
4
In a major matter,
no details are small.

French Proverb

The Processor
4.1 Introduction 300

4.2 Logic Design Conventions 303

4.3 Building a Datapath 307

4.4 A Simple Implementation Scheme 316

4.5 An Overview of Pipelining 330

4.6 Pipelined Datapath and Control 344

4.7 Data Hazards: Forwarding versus

Stalling 363

4.8 Control Hazards 375

4.9 Exceptions 384

Computer Organization and Design. DOI: 10.1016/B978-0-12-374750-1.00004-9
© 2012 Elsevier, Inc. All rights reserved.

4.10 Parallelism and Advanced Instruction-Level Parallelism 391

4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline 404

4.12 Advanced Topic: an Introduction to Digital Design Using a

Hardware Design Language to Describe and Model a Pipeline

and More Pipelining Illustrations 406

4.13 Fallacies and Pitfalls 407

4.14 Concluding Remarks 408

4.15 Historical Perspective and Further Reading 409

4.16 Exercises 409

The Five Classic Components of a Computer

300 Chapter 4 The Processor

 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI).
Chapter 2 explains that the compiler and the instruction set architec ture determine
the instruction count required for a given program. However, the implementation
of the processor determines both the clock cycle time and the number of clock
cycles per instruction. In this chapter, we construct the datapath and control unit
for two different implementations of the MIPS instruction set.

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section. It is followed by a section that builds up a datapath and constructs a
simple version of a processor sufficient to implement an instruction set like MIPS.
The bulk of the chapter covers a more realistic pipelined MIPS implementation,
followed by a section that develops the concepts necessary to implement more
complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section and
Section 4.5 present the basic concepts of pipelining. Recent trends are covered in
Section 4.10, and Section 4.11 describes the recent AMD Opteron X4 (Barcelona)
microprocessor. These sections provide enough background to understand the
pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance
in more depth, Sections 4.3, 4.4, and 4.6 will be useful. Those interested in learn-
ing how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers
with an interest in modern hardware design, Section 4.12 on the CD describes
how hardware design languages and CAD tools are used to implement hardware,
and then how to use a hardware design language to describe a pipelined imple-
mentation. It also gives several more illustrations of how pipelining hardware
executes.

A Basic MIPS Implementation
We will be examining an implementation that includes a subset of the core MIPS
instruction set:

 ■ The memory-reference instructions load word (lw) and store word (sw)

 ■ The arithmetic-logical instructions add, sub, AND, OR, and slt

 ■ The instructions branch equal (beq) and jump (j), which we add last

 4.1 Introduction 301

This subset does not include all the integer instructions (for example, shift, multiply,
and divide are missing), nor does it include any floating-point instructions. How-
ever, the key principles used in creating a datapath and designing the control are
illustrated. The implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation, and
how the choice of various implementation strategies affects the clock rate and CPI
for the computer. Many of the key design principles introduced in Chapter 1 can
be illustrated by looking at the implementation, such as the guidelines Make the
com mon case fast and Simplicity favors regularity. In addition, most concepts used
to implement the MIPS subset in this chapter are the same basic ideas that are used
to construct a broad spectrum of computers, from high- performance servers to
gen eral-purpose microprocessors to embedded processors.

An Overview of the Implementation
In Chapter 2, we looked at the core MIPS instructions, including the inte ger
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instruc tions is the
same, independent of the exact class of instruction. For every instruc tion, the first
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the load word instruction, we need to read only one regis ter, but
most other instructions require that we read two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
MIPS instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers. The memory-reference instructions use the ALU
for an address calculation, the arithmetic-logical instructions for the opera tion
execution, and branches for comparison. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction will
need to access the memory either to read data for a load or write data for a store.
An arithmetic-logical or load instruction must write the data from the ALU or
memory back into a register. Lastly, for a branch instruction, we may need to change
the next instruction address based on the comparison; other wise, the PC should be
incremented by 4 to get the address of the next instruction.

302 Chapter 4 The Processor

Figure 4.1 shows the high-level view of a MIPS implementation, focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution.

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the pro gram counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross.

Data

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

Register #

Register #

Register #

First, in several places, Figure 4.1 shows data going to a particular unit as coming
from two different sources. For example, the value written into the PC can come
from one of two adders, the data written into the register file can come from either
the ALU or the data memory, and the second input to the ALU can come from
a register or the immediate field of the instruction. In practice, these data lines
can not simply be wired together; we must add a logic element that chooses from
among the multiple sources and steers one of those sources to its destination. This
selection is commonly done with a device called a multiplexor, although this device

might better be called a data selector. Appendix C describes the multi plexor,
which selects from among several inputs based on the setting of its con trol lines.
The control lines are set based primarily on information taken from the instruction
being executed.

The second omission in Figure 4.1 is that several of the units must be con trolled
depending on the type of instruction. For example, the data memory must read
on a load and write on a store. The register file must be written on a load and an
arithmetic-logical instruction. And, of course, the ALU must perform one of several
operations, as we saw in Chapter 2. (Appendix C describes the detailed design
of the ALU.) Like the multiplexors, these operations are directed by control lines
that are set on the basis of various fields in the instruction.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors
added, as well as control lines for the major functional units. A control unit, which
has the instruction as an input, is used to determine how to set the control lines
for the functional units and two of the multiplexors. The third multiplexor,
which determines whether PC + 4 or the branch destination address is written
into the PC, is set based on the Zero output of the ALU, which is used to perform
the comparison of a beq instruction. The regularity and simplicity of the MIPS
instruction set means that a simple decoding process can be used to determine how
to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, enhance a control unit to control what actions are
taken for different instruction classes. Sections 4.3 and 4.4 describe a simple imple-
mentation that uses a single long clock cycle for every instruction and follows the
gen eral form of Figures 4.1 and 4.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle
must be stretched to accommodate the longest instruction. After designing the
control for this simple computer, we will look at pipelined implementation with all
its complexities, including exceptions.

How many of the five classic components of a computer—shown on page 299—do
Figures 4.1 and 4.2 include?

 4.2 Logic Design Conventions

To discuss the design of a computer, we must decide how the logic implementing
the computer will operate and how the computer is clocked. This section reviews
a few key ideas in digital logic that we will use extensively in this chapter. If

Check
Yourself

 4.2 Logic Design Conventions 303

304 Chapter 4 The Processor

you have little or no background in digital logic, you will find it helpful to read
 Appendix C before continuing.
The datapath elements in the MIPS implementation consist of two different

types of logic elements: elements that operate on data values and elements that
contain state. The elements that operate on data values are all combina tional,
which means that their outputs depend only on the current inputs. Given the same
input, a combinational element always produces the same output. The ALU shown
in Figure 4.1 and discussed in Appendix C is an example of a combina tional

combinational element
An operational element,
such as an AND gate or
an ALU.

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multi plexor is controlled
by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruc tion is a branch. The middle
multiplexor, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction)
or the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to
determine whether the second ALU input is from the registers (for an arithmetic-logical instruction OR a branch) or from the offset field of
the instruction (for a load or store). The added control lines are straightforward and determine the operation performed at the ALU, whether
the data memory should read or write, and whether the registers should perform a write operation. The control lines are shown in color to
make them easier to see.

Data

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

MemWrite

MemRead

M
u
x

M
u
x

M
u
x

Control

RegWrite

Zero

Branch

ALU operation

Register #

Register #

Register #

element. Given a set of inputs, it always produces the same output because it has
no internal storage.

Other elements in the design are not combinational, but instead contain state.
An element contains state if it has some internal storage. We call these elements
state elements because, if we pulled the power plug on the computer, we could
restart it by loading the state elements with the values they contained before we
pulled the plug. Furthermore, if we saved and restored the state elements, it would
be as if the computer had never lost power. Thus, these state elements completely
characterize the computer. In Figure 4.1, the instruction and data memories, as
well as the registers, are all examples of state elements.

A state element has at least two inputs and one output. The required inputs
are the data value to be written into the element and the clock, which determines
when the data value is written. The output from a state element provides the
value that was written in an earlier clock cycle. For example, one of the logically
sim plest state elements is a D-type flip-flop (see Appendix C), which has
exactly these two inputs (a value and a clock) and one output. In addition to
flip-flops, our MIPS implementation also uses two other types of state elements:
memories and registers, both of which appear in Figure 4.1. The clock is used to
determine when the state element should be written; a state element can be read
at any time.

Logic components that contain state are also called sequential, because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. The operation of both the combinational and sequential elements and
their construction are discussed in more detail in Appendix C.

We will use the word asserted to indicate a signal that is logically high and assert
to specify that a signal should be driven logically high, and deassert or deas serted
to represent logically low.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes, because if a signal
is written at the same time it is read, the value of the read could correspond to
the old value, the newly written value, or even some mix of the two! Computer
designs cannot tolerate such unpredictability. A clocking methodology is designed
to ensure predictability.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge. Because only state elements can
store a data value, any collection of combinational logic must have its inputs come
from a set of state elements and its outputs written into a set of state elements.

state element A memory
element, such as a register
or a memory.

asserted The signal is
logically high or true.

clocking methodology
The approach used to
determine when data is
valid and stable rel ative to
the clock.

edge-triggered clocking
A clocking scheme in
which all state changes
occur on a clock edge.

 4.2 Logic Design Conventions 305

deasserted The signal is
logi cally low or false.

306 Chapter 4 The Processor

The inputs are values that were written in a previous clock cycle, while the outputs
are values that can be used in a following clock cycle.

Figure 4.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: all signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessary for the signals to reach state element 2 defines
the length of the clock cycle.

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they
will not change until after the clock edge) before the active clock edge causes the state to be updated. All state
elements in this chapter, including memory, are assumed to be edge-triggered.

State
element

1

State
element

2
Combinational logic

Clock cycle

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only when
the write control signal is asserted and a clock edge occurs.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we
assume that all writes take place on the rising clock edge or on the falling clock
edge, since the inputs to the combinational logic block cannot change except on

control signal A signal
used for multiplexor
selection or for directing
the operation of a
functional unit; contrasts
with a data signal, which
contains information
that is operated on by a
functional unit.

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable when the
active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered update
of the state element. If feedback were possible, this design could not work properly. Our designs in this
chapter and the next rely on the edge-triggered timing methodology and on structures like the one shown
in this figure.

State
element

Combinational logic

the chosen clock edge. With an edge-triggered timing methodology, there is no
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In

 Appendix C, we briefly discuss additional timing constraints (such as setup and
hold times) as well as other timing methodologies.

For the 32-bit MIPS architecture, nearly all of these state and logic elements will
have inputs and outputs that are 32 bits wide, since that is the width of most of the
data handled by the processor. We will make it clear whenever a unit has an input
or output that is other than 32 bits in width. The figures will indicate buses, which
are signals wider than 1 bit, with thicker lines. At times, we will want to combine
several buses to form a wider bus; for example, we may want to obtain a 32-bit bus
by combining two 16-bit buses. In such cases, labels on the bus lines will make it
clear that we are concatenating buses to form a wider bus. Arrows are also added
to help clarify the direction of the flow of data between elements. Finally, color
indicates a control signal as opposed to a signal that carries data; this distinction
will become clearer as we proceed through this chapter.

True or false: Because the register file is both read and written on the same clock
cycle, any MIPS datapath using edge-triggered writes must have more than one
copy of the register file.

Elaboration: There is also a 64-bit version of the MIPS architecture, and, naturally
enough, most paths in its implementation would be 64 bits wide. Also, we use the terms
assert and deassert because at times 1 represents logically high and at times it can
represent logically low.

 4.3 Building a Datapath

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instructions. Let’s start by looking at which
datapath elements each instruction needs. When we show the datapath elements,
we will also show their control signals.

Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure 4.5b
also shows the program counter (PC), which as we saw in Chapter 2 is a register
that holds the address of the current instruction. Lastly, we will need an adder
to increment the PC to the address of the next instruction. This adder, which is
combinational, can be built from the ALU described in detail in Appendix C
simply by wiring the control lines so that the control always specifies an add

Check
Yourself

datapath element A unit
used to operate on
or hold data within a
processor. In the MIPS
 implementation, the
datapath elements include
the instruc tion and data
memories, the reg ister file,
the ALU, and adders.

program counter (PC)
The register containing the
 address of the instruction
in the program being
 executed.

 4.3 Building a Datapath 307

308 Chapter 4 The Processor

operation. We will draw such an ALU with the label Add, as in Figure 4.5, to indicate
that it has been permanently made an adder and cannot perform the other ALU
functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment the
program counter so that it points at the next instruction, 4 bytes later. Figure 4.6
shows how to combine the three elements from Figure 4.5 to form a datapath
that fetches instructions and increments the PC to obtain the address of the next
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.20 on page 136). They
all read two registers, perform an ALU operation on the contents of the registers,
and write the result to a register. We call these instructions either R-type instruc-
tions or arithmetic-logical instructions (since they perform arithmetic or logical
operations). This instruction class includes add, sub, AND, OR, and slt, which
were introduced in Chapter 2. Recall that a typical instance of such an instruction
is add $t1,$t2,$t3, which reads $t2 and $t3 and writes $t1.

The processor’s 32 general-purpose registers are stored in a structure called a
register file. A register file is a collection of registers in which any register can be
read or written by specifying the number of the register in the file. The register file
contains the register state of the computer. In addition, we will need an ALU to
operate on the values read from the registers.

R-format instructions have three register operands, so we will need to read
two data words from the register file and write one data word into the register file
for each instruction. For each data word to be read from the registers, we need an

register file A state
element that consists
of a set of registers that
can be read and written
by supplying a register
number to be accessed.

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.

