Introduction to Natural Language Processing (600.465)

Language Modeling (and the Noisy Channel)

Dr. Jan Hajič

CS Dept., Johns Hopkins Univ.

hajic@cs.jhu.edu

www.cs.jhu.edu/~hajic

The Noisy Channel

Prototypical case:

- Model: probability of error (noise):
- Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6
- The Task:

known: the noisy output; want to know: the input (decoding)

Noisy Channel Applications

- OCR
 - straightforward: text → print (adds noise), scan → image
- Handwriting recognition
 - text \rightarrow neurons, muscles ("noise"), scan/digitize \rightarrow image
- Speech recognition (dictation, commands, etc.)
 - $text \rightarrow conversion$ to acoustic signal ("noise") \rightarrow acoustic waves
- Machine Translation
 - text in target language → translation ("noise") → source language
- Also: Part of Speech Tagging
 - sequence of tags \rightarrow selection of word forms \rightarrow text

Noisy Channel: The Golden Rule of ...

OCR, ASR, HR, MT, ...

Recall:

$$p(A|B) = p(B|A) p(A) / p(B)$$
 (Bayes formula)
 $A_{best} = argmax_A p(B|A) p(A)$ (The Golden Rule)

- p(B|A): the acoustic/image/translation/lexical model
 - application-specific name
 - will explore later
- p(A): the language model

The Perfect Language Model

- Sequence of word forms [forget about tagging for the moment]
- Notation: $A \sim W = (w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

$$p(W) = ?$$

Well, we know (Bayes/chain rule →):

$$p(W) = p(w_1, w_2, w_3, ..., w_d) =$$

=
$$p(\mathbf{w}_1) \times p(\mathbf{w}_2|\mathbf{w}_1) \times p(\mathbf{w}_3|\mathbf{w}_1,\mathbf{w}_2) \times ... \times p(\mathbf{w}_d|\mathbf{w}_1,\mathbf{w}_2,...,\mathbf{w}_{d-1})$$

Not practical (even short W → too many parameters)

Markov Chain

- Unlimited memory (cf. previous foil):
 - for w_i, we know <u>all</u> its predecessors w₁,w₂,w₃,...,w_{i-1}
- Limited memory:
 - we disregard "too old" predecessors
 - remember only k previous words: w_{i-k}, w_{i-k+1},..., w_{i-1}
 - called "kth order Markov approximation"
- + stationary character (no change over time):

$$p(W) \cong \prod_{i=1...d} p(w_i|w_{i-k}, w_{i-k+1}, ..., w_{i-1}), \ d \equiv |W|$$

n-gram Language Models

(n-1)th order Markov approximation → n-gram LM:

- In particular (assume vocabulary |V| = 60k):
 - 0-gram LM: uniform model, p(w) = 1/|V|, 1 parameter
 - 1-gram LM: unigram model, p(w), 6×10⁴ parameters
 2-gram LM: bigram model, p(w_i|w_{i,1}) 3.6×10⁹ parameters
 - 3-gram LM: trigram model, $p(w_i|w_{i,2},w_{i,1})$ 2.16×10¹⁴ parameters

LM: Observations

- How large n?
 - nothing is enough (theoretically)
 - but anyway: as much as possible (\rightarrow close to "perfect" model)
 - empirically: 3
 - parameter estimation? (reliability, data availability, storage space, ...)
 - 4 is too much: $|V|=60k \rightarrow 1.296 \times 10^{19}$ parameters
 - but: 6-7 would be (almost) ideal (having enough data): in fact, one can recover original from 7-grams!
- Reliability ~ (1 / Detail) (→ need compromise)
- For now, keep word forms (no "linguistic" processing)

