

Water, water, everywhere, ...

Bacterial abundance in in stratified
oligotrophic waters can be high (> 105 cells ml  -1)

But no primary productivity ...

May 14, 2012, 0am



  

May 14, 2012, a few hours later ...
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May 14, 2012, a few hours later ...
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May 14, 2012, and so Life begins ...
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The light reactions: eating the sun
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The light reactions: eating the sun

the light reactions

NADPH
ATP

A view from theory/modelling:

Very fast processes (sub-second)
Combinatorial number of states 
Modelling: either ODE or transition matrices
The system is inherently dynamic
Several reasonable models are available



  

Fixation of atmospheric CO2 by RuBisCO

carbon fixation

ribulose-1,5-bisphosphate (RuBP, 5 carbon)

CO2

3-phosphoglycerate (3 carbon)



  

Fixation of atmospheric CO2 by RuBisCO

carbon fixation

ribulose-1,5-bisphosphate (RuBP, 5 carbon)

CO2

3-phosphoglycerate (3 carbon)

A view from theory/modelling:

RubisCo is slow and sloppy
Only few interconversions per second
A limiting factor in phototrophic growth. 
Low specificity to its substrate
Modelling: usually ODE/enzyme kinetics 



  

The Calvin-Benson-Bassham (CBB) cycle: 
Regeneration

carbon fixation

From: R. Steuer and B. H. Junker. (2009) Computational Models of Metabolism: Stability 
and Regulation in Metabolic Networks. Advances in Chemical Physics, Volume 142
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The Calvin-Benson-Bassham (CBB) cycle: 
Regeneration

carbon fixation

From: R. Steuer and B. H. Junker. (2009) Computational Models of Metabolism: Stability 
and Regulation in Metabolic Networks. Advances in Chemical Physics, Volume 142

A view from theory/modelling:

Timescale: seconds to minutes
About 20 reactions with 100 parameters.
Typically implemented as ODE model
Q: are there alternative cycles?



  

The Calvin-Benson-Bassham (CBB) cycle: 
Regeneration

carbon fixation
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from: Knoop, Zilliges, Lockau, Steuer. Plant Physiology (2010)

cyanobacteria: phototrophic growth

Cellular metabolism: facilitated by a network of reactions
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from: Knoop, Zilliges, Lockau, Steuer. Plant Physiology (2010)

reconstruct

validate

analyze

A view from theory/modelling:

Large systems with hundreds of reactions
Assumption of stationarity
Flux-balance analysis (FBA)
→ Linear programming (LP)
→ optimization of objective functions

More to come ...

cyanobacteria: phototrophic growth

Cellular metabolism: facilitated by a network of reactions
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Cellular metabolism: facilitated by a network of reactions



  

cyanobacteria: phototrophic growth

Phototrophic growth and the environment:
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Phototrophic growth and the environment:



  

cyanobacteria: phototrophic growth

May 14, 2012, 11:59pm, by the end of the day ...

1.1 × 1019 joule solar energy is 
absorbed by Earth's atmosphere, 
oceans and land masses per day …

600 000 000 tons of carbon fixed by 
photosynthesis

120 Gt carbon per year (land)

  90 Gt carbon per year (ocean) 



  

Cyanobacteria: a hierarchy of processes
We aim to understand the life and growth of cyanobacteria

cyanobacteria: the CyanoNetwork



  

Cyanobacteria: a hierarchy of processes
We aim to understand the life and growth of cyanobacteria

cyanobacteria: the CyanoNetwork

The CyanoTeam and CyanoNetwork

An association between several groups from EU, 
Israel, and USA to model and understand a
cyanobacterial cell in silico.

International team led by John Whitmarsh
Coordinator local experimental team: Ladislav Nedbal
Coordinator local modelling team: Ralf Steuer
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Cyanobacteria: understanding phototrophic growth

cyanobacteria
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capable of oxygen-evolving photosynthesis



  

Cyanobacteria: understanding phototrophic growth

cyanobacteria

 phototrophic micro-organisms (prokaryotes)

capable of oxygen-evolving photosynthesis

globally extremely abundant

The cyanobacterium Prochlorococcus is the 
numerically dominant phototroph in some oceans (up 
to half of the photosynthetic biomass).