Instruction
address

Instruction

Instruction
memory

a. Instruction memory

PC

b. Program counter

Add Sum

c. Adder

input to the register file that specifies the register number to be read and an out put
from the register file that will carry the value that has been read from the reg isters.
To write a data word, we will need two inputs: one to specify the register number to
be written and one to supply the data to be written into the register. The register file
always outputs the contents of whatever register numbers are on the Read register
inputs. Writes, however, are controlled by the write control sig nal, which must be
asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we
need a total of four inputs (three for register numbers and one for data) and two
outputs (both for data). The register number inputs are 5 bits wide to specify one
of 32 registers (32 = 25), whereas the data input and two data output buses are each
32 bits wide.

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit
result, as well as a 1-bit signal if the result is 0. The 4-bit control signal of the ALU is
described in detail in Appendix C; we will review the ALU control shortly when
we need to know how to set it.

Next, consider the MIPS load word and store word instructions, which have
the general form lw $t1,offset_value($t2) or sw $t1,offset_value
($t2). These instructions compute a memory address by adding the base regis ter,
which is $t2, to the 16-bit signed offset field contained in the instruction. If the
instruction is a store, the value to be stored must also be read from the register file
where it resides in $t1. If the instruction is a load, the value read from mem ory
must be written into the register file in the specified register, which is $t1. Thus, we
will need both the register file and the ALU from Figure 4.7.

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

PC Read
address

Instruction

Instruction
memory

Add

4

 4.3 Building a Datapath 309

310 Chapter 4 The Processor

In addition, we will need a unit to sign-extend the 16-bit offset field in the
instruction to a 32-bit signed value, and a data memory unit to read from or write
to. The data memory must be written on store instructions; hence, data memory
has read and write control signals, an address input, and an input for the data to be
written into memory. Figure 4.8 shows these two elements.

The beq instruction has three operands, two registers that are compared
for equality, and a 16-bit offset used to compute the branch target address
relative to the branch instruction address. Its form is beq $t1,$t2,offset. To
implement this instruction, we must compute the branch target address by adding
the sign-extended offset field of the instruction to the PC. There are two details
in the definition of branch instructions (see Chapter 2) to which we must pay
attention:

 ■ The instruction set architecture specifies that the base for the branch address
calculation is the address of the instruction following the branch. Since we
compute PC + 4 (the address of the next instruction) in the instruction fetch
datapath, it is easy to use this value as the base for computing the branch
target address.

sign-extend To increase
the size of a data item by
replicating the high-order
sign bit of the original
data item in the high-
order bits of the larger,
destina tion data item.

branch target address
The address specified in
a branch, which becomes
the new program counter
(PC) if the branch is
taken. In the MIPS
architecture the branch
target is given by the
sum of the offset field of
the instruction and the
address of the instruction
following the branch.

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section C.8 of Appendix C. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-t riggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to
the register file are edge-t riggered, our design can legally read and write the same register within a clock cycle:
the read will get the value written in an earlier clock cycle, while the value written will be available to a read in
a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits wide, whereas
the lines carrying data values are 32 bits wide. The operation to be performed by the ALU is controlled with
the ALU operation signal, which will be 4 bits wide, using the ALU designed in Appendix C. We will
use the Zero detection output of the ALU shortly to implement branches. The overflow output will not be
needed until Section 4.9, when we discuss exceptions; we omit it until then.

Read
register 1

Registers ALUData

Data

Zero

ALU
result

RegWrite

a. Registers b. ALU

5

5

5

Register
numbers

Read
data 1

Read
data 2

ALU operation
4

Read
register 2

Write
register

Write
Data

 ■ The architecture also states that the offset field is shifted left 2 bits so that it
is a word offset; this shift increases the effective range of the offset field by a
factor of 4.

To deal with the latter complication, we will need to shift the offset field by 2.
As well as computing the branch target address, we must also determine whether

the next instruction is the instruction that follows sequentially or the instruction
at the branch target address. When the condition is true (i.e., the operands are
equal), the branch target address becomes the new PC, and we say that the branch
is taken. If the operands are not equal, the incremented PC should replace the
current PC (just as for any other normal instruction); in this case, we say that the
branch is not taken.

Thus, the branch datapath must do two operations: compute the branch target
address and compare the register contents. (Branches also affect the instruction
fetch portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the
structure of the datapath segment that handles branches. To compute the branch
target address, the branch datapath includes a sign extension unit, from Figure 4.8
and an adder. To perform the compare, we need to use the register file shown in
Figure 4.7a to supply the two register operands (although we will not need to write
into the register file). In addition, the comparison can be done using the ALU we
designed in Appendix C. Since that ALU provides an output signal that indicates
whether the result was 0, we can send the two register operands to the ALU with the

branch taken A branch
where the branch
condition is satisfied and
the program counter (PC)
becomes the branch target.
All unconditional branches
are taken branches.

branch not taken or
(untaken branch)
A branch where the
branch condition is false
and the program counter
(PC) becomes the address
of the instruction that
sequentially follows the
branch.

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit input that
is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is
edge-triggered for writes. Standard memory chips actually have a write enable signal that is used for writes.
Although the write enable is not edge-triggered, our edge-triggered design could easily be adapted to work
with real memory chips. See Section C.8 of Appendix C for further discussion of how real memory
chips work.

Address
Read
data

Data
memory

a. Data memory unit

Write
data

MemRead

MemWrite

b. Sign extension unit

Sign-
extend

16 32

 4.3 Building a Datapath 311

312 Chapter 4 The Processor

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition
and a separate adder to compute the branch target as the sum of the incremented PC
and the sign-extended, lower 16 bits of the instruction (the branch displacement), shifted
left 2 bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that
adds 00two to the low-order end of the sign-extended offset field; no actual shift hardware is needed, since
the amount of the “shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift
will throw away only “sign bits.” Control logic is used to decide whether the incremented PC or branch target
should replace the PC, based on the Zero output of the ALU.

Read
register 1

Registers ALU Zero

RegWrite

Read
data 1

Read
data 2

ALU operation
4

To branch
control logic

Add Sum
Branch
target

PC + 4 from instruction datapath

Sign-
extend

16 32

Instruction

Shift
left 2

Read
register 2

Write
register

Write
data

control set to do a subtract. If the Zero signal out of the ALU unit is asserted, we
know that the two values are equal. Although the Zero output always signals if the
result is 0, we will be using it only to implement the equal test of branches. Later,
we will show exactly how to connect the control signals of the ALU for use in the
datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with
the lower 26 bits of the instruction shifted left by 2 bits. This shift is accomplished
simply by concatenating 00 to the jump offset, as described in Chapter 2.

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the
instruc tion immediately following the branch is always executed, independent of whether
the branch condition is true or false. When the condition is false, the execution looks
like a nor mal branch. When the condition is true, a delayed branch first executes the
instruction imme diately following the branch in sequential instruction order before
jumping to the specified branch target address. The motivation for delayed branches
arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally
ignore delayed branches in this chapter and implement a nondelayed beq instruction.

Creating a Single Datapath

Now that we have examined the datapath components needed for the individual
instruction classes, we can combine them into a single datapath and add the control
to complete the implementation. This simplest datapath will attempt to exe cute
all instructions in one clock cycle. This means that no datapath resource can be
used more than once per instruction, so any element needed more than once must
be duplicated. We therefore need a memory for instructions separate from one for
data. Although some of the functional units will need to be duplicated, many of the
elements can be shared by different instruction flows.

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multi plexor
and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

 ■ The arithmetic-logical instructions use the ALU, with the inputs coming
from the two registers. The memory instructions can also use the ALU
to do the address calculation, although the second input is the sign-
extended 16-bit offset field from the instruction.

 ■ The value stored into a destination register comes from the ALU (for an
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference and arithmetic-logical instructions that uses a single register file
and a single ALU to handle both types of instructions, adding any necessary
multiplexors.

delayed branch A type
of branch where the
instruction immediately
following the branch is
always exe cuted, inde-
pendent of whether the
branch condition is true
or false.

EXAMPLE

 4.3 Building a Datapath 313

314 Chapter 4 The Processor

To create a datapath with only a single register file and a single ALU, we must
support two different sources for the second ALU input, as well as two differ ent
sources for the data stored into the register file. Thus, one multiplexor is placed
at the ALU input and another at the data input to the register file. Figure 4.10
shows the operational portion of the combined datapath.

ANSWER

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how
a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed,
as described in the example.

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Zero

RegWrite

MemRead

MemWrite

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign-
extend

16 32

Instruction
ALU

result
M
u
x

0

1

M
u
x

1

0

ALUSrc

Address

Data
memory

Read
data

Now we can combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for instruction fetch (Figure 4.6), the datapath
from R-type and memory instructions (Figure 4.10), and the datapath for branches
(Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the separate
pieces. The branch instruction uses the main ALU for comparison of the register
operands, so we must keep the adder from Figure 4.9 for computing the branch
target address. An additional multiplexor is required to select either the sequen-
tially following instruction address (PC + 4) or the branch target address to be
written into the PC.

Now that we have completed this simple datapath, we can add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control for each multiplexor, and the ALU control. The

ALU control is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit.

I. Which of the following is correct for a load instruction? Refer to Figure 4.10.

a. MemtoReg should be set to cause the data from memory to be sent to the
register file.

b. MemtoReg should be set to cause the correct register destination to be sent to
the register file.

c. We do not care about the setting of MemtoReg for loads.

II. The single-cycle datapath conceptually described in this section must have sepa-
rate instruction and data memories, because

a. the formats of data and instructions are different in MIPS, and hence different
memories are needed.

Check
Yourself

FIGURE 4.11 The simple datapath for the MIPS architecture combines the elements required by different instruction
classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store word, ALU
operations, and branches) in a single clock cycle. An additional multiplexor is needed to integrate branches. The support for jumps will be
added later.

Read
register 1

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign-
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

Read
register 2

Write
register

Write
data

 4.3 Building a Datapath 315

316 Chapter 4 The Processor

b. having separate memories is less expensive.

c. the processor operates in one cycle and cannot use a single-ported memory
for two different accesses within that cycle

 4.4 A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible imple-
mentation of our MIPS subset. We build this simple implementation using the
datapath of the last section and adding a simple control function. This simple
implementation covers load word (lw), store word (sw), branch equal (beq), and
the arithmetic-logical instructions add, sub, AND, OR, and set on less than. We
will later enhance the design to include a jump instruction (j).

The ALU Control

The MIPS ALU in Appendix C defines the 6 following combinations of four
control inputs:

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

Depending on the instruction class, the ALU will need to perform one of these
first five functions. (NOR is needed for other parts of the MIPS instruction set
not found in the subset we are implementing.) For load word and store word
instructions, we use the ALU to compute the memory address by addition. For
the R-type instructions, the ALU needs to perform one of the five actions (AND,
OR, subtract, add, or set on less than), depending on the value of the 6-bit funct
(or function) field in the low-order bits of the instruction (see Chapter 2). For
branch equal, the ALU must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the function field of the instruction and a 2-bit control field, which we
call ALUOp. ALUOp indicates whether the operation to be performed should be
add (00) for loads and stores, subtract (01) for beq, or determined by the operation
encoded in the funct field (10). The output of the ALU control unit is a 4-bit signal

that directly controls the ALU by generating one of the 4-bit combinations shown
previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit
ALUOp control and the 6-bit function code. Later in this chapter we will see how
the ALUOp bits are generated from the main control unit.

Instruction
opcode ALUOp

Instruction
operation Funct field

Desired
ALU action

ALU control
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this
case, we say that we “don’t care” about the value of the function code, and the funct field is shown as
XXXXXX. When the ALUOp value is 10, then the function code is used to set the ALU control input.
See

Appendix C.

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementation
technique. Using multiple levels of control can reduce the size of the main control
unit. Using several smaller control units may also potentially increase the speed of
the control unit. Such optimizations are important, since the speed of the control
unit is often critical to clock cycle time.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct field to the four ALU operation control bits.
Because only a small number of the 64 possible values of the function field are of
interest and the function field is used only when the ALUOp bits equal 10, we can
use a small piece of logic that recognizes the subset of possible values and causes
the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the inter-
esting combinations of the function code field and the ALUOp bits, as we’ve done
in Figure 4.13; this truth table shows how the 4-bit ALU control is set depending
on these two input fields. Since the full truth table is very large (28 = 256 entries)
and we don’t care about the value of the ALU control for many of these input

truth table From logic,
a rep resentation of a
logical opera tion by listing
all the values of the inputs
and then in each case
showing what the resulting
out puts should be.

 4.4 A Simple Implementation Scheme 317

318 Chapter 4 The Processor

combinations, we show only the truth table entries for which the ALU control must
have a specific value. Throughout this chapter, we will use this practice of showing
only the truth table entries for outputs that must be asserted and not showing
those that are all deasserted or don’t care. (This practice has a disadvantage, which
we discuss in Section D.2 of Appendix D.)

Because in many instances we do not care about the values of some of the inputs,
and because we wish to keep the tables compact, we also include don’t-care terms.
A don’t-care term in this truth table (represented by an X in an input column)
indicates that the output does not depend on the value of the input corresponding
to that column. For example, when the ALUOp bits are 00, as in the first row of
Figure 4.13, we always set the ALU control to 0010, independent of the function
code. In this case, then, the function code inputs will be don’t cares in this line of
the truth table. Later, we will see examples of another type of don’t-care term. If
you are unfamiliar with the concept of don’t-care terms, see Appendix C for
more information.

Once the truth table has been constructed, it can be optimized and then turned
into gates. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section D.2 of Appendix D.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and
a 2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, let’s identify the fields of an instruction and the con trol lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review
the formats of the three instruction classes: the R-type, branch, and load-store
instructions. Figure 4.14 shows these formats.

don’t-care term An
element of a logical
function in which the
output does not depend
on the values of all the
inputs. Don’t-care terms
may be specified in
different ways.