The Length Issue

- $\forall n; \ \Sigma_{w \in \Omega^n} p(w) = 1 \Rightarrow \Sigma_{n=1,\infty} \Sigma_{w \in \Omega^n} p(w) >> 1 \ (\rightarrow \infty)$
- We want to model <u>all</u> sequences of words
 - for "fixed" length tasks: no problem n fixed, sum is 1
 - · tagging, OCR/handwriting (if words identified ahead of time)
 - for "variable" length tasks: have to account for
 - · discount shorter sentences
- General model: for each sequence of words of length n, define $p'(w) = \lambda_n p(w)$ such that $\sum_{n=1,\infty} \lambda_n = 1 \Rightarrow \sum_{w \in \mathbb{N}^n} p'(w) = 1$

e.g., estimate λ_n from data; or use normal or other distribution

Parameter Estimation

- Parameter: numerical value needed to compute p(w|h)
- From data (how else?)
- Data preparation:
 - · get rid of formatting etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word")
 - define sentence boundaries (insert "words" <s> and </s>)
 - · letter case: keep, discard, or be smart:
 - name recognition
 - number type identification
 - [these are huge problems per se!]
 - numbers: keep, replace by <num>, or be smart (form ~ pronunciation)

Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T:
 - count sequences of three words in T: $c_3(w_{i,2}, w_{i,1}, w_i)$
 - [NB: notation: just saying that the three words follow each other]
 - count sequences of two words in T: $c_2(w_{i-1}, w_i)$:
 - either use $c_2(y,z) = \sum_w c_3(y,z,w)$
 - · or count differently at the beginning (& end) of data!

$$p(\mathbf{w}_{i}|\mathbf{w}_{i-2},\mathbf{w}_{i-1}) =_{\text{est.}} c_3(\mathbf{w}_{i-2},\mathbf{w}_{i-1},\mathbf{w}_i) / c_2(\mathbf{w}_{i-2},\mathbf{w}_{i-1})$$

Character Language Model

Use individual characters instead of words:

$$p(W) =_{df} \prod_{i=1..d} p(c_i | c_{i-n+1}, c_{i-n+2}, ..., c_{i-1})$$

- Same formulas etc.
- Might consider 4-grams, 5-grams or even more
- Good only for language comparison
- Transform cross-entropy between letter- and word-based models:

 $H_S(p_0) = H_S(p_w) / avg. \# of characters/word in S$

LM: an Example

Training data:

<s><s> He can buy the can of soda.

- Unigram: $p_1(He) = p_1(buy) = p_1(the) = p_1(of) = p_1(soda) = p_1(.) = .125$ $p_1(ean) = .25$
- Bigram: $p_2(He|<s>) = 1$, $p_2(can|He) = 1$, $p_2(buy|can) = .5$, $p_2(of|can) = .5$, $p_2(the|buy) = 1$,...
- Trigram: $p_3(He|<s>,<s>) = 1$, $p_3(can|<s>,He) = 1$, $p_3(buy|He,can) = 1$, $p_3(of|the,can) = 1$, ..., $p_3(.|of,soda) = 1$.
- Entropy: $H(p_1) = 2.75$, $H(p_2) = .25$, $H(p_3) = 0 \leftarrow Great$?!

LM: an Example (The Problem)

- · Cross-entropy:
- $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_S(p_1)$ fails (= $H_S(p_2)$ = $H_S(p_3)$ = ∞), because:
 - all unigrams but p₁(the), p₁(buy), p₁(of) and p₁(.) are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible*) probabilities non-zero.

^{*}in fact, <u>all</u>: remember our graph from day 1?

Introduction to Natural Language Processing (600.465)

LM Smoothing (The EM Algorithm)

Dr. Jan Hajiè

CS Dept., Johns Hopkins Univ.

hajic@cs.jhu.edu

www.cs.jhu.edu/~hajic

The Zero Problem

- "Raw" n-gram language model estimate:
 - necessarily, some zeros
 - !many: trigram model $\rightarrow 2.16 \times 10^{14}$ parameters, data $\sim 10^9$ words
 - which are true 0?
 - optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams
 - optimal situation cannot happen, unfortunately (open question: how many data would we need?)
 - $-\rightarrow$ we don't know
 - we must eliminate the zeros
- Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!