Cyanobacterial abundance in in stratified oligotrophic 
waters can be high (> 105 cells ml  -1)

from: Sullivan et al. Nature (2003)



  

Cyanobacteria: understanding phototrophic growth

cyanobacteria

 phototrophic micro-organisms (prokaryotes)

capable of oxygen-evolving photosynthesis

globally extremely abundant

first mass-producers of free molecular oxygen

responsible for the Great Oxygenation Event 
(GOE) around 2.4 billion years ago.
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Cyanobacteria: understanding phototrophic growth

cyanobacteria

 phototrophic micro-organisms (prokaryotes)

capable of oxygen-evolving photosynthesis

globally extremely abundant

first mass-producers of free molecular oxygen

ancestors of modern day chloroplasts

relevant for the global carbon cycle

live as symbionts and in communities

relevance for biotechnology (biofuels)



  

Cyanobacteria: understanding phototrophic growth

cyanobacteria

relevance for biotechnology (biofuels)

An open pond Spirulina farm:



  

Cyanobacteria: understanding phototrophic growth
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Cyanobacteria: understanding phototrophic growth

cyanobacteria

relevance for biotechnology (biofuels)



  

Cyanobacteria: a modular approach
We aim to understand the life and growth of cyanobacteria

cyanobacteria
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Cyanobacteria: a modular approach

cyanobacteria

DNA topology

Transcriptome

Energy: ATP
Redox: NADPH

CCM

THE ENVIRONMENT



  

Cyanobacteria: a hierarchy of processes
Phototrophic growth and the environment

cyanobacteria: from biology to ecology



  

cyanobacteria: phototrophic growth

Phototrophic growth and the environment:



  

Cyanobacteria: a hierarchy of processes
Phototrophic growth and the environment

cyanobacteria: photobioreactor



  

Cyanobacteria: a hierarchy of processes
Phototrophic growth and the environment

Stefan Mueller et al. An integrated model of photosynthetic growth in a bioreactor: gas-liquid 
mass transfer, carbonate chemistry, and cellular fluxes (to be completed soon).

Traditional ODE model for gas-liquid mass transfer:

plus carbonate chemistry and a light gradient.

cyanobacteria: photobioreactor



  

cyanobacteria: a hierarchy of processes

Biophysics of photosynthesis and the light reactions

ODE models of cellular metabolism and CCMs

Integration of the cyanobacterial circadian clock

Integration of gene expression and signalling

Need to integrate diverse computational 
methodologies to describe sub-processes

Necessitates a community approach:
The international CyanoTeam

Cyanobacteria: a hierarchy of processes
We aim to understand the life and growth of cyanobacteria



  

Modelling cellular metabolism
Understanding phototrophic growth in a complex environment

modelling metabolism



  

Steuer, Knoop, Machne. Journal of Experimental Botany (2012)

Modelling cellular metabolism
Understanding phototrophic growth in a complex environment

modelling metabolism



  

Modelling cellular metabolism
Mechanistic versus teleological models

Based on mechanistic details of the 
underlying processes (bottom-up)

modelling metabolism



  

Modelling cellular metabolism
Mechanistic versus teleological models

Based on constraints and optimization 
principles (top-down).

Widely applied to study flux distributions in 
metabolic network

modelling metabolism
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Mechanistic versus teleological models

All results are based on a high-quality reconstruction of the 
underlying network of biochemical interconversions.

modelling metabolism



  

Modelling cellular metabolism
Mechanistic versus teleological models

All results are based on a high-quality reconstruction of the 
underlying network of biochemical interconversions.

Metabolic reconstruction: a compendium of all biochemical 
interconversions of small molecules within a cell.

modelling metabolism



  

[1] Start with databases and genome sequence: Initial draft network

[2] Identify gaps and inconsistencies: manual curation and
literature mining

[3] Convert to mathematical model: Include pseudo-reactions
for cellular maintenance

[4] Analyse the model using contraint-based optimization

The whole process is iterative and is repeated several times!

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

modelling metabolism: network reconstruction



  

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

From: Steuer et al. JXB (2012)

modelling metabolism: network reconstruction



  

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

Plot by H. Knoop (HU Berlin), see also Knoop et al. Plant Physiology (2010)

modelling metabolism: network reconstruction
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modelling metabolism: network reconstruction



  

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

Analyse the model using contraint-based optimization

v1 v2

v3

Assuming stationary conditions:

v1 – v2 – v3 = 0

modelling metabolism: FBA



  

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

Analyse the model using contraint-based optimization

More general:

2nd  assumptions: metabolic fluxes are organized such that a 
given (usually linear) objective function Z is maximized.  

modelling metabolism: FBA



  