ALUOp Funct field

OperationALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

0 1 X X X X X X 0110

1 0 X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 0 X X 0 1 0 0 0000

1 0 X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are
the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table
can contain entries 1X and X1, rather than 10 and 01. Note that when the function field is used, the first
2 bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX
in the truth table.

Field 0 rs rt rd shamt funct

Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field 35 or 43 rs rt address

Bit positions 31:26 25:21 20:16 15:0

b. Load or store instruction

Field 4 rs rt address

Bit positions 31:26 25:21 20:16 15:0

c. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss shortly.
(a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions have three
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions
that we implement are add, sub, AND, OR, and slt. The shamt field is used only for shifts; we will ignore
it in this chapter. (b) Instruction format for load (opcode = 35ten) and store (opcode = 43ten) instructions.
The register rs is the base register that is added to the 16-bit address field to form the memory address. For
loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should
be stored into memory. (c) Instruction format for branch equal (opcode = 4). The reg isters rs and rt are the
source registers that are compared for equality. The 16-bit address field is sign-extended, shifted, and added
to the PC+4 to compute the branch target address.

There are several major observations about this instruction format that we will
rely on:

 ■ The op field, also called the opcode, is always contained in bits 31:26. We will
refer to this field as Op[5:0].

 ■ The two registers to be read are always specified by the rs and rt fields, at
positions 25:21 and 20:16. This is true for the R-type instructions, branch
equal, and store.

 ■ The base register for load and store instructions is always in bit positions
25:21 (rs).

 ■ The 16-bit offset for branch equal, load, and store is always in positions
15:0.

 ■ The destination register is in one of two places. For a load it is in bit positions
20:16 (rt), while for an R-type instruction it is in bit positions 15:11 (rd).
Thus, we will need to add a multiplexor to select which field of the instruction
is used to indicate the register number to be written.

The first design principle from Chapter 2—simplicity favors regularity—pays off
here in specifying control.

opcode The field that
denotes the operation and
format of an instruction.

 4.4 A Simple Implementation Scheme 319

320 Chapter 4 The Processor

Using this information, we can add the instruction labels and extra multiplexor
(for the Write register number input of the register file) to the simple datapath.
Figure 4.15 shows these additions plus the ALU control block, the write signals for
state elements, the read signal for the data memory, and the control signals for the
multiplexors. Since all the multiplexors have two inputs, they each require a single
control line.

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control
signal. We have already defined how the ALUOp control signal works, and it is
useful to define what the seven other control signals do informally before we deter-
mine how to set these control signals during instruction execution. Figure 4.16
describes the function of these seven control lines.

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The control
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end
of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.

Read
register 1

Write
data

Registers

ALU

Add

Zero

MemRead

MemWrite

RegWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31:0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

ALUOp
Instruction [5:0]

Instruction [25:21]

Instruction [15:11]

Instruction [20:16]

Instruction [15:0]

RegDst

Read
register 2

Write
register

Write
data

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the
Write register comes from the rt field
(bits 20:16).

The register destination number for the Write
register comes from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is
written with the value on the Write data input.

ALUSrc The second ALU operand comes from the
second register file output (Read data 2).

The second ALU operand is the sign-
extended, lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the
adder that computes the value of PC + 4.

The PC is replaced by the output of the adder
that computes the branch target.

MemRead None. Data memory contents designated by the
address input are put on the Read data output.

MemWrite None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write data
input comes from the ALU.

The value fed to the register Write data input
comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element
can create timing problems. (See Appendix C for further discussion of this problem.)

Now that we have looked at the function of each of the control signals, we can
look at how to set them. The control unit can set all but one of the control signals
based solely on the opcode field of the instruction. The PCSrc control line is the
exception. That control line should be asserted if the instruction is branch on equal
(a decision that the control unit can make) and the Zero output of the ALU, which
is used for equality comparison, is asserted. To generate the PCSrc signal, we will
need to AND together a signal from the control unit, which we call Branch, with
the Zero signal out of the ALU.

These nine control signals (seven from Figure 4.16 and two for ALUOp) can
now be set on the basis of six input signals to the control unit, which are the opcode
bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control
signals.

Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the control function informally. Because the setting
of the control lines depends only on the opcode, we define whether each control
signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18
defines how the control signals should be set for each opcode; this information
follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath
With the information contained in Figures 4.16 and 4.18, we can design the
control unit logic, but before we do that, let’s look at how each instruction uses the

 4.4 A Simple Implementation Scheme 321

322 Chapter 4 The Processor

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for con trolling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

datapath. In the next few figures, we show the flow of three different instruction
classes through the datapath. The asserted control signals and active datapath
elements are highlighted in each of these. Note that a multiplexor whose control
is 0 has a definite action, even if its control line is not highlighted. Multiple-bit
control signals are highlighted if any constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such
as add $t1,$t2,$t3. Although everything occurs in one clock cycle, we can
think of four steps to execute the instruction; these steps are ordered by the flow
of information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file; also, the main
control unit computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the
ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of
the instruction to select the destination register ($t1).

Similarly, we can illustrate the execution of a load word, such as

lw $t1, offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and
asserted control lines for a load. We can think of a load instruction as operating in
five steps (similar to the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. A register ($t2) value is read from the register file.

Instruction RegDst ALUSrc
Memto-

Reg
Reg-
Write

Mem-
Read

Mem-
Write Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first
row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these instructions, the source register fields
are rs and rt, and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction
writes a register (Reg Write = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally
replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type
instructions is set to 10 to indicate that the ALU control should be generated from the funct field. The second and third rows of this table
give the control signal settings for lw and sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and
MemWrite are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt
register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch
is set for a subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal
is 0: since the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last
two rows of the table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. This type of don’t care must
be added by the designer, since it depends on knowledge of how the datapath works.

 4.4 A Simple Implementation Scheme 323

324 Chapter 4 The Processor

3. The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($t1) .

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3. The control lines, datapath
units, and connections that are active are highlighted.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Finally, we can show the operation of the branch-on-equal instruction, such as
beq $t1,$t2,offset, in the same fashion. It operates much like an R-format
instruction, but the ALU output is used to determine whether the PC is written
with PC + 4 or the branch target address. Figure 4.21 shows the four steps in
execution:

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. Two registers, $t1 and $t2, are read from the register file.

FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active
are high lighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write
rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to
the register file would not occur.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

 4.4 A Simple Implementation Scheme 325

326 Chapter 4 The Processor

3. The ALU performs a subtract on the data values read from the register
file. The value of PC + 4 is added to the sign-extended, lower 16 bits of
the instruction (offset) shifted left by two; the result is the branch target
address.

4. The Zero result from the ALU is used to decide which adder result to store
into the PC.

FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. The control lines, datapath units, and connections
that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program
counter from between the two candidates.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Finalizing Control
Now that we have seen how the instructions operate in steps, let’s continue with the
control implementation. The control function can be precisely defined using the
contents of Figure 4.18. The outputs are the control lines, and the input is the 6-bit
opcode field, Op [5:0]. Thus, we can create a truth table for each of the outputs
based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section D.2 in Appendix D.

Now that we have a single-cycle implementation of most of the MIPS core
instruction set, let’s add the jump instruction to show how the basic datapath and
control can be extended to handle other instructions in the instruction set.

Input or output Signal name R-format lw sw beq

Inputs Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
Op0 0 1 1 0

Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0

MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOp0 0 0 0 1

FIGURE 4.22 The control function for the simple single-cycle implementation is com-
pletely specified by this truth table. The top half of the table gives the combinations of input signals
that correspond to the four opcodes, one per column, that determine the control output settings. (Remem-
ber that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op field.) The bottom portion
of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for two
dif ferent combinations of the inputs. If we consider only the four opcodes shown in this table, then we can
simplify the truth table by using don’t cares in the input portion. For example, we can detect an R-format
instruction with the expression Op5 • Op2, since this is sufficient to distinguish the R-format instructions
from lw, sw, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes
are used in a full implementation.

single-cycle
implementation Also
called single clock cycle
implementa tion. An
implementation in which
an instruction is executed
in one clock cycle.

 4.4 A Simple Implementation Scheme 327

328 Chapter 4 The Processor

Implementing Jumps

Figure 4.17 shows the implementation of many of the instruc tions we looked at
in Chapter 2. One class of instructions missing is that of the jump instruction.
Extend the datapath and control of Figure 4.17 to in clude the jump instruction.
Describe how to set any new control lines.

The jump instruction, shown in Figure 4.23, looks somewhat like a branch
instruc tion but computes the target PC differently and is not conditional. Like
a branch, the low-order 2 bits of a jump address are always 00two. The next
lower 26 bits of this 32-bit address come from the 26-bit immediate field in
the instruction. The upper 4 bits of the address that should replace the PC
come from the PC of the jump instruction plus 4. Thus, we can implement a
jump by storing into the PC the concatenation of

 ■ the upper 4 bits of the current PC + 4 (these are bits 31:28 of the sequen-
tially following instruction address)

 ■ the 26-bit immediate field of the jump instruction

 ■ the bits 00two

Figure 4.24 shows the addition of the control for jump added to Figure 4.17.
An additional multiplexor is used to select the source for the new PC value,
which is either the incremented PC (PC + 4), the branch target PC, or the jump
target PC. One additional control signal is needed for the addi tional multi-
plexor. This control signal, called Jump, is asserted only when the instruction is
a jump—that is, when the opcode is 2.

EXAMPLE

ANSWER

Field 000010 address
Bit positions 31:26 25:0

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). The destination address
for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address
field in the jump instruction and adding 00 as the 2 low-order bits.

Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in modern
designs because it is inefficient. To see why this is so, notice that the clock cycle must
have the same length for every instruction in this single-cycle design. Of course,

the clock cycle is determined by the longest possible path in the processor. This path
is almost certainly a load instruction, which uses five functional units in series: the
instruction memory, the register file, the ALU, the data memory, and the register
file. Although the CPI is 1 (see Chapter 1), the overall performance of a single-cycle
implementation is likely to be poor, since the clock cycle is too long.

FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor
(at the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This
multiplexor is controlled by the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction
left 2 bits, effectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a
32-bit address.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Jump
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

M
u
x

1

0

Shift
left 2

Instruction [25–0] Jump address [31–0]

26 28 PC + 4 [31–28]

 4.4 A Simple Implementation Scheme 329

330 Chapter 4 The Processor

The penalty for using the single-cycle design with a fixed clock cycle is signifi cant,
but might be considered acceptable for this small instruction set. Histori cally, early
computers with very simple instruction sets did use this implementation technique.
However, if we tried to implement the floating-point unit or an instruction set with
more complex instructions, this single-cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay for
all instructions, it’s useless to try implementation techniques that reduce the delay
of the common case but do not improve the worst-case cycle time. A single-cycle
implementation thus violates our key design principle from Chapter 2 of making
the common case fast.

In next section, we’ll look at another implementation technique, called pipelin-
ing, that uses a datapath very similar to the single-cycle datapath but is much more
efficient by having a much higher throughput. Pipelining improves efficiency by
executing multiple instructions simultaneously.

Look at the control signals in Figure 4.22. Can you combine any together? Can any
control signal output in the figure be replaced by the inverse of another? (Hint: take
into account the don’t cares.) If so, can you use one signal for the other without
adding an inverter?

 4.5 An Overview of Pipelining

Pipelining is an implementation technique in which multiple in structions are
overlapped in execution. Today, pipelining is nearly universal.

This section relies heavily on one analogy to give an overview of the pipelining
terms and issues. If you are interested in just the big picture, you should concen-
trate on this section and then skip to Sections 4.10 and 4.11 to see an introduction
to the advanced pipelining techniques used in recent processors such as the
AMD Opteron X4 (Barcelona) or Intel Core. If you are interested in exploring the
anatomy of a pipe lined computer, this section is a good introduction to Sections 4.6
through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

When your roommate is done, then start over with the next dirty load.

Check
Yourself

Never waste time.

American proverb

pipelining An
implementation
technique in which
multi ple instructions are
overlapped in execution,
much like an assembly
line.

The pipelined approach takes much less time, as Figure 4.25 shows. As soon
as the washer is finished with the first load and placed in the dryer, you load the
washer with the second dirty load. When the first load is dry, you place it on the
table to start folding, move the wet load to the dryer, and the next dirty load into
the washer. Next you have your roommate put the first load away, you start fold-
ing the second load, the dryer has the third load, and you put the fourth load into
the washer. At this point all steps—called stages in pipe lining—are operating con-
currently. As long as we have separate resources for each stage, we can pipeline the
tasks.

The pipelining paradox is that the time from placing a single dirty sock in the
washer until it is dried, folded, and put away is not shorter for pipelining; the reason
pipelining is faster for many loads is that everything is working in parallel, so more
loads are finished per hour. Pipelining improves throughput of our laundry system.
Hence, pipelining would not decrease the time to complete one load of laundry,
but when we have many loads of laundry to do, the improvement in throughput
decreases the total time to complete the work.

 4.5 An Overview of Pipelining 331

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty clothes
to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 minutes for
their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours.
We show the pipeline stage of different loads over time by showing copies of the four resources on this
two-dimensional time line, but we really have just one of each resource.

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

332 Chapter 4 The Processor

If all the stages take about the same amount of time and there is enough work
to do, then the speed-up due to pipelining is equal to the number of stages in
the pipeline, in this case four: washing, drying, folding, and putting away. There-
fore, pipelined laundry is potentially four times faster than nonpipelined: 20 loads
would take about 5 times as long as 1 load, while 20 loads of sequential laundry
takes 20 times as long as 1 load. It’s only 2.3 times faster in Figure 4.25, because
we only show 4 loads. Notice that at the beginning and end of the workload in the
pipelined version in Figure 4.25, the pipeline is not completely full; this start-up
and wind-down affects performance when the number of tasks is not large com-
pared to the number of stages in the pipeline. If the number of loads is much larger
than 4, then the stages will be full most of the time and the increase in throughput
will be very close to 4.