Why do we need Nonzero Probs?

- To avoid infinite Cross Entropy:
 - happens when an event is found in test data which has not been seen in training data
 - $H(p) = \infty$: prevents comparing data with ≥ 0 "errors"
- To make the system more robust
 - low count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating the Zero Probabilities: Smoothing

- Get new p'(w) (same Ω): almost p(w) but no zeros
- Discount w for (some) p(w) > 0: new p'(w) < p(w) $\sum_{w \in discounted} (p(w) - p'(w)) = D$
- Distribute D to all w; p(w) = 0: new p'(w) > p(w)
 possibly also to other w with low p(w)
- For some w (possibly): p'(w) = p(w)
- Make sure $\sum_{w \in \Omega} p'(w) = 1$
- There are many ways of <u>smoothing</u>

Smoothing by Adding 1

- Simplest but not really usable:
 - Predicting words w from a vocabulary V, training data T:

$$p'(w|h) = (c(h,w) + 1) / (c(h) + |V|)$$

- for non-conditional distributions: p'(w) = (c(w) + 1) / (|T| + |V|)
- Problem if |V| > c(h) (as is often the case; even >> c(h)!)
- Example: Training data: <s> what is it what is small? |T| = 8
 - $V = \{ \text{ what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12$
 - p(it)=.125, p(what)=.25, p(.)=0 $p(what is it?) = .25^2 \times .125^2 \cong .001$ $p(it is flying.) = .125 \times .25 \times 0^2 = 0$
 - $p'(it) = .1, p'(what) = .15, p'(.) = .05 p'(what is it?) = .15^2 \times .1^2 \cong .0002$ $p'(it is flying.) = .1 \times .15 \times .05^2 \cong .00004$

Adding less than 1

- Equally simple:
 - Predicting words w from a vocabulary V, training data T:

$$p'(w|h) = (c(h,w) + \lambda) / (c(h) + \lambda|V|), \lambda < 1$$

- for non-conditional distributions: $p'(w) = (c(w) + \lambda) / (|T| + \lambda |V|)$
- Example: Training data: <s> what is it what is small? |T| = 8
 - $V = \{ \text{ what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12$
 - p(it)=.125, p(what)=.25, p(.)=0 $p(what is it?) = .25^2 \times .125^2 \cong .001$ $p(it is flying.) = .125 \times .25 \times 0^2 = 0$
 - Use $\lambda = .1$:
 - $p'(it) \cong .12$, $p'(what) \cong .23$, $p'(.) \cong .01$ $p'(what is it?) = .23^2 \times .12^2 \cong .0007$ $p'(it is flying.) = .12 \times .23 \times .01^2 \cong .000003$

Good - Turing

- Suitable for estimation from large data
 - similar idea: discount/boost the relative frequency estimate:

```
\begin{aligned} p_r(w) &= (c(w)+1) \times N(c(w)+1) / (|T| \times N(c(w))) \,, \\ &\text{where } N(c) \text{ is the count of words with count } c \text{ (count-of-counts)} \\ &\text{specifically, for } c(w) &= 0 \text{ (unseen words), } p_r(w) &= N(1) / (|T| \times N(0)) \end{aligned}
```

- good for small counts (< 5-10, where N(c) is high)
- variants (see MS)
- normalization! (so that we have $\Sigma_{\mathbf{w}} \mathbf{p}'(\mathbf{w}) = 1$)