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

Analyse the model using contraint-based optimization

See: Steuer and Junker. Advances in Chemical Physics (2009)

modelling metabolism: FBA



  

Modelling cellular metabolism
A stoichiometric model of Synechocystis sp. PCC6803

From: Steuer et al. JXB (2012)

modelling metabolism: FBA



  

A stoichiometric model of Synechocystis 6803
Applications of constraint-based optimization

● Optimal flux patterns (maximal biomass yield)
● Flux-variability analysis
● Gene essentiality analysis
● Reaction coupling (with A. Bockmayr, FU Berlin)

modelling metabolism: FBA



  

A stoichiometric model of Synechocystis 6803
Optimal flux patterns (maximal biomass yield)

flux distribution: growth rate/yield:

modelling metabolism: FBA



  

A stoichiometric model of Synechocystis 6803
Gene essentiality analysis: network validation

still viable?

126 (of 337) genes are classified as 
essential for biomass formation:
Comparison with CyanoMutants

new hypotheses/questions!

modelling metabolism: FBA



  

A stoichiometric model of Synechocystis 6803
Applications of constraint-based optimization: Biofuels

cyanobacteria: biofuels



  

A stoichiometric model of Synechocystis 6803
The model as a platform for strain improvement

cyanobacteria: biofuels
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A stoichiometric model of Synechocystis 6803
The model as a platform for strain improvement

cyanobacteria: biofuels

product CO2 ATP NAD(P)H “photons”

ethanol 2 8 6 24.33

ethylene 2.5 23.5 12 64.92

isobutanol 4 18 12 51

isoprene 5 22 13 60.66



  

cyanobacteria: biofuels

From lab to applications: large-scale 
cultivation of Synechocystis sp. PCC 6803 



  

cyanobacteria: biofuels

From lab to applications: large-scale 
cultivation of Synechocystis sp. PCC 6803 
Culture Duration: 79 days/Final EtOH Conc. : 0.15 %(v/v)



  

A stoichiometric model of Synechocystis 6803
Applications of constraint-based optimization: Biofuels

Introduce fuel pathways into the stoichiometric reconstruction

www.directfuel.eu

cyanobacteria: biofuels

­ contributions to host optimization and metabolic streamlining
­ identify main routes of synthesis for precursor metabolites
­ prediction of optimal knockout targets for product formation



  

A stoichiometric model of Synechocystis 6803
CHALLENGES AND EXTENSIONS OF FBA

● Thermodynamic consistency
● The costs of pathways: minimum-cost flow problems 
● Temporal coordination of metabolism

modelling metabolism: beyond FBA



  

A stoichiometric model of Synechocystis 6803
Temporal coordination of metabolism

modelling metabolism: temporal coordination



  

A stoichiometric model of Synechocystis 6803
Temporal coordination of metabolism

Light
metabolism

Dark
metabolism

Storage

modelling metabolism: temporal coordination



  

A stoichiometric model of Synechocystis 6803
Temporal coordination of metabolism

Circadian time
E

xpress ion of m
etabo lic gene s

Indeed, cyanobacterial metabolism follows 
a complex circadian program

Most genes expressed during light period

Data: group of I. Axmann (ITB, Berlin)
Clustering/Data analysis: Rob Lehmann, Rainer Machne
submitted

modelling metabolism: temporal coordination



  

A stoichiometric model of Synechocystis 6803
Temporal coordination of metabolism

A time-dependent objective function:

modelling metabolism: temporal coordination



  

modelling metabolism: summary

 

Modelling cellular metabolism: summary
Understanding phototrophic growth in a complex environment

Biological systems typically involve multiple temporal 
and spatial scales: need for different methodologies.

It is a conceptual and computational challenge to 
integrate diverse systems into a coherent whole.

Of most interest are intermediate methods that 
allow to deal with incomplete and uncertain 
data.

Large-scale predictive models of cells are 
possible: computational biology needs to 
integrate parts into a coherent whole



  

The end

 

Thanks for your attention!
And thanks to the group in Berlin:

Henning Knoop
Sabrina Hoffmann
Stefan Mueller
Natalie Stanford
Raik Otto
Robert Lehmann (with I. Axmann)

And other people involed 

Ilka Axmann (ITB)
Rainer Machne (ITB, Wien) 
Wolfgang Lockau (HU)
Ettore Murabito (Manchester)
Hans Westerhoff (Manchester)
Lada Nedbal (Brno, CZ)
Wolfgang Hess (ALU-FR)
Patrik Jones (Turku)
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