The same principles apply to processors where we pipeline instruction execution.
MIPS instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following
example shows that pipelining speeds up instruction execution just as it speeds up
the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and
in the rest of this chapter, we limit our attention to eight instructions: load
word (lw), store word (sw), add (add), subtract (sub), AND (and), OR (or),
set less than (slt), and branch on equal (beq).

Compare the average time between instructions of a single-cycle imple-
mentation, in which all instructions take one clock cycle, to a pipelined imple-
mentation. The operation times for the major functional units in this ex ample
are 200 ps for memory access, 200 ps for ALU operation, and 100 ps for register
file read or write. In the single-cycle model, every instruction takes exact ly one
clock cycle, so the clock cycle must be stretched to accommodate the slow est
instruction.

EXAMPLE

Figure 4.26 shows the time required for each of the eight instructions. The
 single-cycle design must allow for the slowest instruction—in Figure 4.26 it is
lw—so the time required for every instruction is 800 ps. Similarly to Figure
4.25, Figure 4.27 compares nonpipelined and pipelined execution of three load
word instructions. Thus, the time between the first and fourth instruc tions in
the nonpipelined design is 3 × 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be
long enough to accommodate the slowest operation. Just as the single-cycle
design must take the worst-case clock cycle of 800 ps, even though some
instructions can be as fast as 500 ps, the pipelined execution clock cycle must
have the worst-case clock cycle of 200 ps, even though some stages take only
100 ps. Pipelining still offers a fourfold performance improvement: the time
between the first and fourth instructions is 3 × 200 ps or 600 ps.

Instruction class
Instruction

fetch
Register

read
ALU

operation
Data

access
Register

write
Total
time

Load word (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, sub, AND,
OR, slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no
delay.

We can turn the pipelining speed-up discussion above into a formula. If the
stages are perfectly balanced, then the time between instructions on the pipelined
processor—assuming ideal conditions—is equal to

Time between instructionspipelined =
Time between instructionsnonpipelined

 ��� Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up from
pipelining is approximately equal to the number of pipe stages; a five-stage pipe line
is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. In addition,
pipelining involves some overhead, the source of which will be more clear shortly.
Thus, the time per instruction in the pipelined processor will exceed the mini mum
possible, and speed-up will be less than the number of pipeline stages.

ANSWER

 4.5 An Overview of Pipelining 333

334 Chapter 4 The Processor

Moreover, even our claim of fourfold improvement for our example is not
reflected in the total execution time for the three instructions: it’s 1400 ps versus
2400 ps. Of course, this is because the number of instructions is not large. What
would happen if we increased the number of instructions? We could extend the
previous figures to 1,000,003 instructions. We would add 1,000,000 instructions
in the pipelined example; each instruction adds 200 ps to the total execution time.
The total execution time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400
ps. In the nonpipelined example, we would add 1,000,000 instructions, each tak-
ing 800 ps, so total execution time would be 1,000,000 × 800 ps + 2400 ps, or
800,002,400 ps. Under these conditions, the ratio of total execution times for real
programs on nonpipelined to pipelined processors is close to the ratio of times
between instructions:

800,002,400 ps

 �� 200,001,400 ps ≈
800 ps

 � 200 ps ≈ 4.00

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in
bottom. Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see a
fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure
to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource,
either the ALU operation or the memory access. We assume the write to the register file occurs in the first
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption
throughout this chapter.

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
1000 1200 1400200 400 600 800

1000 1200 1400200 400 600 800

1600 1800

Instruction
fetch

Data
access

Reg

Instruction
fetch

Data
access

Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time

Instruction
fetch

Data
access

Reg

Instruction
fetch

Instruction
fetch

Data
access

Reg

Data
access

Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

ALUReg

ALUReg

ALU

ALU

ALU

Reg

Reg

Reg

Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruction
throughput is the important metric because real programs execute billions of
instructions.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 17 bytes, pipelining is considerably more challenging. Recent implementa tions
of the x86 architecture actually translate x86 instructions into simple opera tions
that look like MIPS instructions and then pipeline the simple operations rather
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fields
being located in the same place in each instruction. This symmetry means that the
second stage can begin reading the register file at the same time that the hardware
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline stages.
We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restric-
tion means we can use the execute stage to calculate the memory address and
then access memory in the following stage. If we could operate on the operands in
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory
stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,
we need not worry about a single data transfer instruction requiring two data
memory accesses; the requested data can be transferred between processor and
memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different
types.

Structural Hazards

The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn’t put clothes away. Our carefully scheduled
pipeline plans would then be foiled.

structural hazard When
a planned instruction
cannot exe cute in the
proper clock cycle because
the hardware does not
support the combination
of instructions that are set
to exe cute.

 4.5 An Overview of Pipelining 335

336 Chapter 4 The Processor

As we said above, the MIPS instruction set was designed to be pipelined, mak ing
it fairly easy for designers to avoid structural hazards when designing a pipe line.
Suppose, however, that we had a single memory instead of two memories. If the
pipeline in Figure 4.27 had a fourth instruction, we would see that in the same
clock cycle the first instruction is accessing data from memory while the fourth
instruction is fetching an instruction from that same memory. Without two mem-
ories, our pipeline could have a structural hazard.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads that have completed drying and are ready to fold and
those that have finished washing and are ready to dry must wait.

In a computer pipeline, data hazards arise from the dependence of one instruc-
tion on an earlier one that is still in the pipeline (a relationship that does not really
exist when doing laundry). For example, suppose we have an add instruction fol-
lowed immediately by a subtract instruction that uses the sum ($s0):

add $s0, $t0, $t1
sub $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn’t write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be con nected
by forwarding. Use the drawing in Figure 4.28 to represent the datap ath during
the five stages of the pipeline. Align a copy of the datapath for each instruction,
similar to the laundry pipeline in Figure 4.25.

data hazard Also
called a pipe line data
hazard. When a planned
instruction cannot exe-
cute in the proper clock
cycle because data that
is needed to execute the
instruction is not yet
available.

forwarding Also called
 bypassing. A method of
 resolving a data hazard
by retrieving the missing
data element from
internal buffers rather
than waiting for it to
arrive from programmer-
visible registers or
memory.

EXAMPLE

Figure 4.29 shows the connection to forward the value in $s0 after the execu-
tion stage of the add instruction as input to the execution stage of the sub
instruction.

ANSWER

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the
laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with the
abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for the
instruction fetch stage, with the box representing instruction memory; ID for the instruc tion decode/register
file read stage, with the drawing showing the register file being read; EX for the execu tion stage, with the
drawing representing the ALU; MEM for the memory access stage, with the box representing data memory;
and WB for the write-back stage, with the drawing showing the register file being written. The shading
indicates the element is used by the instruction. Hence, MEM has a white back ground because add does not
access the data memory. Shading on the right half of the register file or mem ory means the element is read
in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is shaded
in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage because
the register file is written.

Time

add $s0, $t0, $t1 IF MEMID WBEX

200 400 600 800 1000

Time

add $s0, $t0, $t1

sub $t2, $s0, $t3

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

200 400 600 800 1000

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register
$s0 read in the second stage of sub.

In this graphical representation of events, forwarding paths are valid only if the
destination stage is later in time than the source stage. For example, there cannot
be a valid forwarding path from the output of the memory access stage in the first
instruction to the input of the execution stage of the following, since that would
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot
prevent all pipeline stalls, however. For example, suppose the first instruction was a

 4.5 An Overview of Pipelining 337

338 Chapter 4 The Processor

load of $s0 instead of an add. As we can imagine from looking at Figure 4.29, the
desired data would be available only after the fourth stage of the first instruc tion
in the dependence, which is too late for the input of the third stage of sub. Hence,
even with forwarding, we would have to stall one stage for a load-use data hazard,
as Figure 4.30 shows. This figure shows an important pipeline concept, officially
called a pipeline stall, but often given the nickname bubble. We shall see stalls
elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like
these, using either hardware detection and stalls or software that reorders code to
try to avoid load-use pipeline stalls, as this example illustrates.

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

a = b + e;
c = b + f;

Here is the generated MIPS code for this segment, assuming all variables are in
memory and are addressable as offsets from $t0:

load-use data hazard
A spe cific form of data
hazard in which the data
being loaded by a load
instruction has not yet
become available when
it is needed by another
instruction.

pipeline stall Also called

bub ble. A stall initiated in
 order to resolve a hazard.

EXAMPLE

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction follow ing
a load tries to use the data. Without the stall, the path from memory access stage output to exe cution
stage input would be going backward in time, which is impossible. This figure is actually a simplification,
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be
necessary. Section 4.7 shows the details of what really happens in the case of a hazard.

200 400 600 800 1000 1200 1400
Time

lw $s0, 20($t1)

sub $t2, $s0, $t3

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

bubble bubble bubble bubble bubble

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1,$t4
sw $t5, 16($t0)

Find the hazards in the preceding code segment and reorder the instructions to
avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence
on the immediately preceding lw instruction. Notice that bypassing elimi nates
several other potential hazards, including the dependence of the first add on
the first lw and any hazards for store instructions. Moving up the third lw
instruction to become the third instruction eliminates both haz ards:

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
add $t5, $t1,$t4
sw $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will com-
plete in two fewer cycles than the original version.

Forwarding yields another insight into the MIPS architecture, in addition to the
four mentioned on page 335. Each MIPS instruction writes at most one result and
does this in the last stage of the pipeline. Forwarding is harder if there are multiple
results to forward per instruction or they need to write a result early on in instruc-
tion execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed
forward from an earlier instruction to a later instruction. “Bypassing” comes from pass-
ing the result around the register file to the desired unit.

Control Hazards

The third type of hazard is called a control hazard, arising from the need to make a
decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of cleaning the uniforms
of a football team. Given how filthy the laundry is, we need to determine whether
the detergent and water temperature setting we select is strong enough to get the
uni forms clean but not so strong that the uniforms wear out sooner. In our laundry

ANSWER

control hazard Also
called branch hazard.
When the proper
instruction cannot
exe cute in the proper
pipeline clock cycle
because the instruction
that was fetched is not the
one that is needed; that
is, the flow of instruction
addresses is not what the
pipeline expected.

 4.5 An Overview of Pipelining 339

340 Chapter 4 The Processor

pipeline, we have to wait until the second stage to examine the dry uniform to see
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until
you have the right formula.

This conservative option certainly works, but it is slow.
The equivalent decision task in a computer is the branch instruction. Notice that

we must begin fetching the instruction following the branch on the very next clock
cycle. Nevertheless, the pipeline cannot possibly know what the next instruction
should be, since it only just received the branch instruction from mem ory! Just as
with laundry, one possible solution is to stall immediately after we fetch a branch,
waiting until the pipeline determines the outcome of the branch and knows what
instruction address to fetch from.

Let’s assume that we put in enough extra hardware so that we can test registers,
calculate the branch address, and update the PC during the second stage of the
pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline
involving conditional branches would look like Figure 4.31. The lw instruction,
executed if the branch fails, is stalled one extra 200 ps clock cycle before starting.

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control
hazards. This example assumes the conditional branch is taken, and the instruction at the destina tion of
the branch is the OR instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance,
however, is the same as would occur if a bubble were inserted.

add $4, $5, $6

beq $1, $2, 40

or $7, $8, $9

Time

Instruction
fetch

Data
access

Data
access

Data
access

Reg

Instruction
fetch

Instruction
fetch

Reg

Reg

200 ps

400 ps

bubble bubble bubble bubble bubble

200 400 600 800 1000 1200 1400
Program
execution
order
(in instructions)

Reg ALU

Reg ALU

Reg ALU

Performance of “Stall on Branch”

Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other instructions have a CPI of 1.

Figure 3.27 in Chapter 3 shows that branches are 17% of the instructions
executed in SPECint2006. Since the other instructions run have a CPI of 1, and
branches took one extra clock cycle for the stall, then we would see a CPI of
1.17 and hence a slowdown of 1.17 versus the ideal case.

If we cannot resolve the branch in the second stage, as is often the case for longer
pipelines, then we’d see an even larger slowdown if we stall on branches. The cost of
this option is too high for most computers to use and motivates a second solution
to the control hazard:

Predict: If you’re pretty sure you have the right formula to wash uniforms, then
just predict that it will work and wash the second load while waiting for the first
load to dry.

This option does not slow down the pipeline when you are correct. When you are
wrong, however, you need to redo the load that was washed while guessing the
decision.

Computers do indeed use prediction to handle branches. One simple approach
is to predict always that branches will be untaken. When you’re right, the pipeline
proceeds at full speed. Only when branches are taken does the pipeline stall.
Figure 4.32 shows such an example.

A more sophisticated version of branch prediction would have some branches
predicted as taken and some as untaken. In our analogy, the dark or home uni-
forms might take one formula while the light or road uniforms might take another.
In the case of programming, at the bottom of loops are branches that jump back to
the top of the loop. Since they are likely to be taken and they branch backward, we
could always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior and
don’t account for the individuality of a specific branch instruction. Dynamic hard-
ware predictors, in stark contrast, make their guesses depending on the behavior of
each branch and may change predictions for a branch over the life of a pro gram.
Following our analogy, in dynamic prediction a person would look at how dirty the
uniform was and guess at the formula, adjusting the next guess depend ing on the
success of recent guesses.

EXAMPLE

ANSWER

branch prediction
A method of resolving
a branch hazard that
assumes a given outcome
for the branch and
proceeds from that
assumption rather than
 waiting to ascertain the
actual outcome.