Good-Turing: An Example

- Example: remember: $p_r(w) = (c(w) + 1) \times N(c(w) + 1) / (|T| \times N(c(w)))$ Training data: $\langle s \rangle$ what is it what is small? |T| = 8
 - V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .25 2 ×.125 2 = .001 p(it is flying.) = .125×.25×0 2 = 0
 - * Raw reestimation $(N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0 \text{ for } i \ge 2)$: $p_r(it) = (1+1) \times N(1+1)/(8 \times N(1)) = 2 \times 2/(8 \times 4) = .125$ $p_r(what) = (2+1) \times N(2+1)/(8 \times N(2)) = 3 \times 0/(8 \times 2) = 0 \text{: keep orig. p(what)}$ $p_r(.) = (0+1) \times N(0+1)/(8 \times N(0)) = 1 \times 4/(8 \times 6) \cong .083$
 - Normalize (divide by $1.5 = \sum_{w \in |V|} p_r(w)$) and compute: $p'(it) \cong .08, p'(what) \cong .17, p'(.) \cong .06 p'(what is it?) = .17^2 \times .08^2 \cong .0002$ $p'(it is flying.) = .08 \times .17 \times .06^2 \cong .00004$

Smoothing by Combination: Linear Interpolation

- Combine what?
 - · distributions of various level of detail vs. reliability
- n-gram models:
 - use (n-1)gram, (n-2)gram, ..., uniform

 reliability

≺ detail

- Simplest possible combination:
 - sum of probabilities, normalize:
 - p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0, p(0) = .4, p(1) = .6:
 - p'(0|0) = .6, p'(1|0) = .4, p'(0|1) = .7, p'(1|1) = .3

Typical n-gram LM Smoothing

Weight in less detailed distributions using λ=(λ₀,λ₁,λ₂,λ₃):

$$\begin{aligned} p'_{\lambda}(w_{i}|\ w_{i-2}, & w_{i-1}) = \lambda_{3} p_{3}(w_{i}|\ w_{i-2}, & w_{i-1}) + \\ \lambda_{2} p_{2}(w_{i}|\ w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{0} / |V| \end{aligned}$$

Normalize:

$$\lambda_i > 0$$
, $\Sigma_{i=0..n} \lambda_i = 1$ is sufficient ($\lambda_0 = 1 - \Sigma_{i=1..n} \lambda_i$) (n=3)

- Estimation using MLE:
 - <u>fix</u> the p₃, p₂, p₁ and |V| parameters as estimated from the training data
 - then find such $\{\lambda_i\}$ which minimizes the cross entropy (maximizes probability of data): $-(1/|D|)\sum_{i=1,|D|}\log_2(p^*_{\lambda}(w_i|h_i))$

Held-out Data

- What data to use?
 - try the training data T: but we will always get $\lambda_3 = 1$
 - why? (let p_{iT} be an i-gram distribution estimated using r.f. from T)
 - minimizing $H_T(p_\lambda)$ over a vector λ , $p_\lambda = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$
 - $-\text{ remember: } H_{T}(p'_{\lambda}) = H(p_{3T}) + D(p_{3T}||p'_{\lambda}); \ (p_{3T} \text{ fixed} \rightarrow H(p_{3T}) \text{ fixed, best)}$
 - which p'_{λ} minimizes $H_T(p'_{\lambda})$? Obviously, a p'_{λ} for which $D(p_{3T}||p'_{\lambda})=0$
 - ... and that's p_{3T} (because D(p||p) = 0, as we know).
 - ... and certainly $p'_{\lambda} = p_{3T}$ if $\lambda_3 = 1$ (maybe in some other cases, too).
 - $(p'_{\lambda} = 1 \times p_{3T} + 0 \times p_{2T} + 0 \times p_{1T} + 0/|V|)$
 - thus: do not use the training data for estimation of λ !
 - must hold out part of the training data (heldout data, H):
 - · ... call the remaining data the (true/raw) training data, T
 - the test data S (e.g., for comparison purposes): still different data!

