

Textual Information Extraction

$\frac{\text { Mrs. Green }}{\text { Perdon }}$ spoke today in $\frac{\text { New York. }}{\text { Location }} \frac{\text { Green }}{\text { Person }}$ chairs the finance committee.

- Grade
- Course Difficulty
- Student Intelligence
- Student SAT
- Reference Letter

$$
P(G, D, I, S, L)
$$

$C P O=$ cone. prob. dist.

Chain Rule for Bayesian Networks

$P(D, I, G, S, L)=P(D) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G)$
Distribution defined as a product of factors!

Daphne Koller

Bayesian Network

- A Bayesian network is:
- A directed acyclic graph (DAG) G whose nodes represent the random variables X_{1}, \ldots, X_{n}
- For each node X_{i} a CPD P($\left.X_{i} \mid \operatorname{Par}_{G}\left(X_{i}\right)\right)$
- The BN represents a joint distribution via the chain rule for Bayesian networks

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{0} P\left(X_{i} \mid \operatorname{Par}_{G}\left(X_{i}\right)\right)
$$

$B N$ Is a Legal Distribution: $P \geq 0$

P is a product of CPD,
$C P D_{s}$ are non-regative
$B N$ Is a Legal Distribution: $\sum P=1$

$$
\begin{aligned}
& \sum_{D I G S, L} P(D, I, G, S, L)=\sum_{0, T, G G,} P(D) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G) \\
& =\sum_{0, I, G, S} P(D) P(I) P(G \mid I, D) P(S \mid I) \sum_{L} P(G / G) \\
& =\Sigma_{D, I \cdot \sigma=} P(D) P(I) P(G \mid I, D) P(S \mid I) \\
& =\sum_{0, I, G} P(D) P(I) P(G \mid I, D) \sum_{0}^{1}{ }^{2}(S \mid I) \\
& =\Sigma_{D, I} P(D) P(I) \Sigma_{G} \frac{P(G \mid I, D)}{\Sigma}
\end{aligned}
$$

P Factorizes over G

- Let G be a graph over X_{1}, \ldots, X_{n}.
- P factorizes over G if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i} P\left(X_{i} \mid \operatorname{Par}_{G}\left(X_{i}\right)\right)
$$

Naïve Bayes Model

Naïve Bayes Classifier

$$
\begin{aligned}
& \frac{P\left(C=c^{1} \mid x_{1}, \ldots, x_{n}\right)}{P\left(C=c^{2} \mid x_{1}, \ldots, x_{n}\right)}=\underbrace{\frac{P\left(C=c^{1}\right)}{P\left(C=c^{2}\right)}}_{\text {ods ratios }} \underbrace{\prod_{i=1}^{n} \frac{P\left(\underline{x_{i}} \mid C=c^{1}\right)}{P\left(x_{i} \mid C=c^{2}\right)}}_{i=1}
\end{aligned}
$$

Bernoulli Naïve Bayes for Text

$$
\frac{P\left(C=c^{1} \mid x_{1}, \ldots, x_{n}\right)}{P\left(C=c^{2} \mid x_{1}, \ldots, x_{n}\right)}=\frac{P\left(C=c^{1}\right)}{P\left(C=c^{2}\right)} \prod_{i=1}^{n} \frac{P\left(x_{i} \mid C=c^{1}\right)}{P\left(x_{i} \mid C=c^{2}\right)}
$$

Multinomial Naïve Bayes for Text

$$
\frac{P\left(C=c^{1} \mid x_{1}, \ldots, x_{n}\right)}{P\left(C=c^{2} \mid x_{1}, \ldots, x_{n}\right)}=\frac{P\left(C=c^{1}\right)}{P\left(C=c^{2}\right)} \prod_{i=1}^{n} \frac{P\left(x_{i} \mid C=c^{1}\right)}{P\left(x_{i} \mid C=c^{2}\right)}
$$

Summary

- Simple approach for classification
- Computationally efficient
- Easy to construct
- Surprisingly effective in domains with many weakly relevant features
- Strong independence assumptions reduce performance when many features are strongly correlated

Representation
Bayesian Networks

Application: Diagnosis

Medical Diagnosis: Pathfinder (1992)

- Help pathologist diagnose lymph node pathologies (60 different diseases)
- Pathfinder I: Rule-based system
- Pathfinder II used naïve Bayes and got superior performance

Heckerman et al.

Medical Diagnosis: Pathfinder (1992)

- Pathfinder III: Naïve Bayes with better knowledge engineering
- No incorrect zero probabilities
- Better calibration of conditional probabilities
$-P\left(\right.$ finding \mid disease $_{1}$) to P (finding | disease ${ }_{2}$)
- Not P (finding \mid disease) to P (finding \mid disease)

Heckerman et al.

Medical Diagnosis: Pathfinder (1992)

- Pathfinder IV: Full Bayesian network
- Removed incorrect independencies
- Additional parents led to more accurate estimation of probabilities
- BN model agreed with expert panel in 50/53 cases, vs 47/53 for naïve Bayes model
- Accuracy as high as expert that designed the model
Heckerman et al.