 4.5 An Overview of Pipelining 341

342 Chapter 4 The Processor

One popular approach to dynamic prediction of branches is keeping a history
for each branch as taken or untaken, and then using the recent past behavior to
predict the future. As we will see later, the amount and type of history kept have
become extensive, with the result being that dynamic branch predictors can cor-
rectly predict branches with more than 90% accuracy (see Section 4.8). When the
guess is wrong, the pipeline control must ensure that the instructions following
the wrongly guessed branch have no effect and must restart the pipeline from the
proper branch address. In our laundry analogy, we must stop taking new loads so
that we can restart the load that we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacer-
bate the problem, in this case by raising the cost of misprediction. Solutions to
control hazards are described in more detail in Section 4.8.

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal
the details.

add $4, $5, $6

beq $1, $2, 40

lw $3, 300($0)

Time

Instruction
fetch

Instruction
fetch

Data
access

Reg

Instruction
fetch

Data
access

Data
access

Reg

Reg

Reg ALU

Reg ALU

Reg ALU

Reg ALU

Reg ALU

Reg ALU

200 ps

200 ps

add $4, $5, $6

beq $1, $2, 40

or $7, $8, $9

Time

Instruction
fetch

Data
access

Reg

Instruction
fetch

Instruction
fetch

Data
access

Reg

Data
access

Reg

200 ps

400 ps

bubble bubble bubble bubble bubble

200 400 600 800 1000 1200 1400
Program
execution
order
(in instructions)

200 400 600 800 1000 1200 1400
Program
execution
order
(in instructions)

Elaboration: There is a third approach to the control hazard, called delayed decision
mentioned above. In our analogy, whenever you are going to make such a decision about
laundry, just place a load of nonfootball clothes in the washer while waiting for football
uniforms to dry. As long as you have enough dirty clothes that are not affected by the
test, this solution works fine.

Called the delayed branch in computers, this is the solution actually used by the
MIPS architecture. The delayed branch always executes the next sequential instruc-
tion, with the branch taking place after that one instruction delay. It is hidden from the
MIPS assembly lan guage programmer because the assembler can automatically arrange
the instructions to get the branch behavior desired by the programmer. MIPS software
will place an instruction immedi ately after the delayed branch instruction that is not
affected by the branch, and a taken branch changes the address of the instruction that
follows this safe instruction. In our example, the add instruction before the branch in
Figure 4.31 does not affect the branch and can be moved after the branch to fully hide
the branch delay. Since delayed branches are useful when the branches are short, no
processor uses a delayed branch of more than one cycle. For longer branch delays,
 hardware-based branch prediction is usually used.

Pipeline Overview Summary

Pipelining is a technique that exploits parallelism among the instructions in a
sequential instruction stream. It has the substantial ad vantage that, unlike pro-
gramming a multiprocessor, it is fundamentally invisible to the programmer.

In the next sections of this chapter, we cover the concept of pipelining using the
MIPS instruction subset from the single-cycle implementation in Section 4.4 and
show a simplified version of its pipeline. We then look at the problems that pipe-
lining introduces and the performance attainable under typical sit uations.

If you wish to focus more on the software and the performance implications
of pipelining, you now have sufficient background to skip to Section 4.10. Section
4.10 introduces advanced pipelining concepts, such as superscalar and dynamic
scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is imple-
mented and the challenges of dealing with hazards, you can proceed to examine the
design of a pipelined datapath and the basic control, explained in Section 4.6. You
can then use this understanding to explore the implementation of forwarding and
stalls in Section 4.7. You can then read Section 4.8 to learn more about solu tions to
branch hazards, and then see how exceptions are handled in Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using
only forwarding, or can execute without stalling or forwarding.

Check
Yourself

Sequence 1 Sequence 2 Sequence 3

lw $t0,0($t0)
add $t1,$t0,$t0

add $t1,$t0,$t0
addi $t2,$t0,#5
addi $t4,$t1,#5

addi $t1,$t0,#1
addi $t2,$t0,#2
addi $t3,$t0,#2
addi $t3,$t0,#4
addi $t5,$t0,#5

 4.5 An Overview of Pipelining 343

344 Chapter 4 The Processor

Outside the memory system, the effective operation of the pipeline is usually
the most important factor in determining the CPI of the processor and hence its
performance. As we will see in Section 4.10, understanding the performance of a
modern multiple-issue pipelined processor is complex and requires understand ing
more than just the issues that arise in a simple pipelined processor. Nonethe less,
structural, data, and control hazards remain important in both simple pipelines
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually more
of a problem in integer programs, which tend to have higher branch frequencies
as well as less predictable branches. Data hazards can be performance bottlenecks
in both integer and floating-point programs. Often it is easier to deal with data
hazards in floating-point programs because the lower branch frequency and more
regular memory access patterns allow the compiler to try to schedule instructions
to avoid hazards. It is more difficult to perform such optimizations in integer
programs that have less regular memory access, involving more use of pointers.
As we will see in Section 4.10, there are more ambitious compiler and hardware
techniques for reducing data dependences through scheduling.

Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction, also
called the latency. For example, the five-stage pipeline still takes 5 clock
cycles for the instruction to complete. In the terms used in Chapter 1,
pipelining improves instruction throughput rather than individual
instruction execution time or latency.

Instruction sets can either simplify or make life harder for pipeline
designers, who must already cope with structural, control, and data hazards.
Branch prediction and forwarding help make a computer fast while still
getting the right answers.

 4.6 Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline
stages identified. The division of an instruction into five stages means a five-stage

Understanding
Program

Performance

The BIG
Picture

latency (pipeline) The
num ber of stages in a
pipeline or the number
of stages between two
instructions during
execution.

There is less in this
than meets the eye.

Tallulah Bankhead,
remark to Alexander
Woollcott, 1922

pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 4.33, these five components correspond roughly to the way the data -
path is drawn; instructions and data move generally from left to right through the
five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they never
move backward.

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped onto
the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either the ALU
result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are data lines.)

WB: Write backMEM: Memory accessIF: Instruction fetch EX: Execute/
address calculation

1

M
u
x

0

0
M
u
x

1 Address

Write
data

Read
data

Data
memory

Read
register 1

Read
register 2

Write
register

Write
data

Registers

Read
data 1

Read
data 2

ALU

Zero

ALU
result

ADD
Add

result
Shift
left 2

Address

Instruction

Instruction
memory

Add

4

PC

Sign-
extend

0
M
u
x

1

32

ID: Instruction decode/
register file read

16

 4.6 Pipelined Datapath and Control 345

346 Chapter 4 The Processor

There are, however, two exceptions to this left-to-right flow of instructions:

 ■ The write-back stage, which places the result back into the register file in the
middle of the datapath

 ■ The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; only later
instructions in the pipeline are influenced by these reverse data movements. Note
that the first right-to-left flow of data can lead to data hazards and the second leads
to control hazards.

One way to show what happens in pipelined execution is to pretend that each
instruction has its own datapath, and then to place these datapaths on a time-
line to show their relationship. Figure 4.34 shows the execution of the instructions
in Figure 4.27 by displaying their private datapaths on a common timeline. We
use a stylized version of the datapath in Figure 4.33 to show the relationships in
Figure 4.34.

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time (in clock cycles)

IM DMReg RegALU

IM DMReg RegALU

IM DMReg RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33,
assuming pipelined execution. Similar to Figures 4.28 through 4.30, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in
Figure 4.33. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands
for the register file and sign extender in the instruction decode/register file read stage (ID), and so on. To
main tain proper time order, this stylized datapath breaks the register file into two logical parts: registers
read during register fetch (ID) and registers written during write back (WB). This dual use is represented
by drawing the unshaded left half of the register file using dashed lines in the ID stage, when it is not being
written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before,
we assume the register file is written in the first half of the clock cycle and the register file is read during the
sec ond half.

Figure 4.34 seems to suggest that three instructions need three datapaths.
Instead, we add registers to hold data so that portions of a single datapath can be
shared during instruction execution.

For example, as Figure 4.34 shows, the instruction memory is used during
only one of the five stages of an instruction, allowing it to be shared by following
instructions during the other four stages. To retain the value of an individual
instruction for its other four stages, the value read from instruction memory must
be saved in a register. Similar arguments apply to every pipeline stage, so we must
place registers wherever there are dividing lines between stages in Figure 4.33.
Returning to our laundry analogy, we might have a basket between each pair of
stages to hold the clothes for the next step.

Figure 4.35 shows the pipelined datapath with the pipeline registers high lighted.
All instructions advance during each clock cycle from one pipeline regis ter to the
next. The registers are named for the two stages separated by that register. For
example, the pipeline register between the IF and ID stages is called IF/ID.

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID
register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC address.
We will expand these regis ters over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64 bits,
respectively.

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 347

348 Chapter 4 The Processor

Notice that there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor—the register file, memory,
or the PC—so a separate pipeline register is redundant to the state that is updated.
For example, a load instruction will place its result in 1 of the 32 registers, and any
later instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by
setting it to a branch destination address. The PC can be thought of as a pipeline
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline
registers in Figure 4.35, however, the PC is part of the visible architectural state;
its contents must be saved when an exception occurs, while the contents of the
pipe line registers can be discarded. In the laundry analogy, you could think of
the PC as corresponding to the basket that holds the load of dirty clothes before
the wash step.

To show how the pipelining works, throughout this chapter we show sequences
of figures to demonstrate operation over time. These extra pages would seem to
require much more time for you to understand. Fear not; the sequences take much
less time than it might appear, because you can compare them to see what changes
occur in each clock cycle. Section 4.7 describes what happens when there are data
hazards between pipelined instructions; ignore them for now.

Figures 4.36 through 4.38, our first sequence, show the active portions of the
datapath highlighted as a load instruction goes through the five stages of pipe-
lined execution. We show a load first because it is active in all five stages. As in
Figures 4.28 through 4.30, we highlight the right half of registers or memory when
they are being read and highlight the left half when they are being written.

We show the instruction abbreviation lw with the name of the pipe stage that is
active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.36 shows the instruction being
read from memory using the address in the PC and then being placed in the
IF/ID pipeline register. The PC address is incremented by 4 and then written
back into the PC to be ready for the next clock cycle. This incre mented
address is also saved in the IF/ID pipeline register in case it is needed later
for an instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction, passing
potentially needed information down the pipeline.

2. Instruction decode and register file read: The bottom portion of Figure 4.36
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer
everything that might be needed by any instruction during a later clock
cycle.

FIGURE 4.36 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in
Figure 4.35 highlighted. The highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2,
the processor doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX
pipeline register. We don’t need all three operands, but it simplifies control to keep all three.

Instruction decode

lw

Instruction fetch

lw

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

MEM/WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 349

350 Chapter 4 The Processor

3. Execute or address calculation: Figure 4.37 shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the load instruction
reading the data memory using the address from the EX/MEM pipeline
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 4.38 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed
in a later pipe stage must be passed to that stage via a pipeline register. Walking
through a store instruction shows the similarity of instruction execution, as well
as passing the information for later stages. Here are the five pipe stages of the store
instruction:

FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35
used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.

Execution

Iw

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddAdd
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x1

1
M
u
x

0

MEM/WB

FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of the
datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register file in the
middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41.

Memory

Iw

Write-back

Iw

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EX IF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

MEM/WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EX IF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 351

352 Chapter 4 The Processor

1. Instruction fetch: The instruction is read from memory using the address
in the PC and then is placed in the IF/ID pipeline register. This stage occurs
before the instruction is identified, so the top portion of Figure 4.36 works
for store as well as load.

2. Instruction decode and register file read: The instruction in the IF/ID pipe line
register supplies the register numbers for reading two registers and extends
the sign of the 16-bit immediate. These three 32-bit values are all stored
in the ID/EX pipeline register. The bottom portion of Figure 4.36 for load
instructions also shows the operations of the second stage for stores. These
first two stages are executed by all instructions, since it is too early to know
the type of the instruction.

3. Execute and address calculation: Figure 4.39 shows the third step; the effective
address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.40 shows the data being written
to memory. Note that the register containing the data to be stored was read in
an earlier stage and stored in ID/EX. The only way to make the data available
during the MEM stage is to place the data into the EX/MEM pipe line register
in the EX stage, just as we stored the effective address into EX/MEM.

5. Write-back: The bottom portion of Figure 4.40 shows the final step of the
store. For this instruction, nothing happens in the write-back stage. Since
every instruction behind the store is already in progress, we have no way to
accelerate those instructions. Hence, an instruction passes through a stage
even if there is nothing to do, because later instructions are already progress-
ing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe
stage to a later pipe stage, the information must be placed in a pipeline register;
otherwise, the information is lost when the next instruction enters that pipeline
stage. For the store instruction we needed to pass one of the registers read in the
ID stage to the MEM stage, where it is stored in memory. The data was first placed
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the
datapath—such as instruction memory, register read ports, ALU, data memory,
and register write port—can be used only within a single pipeline stage. Other wise,
we would have a structural hazard (see page 335). Hence these components, and
their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see it?
Which register is changed in the final stage of the load? More specifically, which
instruction supplies the write register number? The instruction in the IF/ID pipe-
line register supplies the write register number, yet this instruction occurs consid-
erably after the load instruction!

FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.37, the
second reg ister value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this
second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to
understand.

Execution

sw

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddAdd
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

Hence, we need to preserve the destination register number in the load instruc-
tion. Just as store passed the register contents from the ID/EX to the EX/MEM
pipeline registers for use in the MEM stage, load must pass the register number
from the ID/EX through EX/MEM to the MEM/WB pipeline register for use in the
WB stage. Another way to think about the passing of the register number is that to
share the pipelined datapath, we need to preserve the instruction read during the
IF stage, so each pipeline register contains a portion of the instruction needed for
that stage and later stages.

Figure 4.41 shows the correct version of the datapath, passing the write register
number first to the ID/EX register, then to the EX/MEM register, and finally to the
MEM/WB register. The register number is used during the WB stage to specify the
register to be written. Figure 4.42 is a single drawing of the corrected datapath,
highlighting the hardware used in all five stages of the load word instruction in
Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the
branch instruction work as expected.