The Formulas

• Repeat: minimizing $-(1/|H|)\sum_{i=1..|H|}log_2(p'_{\lambda}(w_i|h_i))$ over λ

$$\begin{array}{c} p'_{\lambda}(w_{i}|\;h_{i}) = p'_{\lambda}(w_{i}|\;w_{i-2},\!w_{i-1}) = \lambda_{3}\,p_{3}(w_{i}|\;w_{i-2},\!w_{i-1}) + \\ \lambda_{2}\,p_{2}(w_{i}|\;w_{i-1}) + \lambda_{1}\,p_{1}(w_{i}) + \lambda_{0}/|V| \end{array} \label{eq:power_power} \hspace{0.5cm} \boldsymbol{J}$$

"Expected Counts (of lambdas)": j = 0..3

$$c(\lambda_j) = \sum_{i=1..|H|} (\lambda_j p_j(w_i|h_i) / p'_{\lambda}(w_i|h_i)) \int_{\mathbb{R}^n} dt dt$$

• "Next λ ": j = 0...3

$$\lambda_{j,\text{next}} = c(\lambda_j) / \Sigma_{k=0..3} (c(\lambda_k))$$

The (Smoothing) EM Algorithm

- 1. Start with some λ , such that $\lambda_i > 0$ for all $j \in 0..3$.
- 2. Compute "Expected Counts" for each λ_i .
- 3. Compute new set of $\lambda_i,$ using the "Next λ " formula.
- Start over at step 2, unless a termination condition is met.
- Termination condition: convergence of λ .
 - Simply set an ε , and finish if $|\lambda_j \lambda_{j,next}| < \varepsilon$ for each j (step 3).
- Guaranteed to converge: follows from Jensen's inequality, plus a technical proof.

Remark on Linear Interpolation Smoothing

- · "Bucketed" smoothing:
 - use several vectors of λ instead of one, based on (the frequency of) history: λ(h)
 - e.g. for $h = (mi \, crograms, per)$ we will have $\lambda(h) = (.999, .0009, .00009, .00001)$

(because "cubic" is the only word to follow ...)

 actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):

 $\lambda(b(h))$, where b: $V^2 \rightarrow N$ (in the case of trigrams)

b classifies histories according to their reliability (~ frequency)

Bucketed Smoothing: The Algorithm

- First, determine the bucketing function <u>b</u> (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket $(f_{max}(b))$
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed $f_{max}(b)$ (you might end up with slightly more than 1000 buckets)
- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Simple Example

- Raw distribution (unigram only; smooth with uniform):
 p(a) = .25, p(b) = .5, p(α) = 1/64 for α ∈ {c.r}, = 0 for the rest: s,t,u,v,w,x,y,z
- Heldout data: <u>baby</u>; use one set of λ (λ₁: unigram, λ₀: uniform)

• Start with
$$\lambda_1 = .5$$
; $p_{\lambda}^{3}(b) = .5 \times .5 + .5 / 26 = .27$
 $p_{\lambda}^{3}(a) = .5 \times .25 + .5 / 26 = .14$
 $p_{\lambda}^{3}(y) = .5 \times 0 + .5 / 26 = .02$
 $e(\lambda_1) = .5 \times .5 / .27 + .5 \times .25 / .14 + .5 \times .5 / .27 + .5 \times 0 / .02 = 2.72$
 $e(\lambda_0) = .5 \times .04 / .27 + .5 \times .04 / .14 + .5 \times .04 / .27 + .5 \times .04 / .02 = 1.28$
Normalize: $\lambda_{1, \text{next}} = .68$, $\lambda_{0, \text{next}} = .32$.

Repeat from step 2 (recompute p' $_{\lambda}$ first for efficient computation, then $c(\lambda_i)$, ...) Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

Some More Technical Hints

- Set V = {all words from training data}.
 - You may also consider V = T ∪ H, but it does not make the coding in any way simpler (in fact, harder).
 - · But: you must never use the test data for you vocabulary!
- Prepend two "words" in front of all data:
 - · avoids beginning-of-data problems
 - · call these index -1 and 0: then the formulas hold exactly
- When $c_n(w,h) = 0$:
 - Assign 0 probability to p_n(w|h) where c_{n-1}(h) > 0, but a uniform probability (1/|V|) to those p_n(w|h) where c_{n-1}(h) = 0 [this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!]