 4.6 Pipelined Datapath and Control 353

354 Chapter 4 The Processor

FIGURE 4.40 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data is written into
data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline
register. Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.

Memory

sw

Write-back

sw

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EX IF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

MEM/WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EX IF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register number now
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the
MEM/WB pipeline regis ter, adding five more bits to the last three pipeline registers. This new path is shown in color.

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all five stages of a load instruction.

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 355

356 Chapter 4 The Processor

Graphically Representing Pipelines
Pipelining can be difficult to understand, since many instructions are simulta-
neously executing in a single datapath in every clock cycle. To aid understanding,
there are two basic styles of pipeline figures: multiple-clock-cycle pipeline dia grams,
such as Figure 4.34 on page 346, and single-clock-cycle pipeline diagrams, such as
Figures 4.36 through 4.40. The multiple-clock-cycle diagrams are simpler but do
not contain all the details. For example, consider the following five-instruction
sequence:

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)
add $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these instruc-
tions. Time advances from left to right across the page in these diagrams, and
instructions advance from the top to the bottom of the page, similar to the laun dry
pipeline in Figure 4.25. A representation of the pipeline stages is placed in each
portion along the instruction axis, occupying the proper clock cycles. These stylized
datapaths represent the five stages of our pipeline graphically, but a rectangle
naming each pipe stage works just as well. Figure 4.44 shows the more tradi-
tional version of the multiple-clock-cycle pipeline diagram. Note that Figure 4.43
shows the physical resources used at each stage, while Figure 4.44 uses the name of
each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath dur ing
a single clock cycle, and usually all five instructions in the pipeline are identi fied by
labels above their respective pipeline stages. We use this type of figure to show the
details of what is happening within the pipeline during each clock cycle; typically,
the drawings appear in groups to show pipeline operation over a sequence of
clock cycles. We use multiple-clock-cycle diagrams to give overviews of pipelining
situations. (Section 4.12 gives more illustrations of single-clock diagrams
if you would like to see more details about Figure 4.43.) A single-clock-cycle
diagram represents a vertical slice through a set of multiple-clock-cycle diagrams,
showing the usage of the datapath by each of the instructions in the pipeline at
the designated clock cycle. For exam ple, Figure 4.45 shows the single-clock-cycle
diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously, the
single-clock-cycle diagrams have more detail and take significantly more space
to show the same number of clock cycles. The exercises ask you to create such
diagrams for other code sequences.

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete
execu tion of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move
from left to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw
this diagram.

Program
execution
order
(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

IM Reg Reg

IM DMReg Reg

IM Reg Reg

Reg Reg

Reg Reg

ALU

ALU

ALU

ALU

ALU

DM

DM

DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

DM

IM

IM

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.43.

Program
execution
order
(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

Instruction
fetch

Instruction
decode

Execution Data
access

Data
access

Data
access

Data
access

Data
access

Write-back

CC 9CC 8CC 7CC 6CC 5CC 4CC 3CC 2CC 1

Instruction
fetch

Instruction
fetch

Instruction
fetch

Instruction
fetch

Instruction
decode

Instruction
decode

Instruction
decode

Instruction
decode

Execution Write-back

Execution Write-back

Execution Write-back

Execution Write-back

 4.6 Pipelined Datapath and Control 357

358 Chapter 4 The Processor

A group of students were debating the efficiency of the five-stage pipeline when
one student pointed out that not all instructions are active in every stage of the
pipeline. After deciding to ignore the effects of hazards, they made the following
five statements. Which ones are correct?

1. Allowing jumps, branches, and ALU instructions to take fewer stages than
the five required by the load instruction will increase pipeline performance
under all circumstances.

2. Trying to allow some instructions to take fewer cycles does not help, since
the throughput is determined by the clock cycle; the number of pipe stages
per instruction affects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches and jumps can take fewer cycles, so there is
some opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore
making the pipeline longer, so that instructions take more cycles, but the
cycles are shorter. This could improve performance.

Check
Yourself

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44.
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

Memory

sub $11, $2, $3

Write-back

lw $10, 20($1)

Execution

add $12, $3, $4

Instruction decode

lw $13, 24 ($1)

Instruction fetch

add $14, $5, $6

16 32

In
st

ru
ct

io
n

MEM/WB

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

Pipelined Control

Just as we added control to the single-cycle datapath in Section 4.3, we now add
control to the pipelined datapath. We start with a simple design that views the
problem through rose-colored glasses; in Sections 4.7 through 4.9, we remove these
glasses to reveal the pipeline hazards of the real world.

The first step is to label the control lines on the existing datapath. Figure 4.46
shows those lines. We borrow as much as we can from the control for the simple
datapath in Figure 4.17. In particular, we use the same ALU control logic, branch
logic, destination-register-number multiplexor, and control lines. These functions
are defined in Figures 4.12, 4.16, and 4.18. We reproduce the key information in
Figures 4.47 through 4.49 on a single page to make the following discussion easier
to follow.

In the 6600 Computer,
perhaps even more
than in any previous
computer, the con trol
system is the difference.

James Thornton,
Design of a Computer:
The Control Data 6600,
1970

FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows the control
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct field (function
code) of the instruc tion in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that
these 6 bits are also the 6 least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the
immediate field since sign extension leaves these bits unchanged.

MemWrite

PCSrc

MemtoReg

MemRead

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Instruction
(15–0)

Instruction
(20–16)

Instruction
(15–11)

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddAdd
result

Add ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32 6
ALU

control

RegDst

ALUOp

ALUSrc

RegWrite

Branch

MEM/WB

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

0

M
u
x

1

 4.6 Pipelined Datapath and Control 359

360 Chapter 4 The Processor

Instruction
opcode ALUOp

Instruction
operation Function code

Desired
ALU action

ALU control
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.47 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on the ALUOp control bits and the
different function codes for the R-type instruction.

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write
register comes from the rt field (bits 20:16).

The register destination number for the Write register comes
from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is written with the value
on the Write data input.

ALUSrc The second ALU operand comes from the second
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of
the instruction.

PCSrc The PC is replaced by the output of the adder that
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes
the branch target.

MemRead None. Data memory contents designated by the address input are
put on the Read data output.

MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input
comes from the ALU.

The value fed to the register Write data input comes from the
data memory.

FIGURE 4.48 A copy of Figure 4.16. The function of each of seven control signals is defined. The ALU control lines (ALUOp) are
defined in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corre-
sponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in
Figure 4.46. If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only
during a beq instruc tion; otherwise, PCSrc is set to 0.

Instruction

Execution/address calculation stage
control lines

Memory access stage
control lines

Write-back stage
control lines

RegDst ALUOp1 ALUOp0 ALUSrc Branch
 Mem-
Read

Mem-
Write

Reg-
Write

Memto-
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into three
groups corresponding to the last three pipeline stages.

As was the case for the single-cycle implementation, we assume that the PC
is written on each clock cycle, so there is no separate write signal for the PC. By
the same argument, there are no separate write signals for the pipeline registers
(IF/ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also
written during each clock cycle.

To specify control for the pipeline, we need only set the control values during
each pipeline stage. Because each control line is associated with a component active
in only a single pipeline stage, we can divide the control lines into five groups
according to the pipeline stage.

1. Instruction fetch: The control signals to read instruction memory and to
write the PC are always asserted, so there is nothing special to control in this
pipeline stage.

2. Instruction decode/register file read: As in the previous stage, the same thing
happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp, and
ALUSrc (see Figures 4.47 and 4.48). The signals select the Result register,
the ALU operation, and either Read data 2 or a sign-extended immedi ate for
the ALU.

FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines
are used in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register
extended to hold the control lines; three are used during the MEM stage, and the last two are passed to
MEM/WB for use in the WB stage.

WB

M

EX

WB

M WB

Control

IF/ID ID/EX EX/MEM MEM/WB

Instruction

 4.6 Pipelined Datapath and Control 361

362 Chapter 4 The Processor

4. Memory access: The control lines set in this stage are Branch, MemRead,
and MemWrite. These signals are set by the branch equal, load, and store
instructions, respectively. Recall that PCSrc in Figure 4.48 selects the next
sequential address unless control asserts Branch and the ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides between
sending the ALU result or the memory value to the register file, and Reg-
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged,
we can use the same control values. Figure 4.49 has the same values as in Section 4.4,
but now the nine control lines are grouped by pipeline stage.

FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of the
pipe line registers. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX
pipeline reg ister. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

WB

M

EX

WB

M WB

M
em

W
rit

e

PCSrc

M
em

to
R

eg

MemRead

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Instruction
[15–0]

Instruction
[20–16]

Instruction
[15–11]

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EX

IF/ID

EX/MEM

MEM/WB

16 632
ALU

control

RegDst

ALUOp

ALUSrc

R
eg

W
rit

e

In
st

ru
ct

io
n

Branch

Control

0
M
u
x

1

0
M
u
x

M
u
x

M
u
x

1

1

0

0

1

Implementing control means setting the nine control lines to these values in
each stage for each instruction. The simplest way to do this is to extend the pipe line
registers to include control information.

Since the control lines start with the EX stage, we can create the control infor-
mation during instruction decode. Figure 4.50 above shows that these control
signals are then used in the appropriate pipeline stage as the instruction moves
down the pipeline, just as the destination register number for loads moves down
the pipe line in Figure 4.41. Figure 4.51 above shows the full datapath with the
extended pipeline registers and with the control lines connected to the proper
stage. (Section 4.12 gives more examples of MIPS code executing on pipelined
hardware using single-clock diagrams, if you would like to see more details.)

 4.7 Data Hazards: Forwarding versus Stalling

The examples in the previous section show the power of pipelined execution and
how the hardware performs the task. It’s now time to take off the rose-colored
glasses and look at what happens with real programs. The instructions in Figures
4.43 through 4.45 were independent; none of them used the results calculated by
any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to pipe-
lined execution.

Let’s look at a sequence with many dependences, shown in color:

sub $2, $1,$3 # Register $2 written by sub
and $12,$2,$5 # 1st operand($2) depends on sub
or $13,$6,$2 # 2nd operand($2) depends on sub
add $14,$2,$2 # 1st($2) & 2nd($2) depend on sub
sw $15,100($2) # Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the first
instruction. If register $2 had the value 10 before the subtract instruction and
−20 afterwards, the programmer intends that −20 will be used in the following
instructions that refer to register $2.

How would this sequence perform with our pipeline? Figure 4.52 illustrates the
execution of these instructions using a multiple-clock-cycle pipeline representation.
To demonstrate the execution of this instruction sequence in our current pipeline,
the top of Figure 4.52 shows the value of register $2, which changes during the
middle of clock cycle 5, when the sub instruction writes its result.

The last potential hazard can be resolved by the design of the register file
hardware: What happens when a register is read and written in the same clock
cycle? We assume that the write is in the first half of the clock cycle and the read
is in the second half, so the read delivers what is written. As is the case for many
implementations of register files, we have no data hazard in this case.

What do you mean,
why’s it got to be built?
It’s a bypass. You’ve got
to build bypasses.

Douglas Adams, The
Hitchhiker’s Guide to
the Galaxy, 1979

 4.7 Data Hazards: Forwarding versus Stalling 363

364 Chapter 4 The Processor

Figure 4.52 shows that the values read for register $2 would not be the result of
the sub instruction unless the read occurred during clock cycle 5 or later. Thus, the
instructions that would get the correct value of −20 are add and sw; the AND and
OR instructions would get the incorrect value 10! Using this style of drawing, such
problems become apparent when a dependence line goes backward in time.

As mentioned in Section 4.5, the desired result is available at the end of the
EX stage or clock cycle 3. When is the data actually needed by the AND and OR
instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively.
Thus, we can exe cute this segment without stalls if we simply forward the data as
soon as it is avail able to any units that need it before it is available to read from the
register file.

How does forwarding work? For simplicity in the rest of this section, we consider
only the challenge of forwarding to an operation in the EX stage, which may be
either an ALU operation or an effective address calculation. This means that when

Program
execution
order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2,$2

sw $15, 100($2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10
Value of
register $2: 10/–20 –20 –20 –20 –20

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the dependences.
All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction writes into $2, and
all the following instructions read $2. This register is written in clock cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a
register dur ing a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from
the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.

an instruction tries to use a register in its EX stage that an earlier instruction intends
to write in its WB stage, we actually need the values as inputs to the ALU.

A notation that names the fields of the pipeline registers allows for a more pre-
cise notation of dependences. For example, “ID/EX.RegisterRs” refers to the num-
ber of one register whose value is found in the pipeline register ID/EX; that is, the
one from the first read port of the register file. The first part of the name, to the left
of the period, is the name of the pipeline register; the second part is the name of the
field in that register. Using this notation, the two pairs of hazard conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

The first hazard in the sequence on page 363 is on register $2, between the result
of sub $2,$1,$3 and the first read operand of and $12,$2,$5. This hazard can
be detected when the and instruction is in the EX stage and the prior instruction is
in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Dependence Detection

Classify the dependences in this sequence from page 363:

sub $2, $1, $3 # Register $2 set by sub
and $12, $2, $5 # 1st operand($2) set by sub
or $13, $6, $2 # 2nd operand($2) set by sub
add $14, $2, $2 # 1st($2) & 2nd($2) set by sub
sw $15, 100($2) # Index($2) set by sub

As mentioned above, the sub-and is a type 1a hazard. The remaining hazards
are as follows:

 ■ The sub-or is a type 2b hazard:

 MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

 ■ The two dependences on sub-add are not hazards because the register
file supplies the proper data during the ID stage of add.

 ■ There is no data hazard between sub and sw because sw reads $2 the
clock cycle after sub writes $2.

EXAMPLE

ANSWER

 4.7 Data Hazards: Forwarding versus Stalling 365

366 Chapter 4 The Processor

Because some instructions do not write registers, this policy is inaccurate;
sometimes it would forward when it shouldn’t. One solution is simply to check
to see if the RegWrite signal will be active: examining the WB control field of the
pipeline register during the EX and MEM stages determines whether RegWrite is
asserted. Recall that MIPS requires that every use of $0 as an operand must yield
an operand value of 0. In the event that an instruction in the pipeline has $0 as
its destination (for example, sll $0, $1, 2), we want to avoid forwarding its pos-
sibly nonzero result value. Not forwarding results destined for $0 frees the assem bly
programmer and the compiler of any requirement to avoid using $0 as a destination.
The conditions above thus work properly as long we add EX/MEM.RegisterRd ≠ 0
to the first hazard condition and MEM/WB.RegisterRd ≠ 0 to the second.

Now that we can detect hazards, half of the problem is resolved—but we must
still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the inputs
to the ALU for the same code sequence as in Figure 4.52. The change is that the
dependence begins from a pipeline register, rather than waiting for the WB stage to
write the register file. Thus, the required data exists in time for later instructions,
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just
ID/EX, then we can forward the proper data. By adding multiplexors to the input
of the ALU, and with the proper controls, we can run the pipeline at full speed in
the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the four
R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of the
ALU and pipeline register before and after adding forwarding. Figure 4.55 shows
the values of the control lines for the ALU multiplexors that select either the register
file values or one of the forwarded values.

This forwarding control will be in the EX stage, because the ALU forwarding
multiplexors are found in that stage. Thus, we must pass the operand register
numbers from the ID stage via the ID/EX pipeline register to determine whether
to forward values. We already have the rt field (bits 20–16). Before forwarding, the
ID/EX register had no need to include space to hold the rs field. Hence, rs (bits
25–21) is added to ID/EX.

Let’s now write both the conditions for detecting hazards and the control sig nals
to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

Note that the EX/MEM.RegisterRd field is the register destination for either
an ALU instruction (which comes from the Rd field of the instruction) or a load
(which comes from the Rt field).

This case forwards the result from the previous instruction to either input of the
ALU. If the previous instruction is going to write to the register file, and the write
register number matches the read register number of ALU inputs A or B, provided

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the
inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline
registers. The val ues in the pipeline registers show that the desired value is available before it is written into the register file. We assume that
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the
register file instead of a pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock
cycle 5 shows register $2 having the value 10 at the beginning and −20 at the end of the clock cycle. As in the rest of this section, we handle all
forwarding except for the value to be stored by a store instruction.

Program
execution
order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2 , $2

sw $15, 100($2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM Reg Reg

IM Reg Reg

IM Reg Reg

IM Reg Reg

IM DM

DM

DM

DM

DM

Reg Reg

10 10 10 10 10/–20 –20 –20 –20 –20Value of register $2:
Value of EX/MEM: X X X –20 X X X X X
Value of MEM/WB: X X X X –20 X X X X

 4.7 Data Hazards: Forwarding versus Stalling 367

368 Chapter 4 The Processor

FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the multiplexors have
been expanded to add the forwarding paths, and we show the forwarding unit. The new hardware is shown in color. This figure is a stylized
drawing, how ever, leaving out details from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown
twice, once to con nect to the mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding
of a store value to a store instruction. Also note that this mechanism works for slt instructions as well.

Data
memory

Registers

M
u
x

ALU

ALU

ID/EX

a. No forwarding

b. With forwarding

EX/MEM MEM/WB

Data
memory

Registers

M
u
x

M
u
x

M
u
x

M
u
x

ID/EX EX/MEM MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs
Rt

Rt
Rd

ForwardB

ForwardA

it is not register 0, then steer the multiplexor to pick the value instead from the
pipeline register EX/MEM.

2. MEM hazard:

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that
the register file supplies the correct result if the instruction in the ID stage reads
the same register written by the instruction in the WB stage. Such a register file
performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruc tion
in the WB stage, the result of the instruction in the MEM stage, and the source
operand of the instruction in the ALU stage. For example, when summing a vector
of numbers in a single register, a sequence of instructions will all read and write to
the same register:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4
. . .

In this case, the result is forwarded from the MEM stage because the result in the
MEM stage is the more recent result. Thus, the control for the MEM hazard would
be (with the additions highlighted):

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0))
 and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0))
 and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRt)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Figure 4.56 shows the hardware necessary to support forwarding for operations
that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the

 4.7 Data Hazards: Forwarding versus Stalling 369

370 Chapter 4 The Processor

register destination for either an ALU instruction (which comes from the Rd field
of the instruction) or a load (which comes from the Rt field).

 Section 4.12 on the CD shows two pieces of MIPS code with hazards that
cause forwarding, if you would like to see more illustrated examples using single-
cycle pipeline drawings.

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed
immediate that is another input to the ALU is described in the Elaboration at the end of this section.

FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such
as the branch hardware and the sign extension hardware.

M

WB

WB

Registers

Instruction
memory

M
u
x

M
u
xM

u
x

M
u
x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs
Rt
Rt
Rd

PC

Control

EX

M

WB

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

In
st

ru
ct

io
n

IF/ID

Data
memory

Elaboration: Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during the MEM
stage, forwarding is easy. However, consider loads immediately followed by stores, useful
when performing mem ory-to-memory copies in the MIPS architecture. Since copies are
frequent, we need to add more forwarding hardware to make them run faster. If we were
to redraw Figure 4.53, replacing the sub and AND instructions with lw and sw, we would
see that it is possible to avoid a stall, since the data exists in the MEM/WB register of
a load instruction in time for its use in the MEM stage of a store instruction. We would
need to add forwarding into the memory access stage for this option. We leave this
modification as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores,
is missing from the datapath in Figure 4.56. Since central control decides between
register and immediate, and since the forwarding unit chooses the pipeline register for
a register input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses
between the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows
this addition.

FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multi plexor, which has been added to select the
signed immediate as an ALU input.

Data
memory

Registers

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

ALU

ID/EX EX/MEM MEM/WB

Forwarding
unit

ALUSrc

 4.7 Data Hazards: Forwarding versus Stalling 371

372 Chapter 4 The Processor

Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when
an instruction tries to read a register following a load instruction that writes
the same register. Figure 4.58 illustrates the problem. The data is still being read
from memory in clock cycle 4 while the ALU is performing the operation for the
following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and its
use. Checking for load instructions, the control for the hazard detection unit is this
single condition:

if (ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt)))
 stall the pipeline

If at first you don’t
succeed, redefine
success.

Anonymous

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) goes
back ward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.

Program
execution
order
(in instructions)

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

The first line tests to see if the instruction is a load: the only instruction that reads
data memory is a load. The next two lines check to see if the destination register
field of the load in the EX stage matches either source register of the instruction
in the ID stage. If the condition holds, the instruction stalls one clock cycle. After
this 1-cycle stall, the forwarding logic can handle the dependence and execution
pro ceeds. (If there were no forwarding, then the instructions in Figure 4.58 would
need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage
must also be stalled; otherwise, we would lose the fetched instruction. Preventing
these two instructions from making progress is accomplished simply by prevent-
ing the PC register and the IF/ID pipeline register from changing. Provided these
registers are preserved, the instruction in the IF stage will continue to be read using
the same PC, and the registers in the ID stage will continue to be read using the
same instruction fields in the IF/ID pipeline register. Returning to our favorite
analogy, it’s as if you restart the washer with the same clothes and let the dryer
continue tumbling empty. Of course, like the dryer, the back half of the pipeline
starting with the EX stage must be doing something; what it is doing is executing
instructions that have no effect: nops.

How can we insert these nops, which act like bubbles, into the pipeline? In
 Figure 4.49, we see that deasserting all nine control signals (setting them to 0) in
the EX, MEM, and WB stages will create a “do nothing” or nop instruction. By
identifying the hazard in the ID stage, we can insert a bubble into the pipeline by
changing the EX, MEM, and WB control fields of the ID/EX pipe line register to
0. These benign control values are percolated forward at each clock cycle with the
proper effect: no registers or memories are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline execution
slot associated with the AND instruction is turned into a nop and all instructions
beginning with the AND instruction are delayed one cycle. Like an air bubble in
a water pipe, a stall bubble delays everything behind it and proceeds down the
instruction pipe one stage each cycle until it exits at the end. In this example, the
hazard forces the AND and OR instructions to repeat in clock cycle 4 what they did in
clock cycle 3: AND reads registers and decodes, and OR is refetched from instruc tion
memory. Such repeated work is what a stall looks like, but its effect is to stretch the
time of the AND and OR instructions and delay the fetch of the add instruction.

Figure 4.60 highlights the pipeline connections for both the hazard detection
unit and the forwarding unit. As before, the forwarding unit controls the ALU
multiplexors to replace the value from a general-purpose register with the value
from the proper pipeline register. The hazard detection unit controls the writing
of the PC and IF/ID registers plus the multiplexor that chooses between the real
control values and all 0s. The hazard detection unit stalls and deasserts the control
fields if the load-use hazard test above is true. Section 4.12 on the CD gives an
example of MIPS code with hazards that causes stalling, illustrated using single-
clock pipeline diagrams, if you would like to see more details.

nop An instruction that
does no operation to
change state.

 4.7 Data Hazards: Forwarding versus Stalling 373

374 Chapter 4 The Processor

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed
until clock cycle 5 (ver sus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no
further hazards occur.

bubble

Program
execution
order
(in instructions)

lw $2, 20($1)

and becomes nop

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

Although the compiler generally relies upon the hardware to resolve hazards
and thereby ensure correct execution, the compiler must understand the
pipeline to achieve the best performance. Otherwise, unexpected stalls will
reduce the performance of the compiled code.

The BIG
Picture

FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements.

0 M

WB

WB

Data
memory

Instruction
memory

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

Hazard
detection

unit

ID/EX.MemRead

IF/ID.RegisterRs

In
st

ru
ct

io
n

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

ID/EX.RegisterRt

P
C

W
rit

e

IF
/D

W
rit

e

Registers

Rt

Rd

Rs
Rt

Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while
the other con trol signals can be don’t cares.

 4.8 Control Hazards

Thus far, we have limited our concern to hazards involving arithmetic operations
and data transfers. However, as we saw in Section 4.5, there are also pipeline
hazards involving branches. Figure 4.61 shows a sequence of instructions and indi-
cates when the branch would occur in this pipeline. An instruction must be fetched

There are a thousand
hack ing at the branches
of evil to one who is
striking at the root.

Henry David Thoreau,
Walden, 1854

 4.8 Control Hazards 375

376 Chapter 4 The Processor

at every clock cycle to sustain the pipeline, yet in our design the decision about
whether to branch doesn’t occur until the MEM pipeline stage. As mentioned
in Section 4.5, this delay in determining the proper instruction to fetch is called
a control hazard or branch hazard, in contrast to the data hazards we have just
examined.

This section on control hazards is shorter than the previous sections on data
hazards. The reasons are that control hazards are relatively simple to understand,
they occur less frequently than data hazards, and there is nothing as effective
against control hazards as forwarding is against data hazards. Hence, we use
simpler schemes. We look at two schemes for resolving control hazards and one
optimization to improve these schemes.

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, . . .)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

Reg

Program
execution
order
(in instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DM Reg

IM DMReg Reg

IM DMReg Reg

Assume Branch Not Taken
As we saw in Section 4.5, stalling until the branch is complete is too slow. A com-
mon improvement over branch stalling is to assume that the branch will not be
taken and thus continue execution down the sequential instruction stream. If the
branch is taken, the instructions that are being fetched and decoded must be dis-
carded. Execution continues at the branch target. If branches are untaken half the
time, and if it costs little to discard the instructions, this optimization halves the
cost of control hazards.

To discard instructions, we merely change the original control values to 0s, much
as we did to stall for a load-use data hazard. The difference is that we must also
change the three instructions in the IF, ID, and EX stages when the branch reaches
the MEM stage; for load-use stalls, we just changed control to 0 in the ID stage and
let them percolate through the pipeline. Discarding instructions, then, means we
must be able to flush instructions in the IF, ID, and EX stages of the pipeline.

Reducing the Delay of Branches
One way to improve branch performance is to reduce the cost of the taken branch.
Thus far, we have assumed the next PC for a branch is selected in the MEM stage,
but if we move the branch execution earlier in the pipeline, then fewer instruc-
tions need be flushed. The MIPS architecture was designed to support fast single-
cycle branches that could be pipelined with a small branch penalty. The designers
observed that many branches rely only on simple tests (equality or sign, for exam-
ple) and that such tests do not require a full ALU operation but can be done with
at most a few gates. When a more complex branch decision is required, a separate
instruction that uses an ALU to perform a comparison is required—a situation
that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing
the branch target address and evaluating the branch decision. The easy part of
this change is to move up the branch address calculation. We already have the PC
value and the immediate field in the IF/ID pipeline register, so we just move the
branch adder from the EX stage to the ID stage; of course, the branch target address
calculation will be performed for all instructions, but only used when needed.

The harder part is the branch decision itself. For branch equal, we would compare
the two registers read during the ID stage to see if they are equal. Equality can be
tested by first exclusive ORing their respective bits and then ORing all the results.
Moving the branch test to the ID stage implies additional forwarding and hazard
detection hardware, since a branch dependent on a result still in the pipe line must
still work properly with this optimization. For example, to implement branch on
equal (and its inverse), we will need to forward results to the equality test logic that
operates during ID. There are two complicating factors:

flush To dis card
instructions in a pipeline,
usually due to an
unexpected event.

 4.8 Control Hazards 377

378 Chapter 4 The Processor

1. During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if the
instruction is a branch, we can set the PC to the branch target address. For-
warding for the operands of branches was formerly handled by the ALU
forwarding logic, but the introduction of the equality test unit in ID will
require new forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may
be produced later in time, it is possible that a data hazard can occur and a
stall will be needed. For example, if an ALU instruction immediately pre-
ceding a branch produces one of the operands for the comparison in the
branch, a stall will be required, since the EX stage for the ALU instruction
will occur after the ID cycle of the branch. By extension, if a load is immedi-
ately followed by a conditional branch that is on the load result, two stall
cycles will be needed, as the result from the load appears at the end of the
MEM cycle but is needed at the beginning of ID for the branch.

Despite these difficulties, moving the branch execution to the ID stage is an
improvement, because it reduces the penalty of a branch to only one instruction if
the branch is taken, namely, the one currently being fetched. The exercises explore
the details of implementing the forwarding path and detecting the hazard.

To flush instructions in the IF stage, we add a control line, called IF.Flush,
that zeros the instruction field of the IF/ID pipeline register. Clearing the register
transforms the fetched instruction into a nop, an instruction that has no action
and changes no state.

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence,
assuming the pipeline is optimized for branches that are not taken and that we
moved the branch execution to the ID stage:

36 sub $10, $4, $8
40 beq $1, $3, 7 # PC-relative branch to 40 + 4 + 7 * 4 = 72
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
. . .
72 lw $4, 50($7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61,
there is only one pipeline bubble on a taken branch.

EXAMPLE

ANSWER

FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being
fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s
arguable whether or not the ID stage in clock 4 should be highlighted.)

M

WB

WB

Data
memory

Registers

Instruction
memory

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID 0

Hazard
detection

unit

+

+

Sign-
extend

Shift
left 2

=

IF.Flush

4

72
48

44

28

44

$1

$3
$8

$4

7

10

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>

M

WB

WB

Data
memory

Registers

Instruction
memory

M
u
x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID 0

Hazard
detection

unit

+

+

Sign-
extend

Shift
left 2

=

IF.Flush

4

76

72

76
72

72 $3

10

$1

lw $4, 50($7)

Clock 3

Clock 4

Bubble (nop) beq $1, $3, 7 sub $10, . . . before<1>

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

 4.8 Control Hazards 379

380 Chapter 4 The Processor

Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case,
we predict that branches are untaken, flushing the pipeline when we are wrong. For the
simple five-stage pipeline, such an approach, possibly coupled with compiler-based
prediction, is probably adequate. With deeper pipelines, the branch penalty increases
when measured in clock cycles. Similarly, with multiple issue (see Section 4.10), the
branch penalty increases in terms of instructions lost. This combination means
that in an aggressive pipeline, a simple static prediction scheme will proba bly waste
too much performance. As we mentioned in Section 4.5, with more hard ware it is
possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch
was taken the last time this instruction was executed, and, if so, to begin fetching
new instructions from the same place as the last time. This technique is called
dynamic branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
por tion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This is the simplest sort of buffer; we don’t know, in fact, if the pre diction is the
right one—it may have been put there by an other branch that has the same low-
order address bits. However, this doesn’t affect correctness. Prediction is just a hint
that we hope is correct, so fetching begins in the predicted direction. If the hint turns
out to be wrong, the incorrectly predicted instructions are deleted, the prediction bit
is inverted and stored back, and the proper sequence is fetched and executed.

This simple 1-bit prediction scheme has a performance short coming: even if a
branch is almost always taken, we can predict incor rectly twice, rather than once,
when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken
once. What is the prediction accuracy for this branch, assuming the predic tion
bit for this branch remains in the prediction buffer?

The steady-state prediction behavior will mispredict on the first and last loop
iterations. Mispredicting the last iteration is inevitable since the prediction bit
will indicate taken, as the branch has been taken nine times in a row at that point.
The misprediction on the first iteration happens because the bit is flipped on
prior execution of the last iteration of the loop, since the branch was not taken on
that exiting iteration. Thus, the prediction accuracy for this branch that is taken
90% of the time is only 80% (two incorrect predictions and eight correct ones).

dynamic branch
prediction Prediction of
branches at runtime using
run time information.

branch prediction buffer
Also called branch
history table. A small
memory that is indexed
by the lower portion of
the address of the branch
instruction and that
contains one or more bits
indicating whether the
branch was recently taken
or not.

EXAMPLE

ANSWER

Ideally, the accuracy of the predictor would match the taken branch frequency for
these highly regular branches. To remedy this weakness, 2-bit pre diction schemes
are often used. In a 2-bit scheme, a prediction must be wrong twice before it is
changed. Figure 4.63 shows the finite-state machine for a 2-bit predic tion scheme.

A branch prediction buffer can be implemented as a small, special buffer accessed
with the instruction address during the IF pipe stage. If the instruction is predicted
as taken, fetching begins from the target as soon as the PC is known; as mentioned
on page 377, it can be as early as the ID stage. Otherwise, sequential fetching and
executing continue. If the pre diction turns out to be wrong, the pre diction bits are
changed as shown in Figure 4.63.

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based pre dictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid point of
its range as the division between taken and not taken.

Predict taken

Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Taken

Predict not takenPredict not taken

Predict taken

Elaboration: As we described in Section 4.5, in a five-stage pipeline we can make the
con trol hazard a feature by redefining the branch. A delayed branch always executes the
following instruction, but the second instruction following the branch will be affected by
the branch.

Compilers and assemblers try to place an instruction that always executes after
the branch in the branch delay slot. The job of the software is to make the successor
instructions valid and useful. Figure 4.64 shows the three ways in which the branch
delay slot can be scheduled.

The limitations on delayed branch scheduling arise from (1) the restric tions on the
instruc tions that are scheduled into the delay slots and (2) our ability to predict at
compile time whether a branch is likely to be taken or not.

branch delay slot The
slot directly after a delayed
branch instruction, which
in the MIPS architecture is
filled by an instruction that
does not affect the branch.

 4.8 Control Hazards 381

382 Chapter 4 The Processor

Delayed branching was a simple and effective solution for a five-stage pipeline
issuing one instruction each clock cycle. As processors go to both longer pipelines
and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay
becomes longer, and a single delay slot is insufficient. Hence, delayed branching has
lost popularity compared to more expensive but more flexible dynamic approaches.
Simultaneously, the growth in available tran sistors per chip has made dynamic prediction
relatively cheaper.

Elaboration: A branch predictor tells us whether or not a branch is taken, but still requires
the calculation of the branch target. In the five-stage pipeline, this calculation takes one
cycle, meaning that taken branches will have a 1-cycle penalty. Delayed branches are

FIGURE 4.64 Scheduling the branch delay slot. The top box in each pair shows the code before
scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an indepen dent
instruction from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not
possible. In the code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add
instruction (whose des tination is $s1) from being moved into the branch delay slot. In (b) the branch delay
slot is scheduled from the target of the branch; usually the target instruction will need to be copied because
it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability,
such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To
make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch
goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will still exe cute
correctly. This is the case, for example, if $t4 were an unused tempo rary register when the branch goes in
the unexpected direction.

add $s1, $s2, $s3

if $s2 = 0 then

Delay slot

if $s2 = 0 then

add $s1, $s2, $s3

Becomes

a. From before

sub $t4, $t5, $t6

. . .

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

b. From target

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

c. From fall-through

sub $t4, $t5, $t6

one approach to eliminate that penalty. Another approach is to use a cache to hold the
destination program counter or destination instruction using a branch target buffer.

The 2-bit dynamic prediction scheme uses only information about a particular branch.
Researchers noticed that using information about both a local branch, and the global
behavior of recently executed branches together yields greater prediction accuracy for
the same number of prediction bits. Such predictors are called correlating predictors.
A typical correlating pre dictor might have two 2-bit predictors for each branch, with the
choice between predictors made based on whether the last executed branch was taken
or not taken. Thus, the global branch behav ior can be thought of as adding additional
index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors.
A tour nament predictor uses multiple predictors, tracking, for each branch, which pre-
dictor yields the best results. A typical tournament predictor might contain two predic-
tions for each branch index: one based on local information and one based on global
branch behavior. A selector would choose which predictor to use for any given prediction.
The selector can operate simi larly to a 1- or 2-bit predictor, favoring whichever of the two
predictors has been more accurate. Some recent microprocessors use such elaborate
predictors.

Elaboration: One way to reduce the number of conditional branches is to add
conditional move instructions. Instead of changing the PC with a conditional branch, the
instruction condi tionally changes the destination register of the move. If the condition
fails, the move acts as a nop. For example, one version of the MIPS instruction set
architecture has two new instructions called movn (move if not zero) and movz (move
if zero). Thus, movn $8, $11, $4 copies the contents of register 11 into register 8,
provided that the value in register 4 is nonzero; other wise, it does nothing.

The ARM instruction set has a condition field in most instructions. Hence, ARM
programs could have fewer conditional branches than in MIPS programs.

Pipeline Summary

We started in the laundry room, showing principles of pipelining in an everyday
setting. Using that analogy as a guide, we explained instruction pipelining step-
by-step, starting with the single-cycle datapath and then adding pipeline registers,
forwarding paths, data hazard detection, branch prediction, and flushing instruc-
tions on exceptions. Figure 4.65 shows the final evolved datapath and control. We
now are ready for yet another control hazard: the sticky issue of exceptions.

Consider three branch prediction schemes: branch not taken, predict taken, and
dynamic prediction. Assume that they all have zero penalty when they predict
cor rectly and two cycles when they are wrong. Assume that the average predict
accuracy of the dynamic predictor is 90%. Which predictor is the best choice for
the follow ing branches?

1. A branch that is taken with 5% frequency

2. A branch that is taken with 95% frequency

3. A branch that is taken with 70% frequency

branch target buffer
A struc ture that caches
the destina tion PC or
destination instruction
for a branch. It is usually
organized as a cache with
tags, making it more
costly than a simple
prediction buffer.

correlating predictor
A branch predictor that
combines local behavior
of a particular branch
and global information
about the behavior of
some recent number of
executed branches.

tournament branch
predictor A branch
predictor with multiple
predictions for each
branch and a selection
mechanism that chooses
which predictor to enable
for a given branch.

Check
Yourself

 4.8 Control Hazards 383

384 Chapter 4 The Processor

 4.9 Exceptions

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of con-
trol is implementing exceptions and interrupts—events other than branches or
jumps that change the normal flow of instruction execution. They were initially
created to handle unexpected events from within the processor, like arithmetic
overflow. The same basic mechanism was extended for I/O devices to communi-
cate with the processor, as we will see in Chapter 6.

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using

To make a computer
with automatic
program- interruption
facilities behave
[sequentially] was
not an easy matter,
because the number of
instructions in various
stages of processing
when an interrupt
signal occurs may be
large.

Fred Brooks, Jr.,
Planning a Computer
System: Project Stretch,
1962

FIGURE 4.65 The final datapath and control for this chapter. Note that this is a stylized figure rather than a detailed datapath, so
it’s miss ing the ALUsrc mux from Figure 4.57 and the multiplexor controls from Figure 4.51.

Control

Hazard
detection

unit

+

4

PC
Instruction

memory

Sign-
extend

Registers =

+

Fowarding
unit

ALU

ID/EX

MEM/WB

EX/MEM

WB

M

EX

Shift
left 2

IF.Flush

IF/ID

M
u
x

M
u
x

Data
memory

WB

WBM

0

M
u
x

M
u
x

M
u
x

M
u
x

the term exception to refer to any unexpected change in control flow without
distinguishing whether the cause is internal or external; we use the term interrupt
only when the event is externally caused. Here are five examples showing whether
the situation is internally generated by the processor or externally generated:

Type of event From where? MIPS terminology

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific situation
that causes an exception to occur. Accordingly, we will return to this topic in
Chapter 5, when we discuss memory hierarchies, and in Chapter 6, when we discuss
I/O, and we will better understand the motivation for additional capabilities in the
exception mechanism. In this section, we deal with the control implementa tion for
detecting two types of exceptions that arise from the portions of the instruction set
and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often on the
critical timing path of a processor, which determines the clock cycle time and thus
performance. Without proper attention to exceptions during design of the control
unit, attempts to add exceptions to a complicated implementation can significantly
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled in the MIPS Architecture

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. We’ll use arith-
metic overflow in the instruction add $1, $2, $1 as the example exception in
the next few pages. The basic action that the processor must perform when an
exception occurs is to save the address of the offending instruction in the excep tion
program counter (EPC) and then transfer control to the operating system at some
specified address.

The operating system can then take the appropriate action, which may involve
providing some service to the user program, taking some predefined action in
response to an overflow, or stopping the execution of the program and reporting
an error. After performing whatever action is required because of the exception, the
operating system can terminate the program or may con tinue its execution, using
the EPC to determine where to restart the execution of the program. In Chapter 5,
we will look more closely at the issue of restart ing the execution.

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main

exception Also
called inter rupt. An
unscheduled event
that disrupts program
execution; used to detect
overflow.

interrupt An exception
that comes from outside
of the processor. (Some
architec tures use the
term interrupt for all
exceptions.)

 4.9 Exceptions 385

386 Chapter 4 The Processor

methods used to communicate the reason for an exception. The method used
in the MIPS architecture is to include a status register (called the Cause register),
which holds a field that indicates the reason for the exception.

A second method, is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might
define the following two exception vector addresses:

Exception type Exception vector address (in hex)

Undefined instruction 8000 0000hex

Arithmetic overflow 8000 0180hex

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or eight instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause.

We can perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementation and by slightly extend-
ing control. Let’s assume that we are implementing the exception system used in
the MIPS architecture, with the single entry point being the address 8000 0180hex.
(Implementing vectored exceptions is no more difficult.) We will need to add two
additional registers to the MIPS implementation:

 ■ EPC: A 32-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

 ■ Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently unused.
Assume there is a five-bit field that encodes the two possible exception
sources mentioned above, with 10 representing an undefined instruction and
12 representing arithmetic overflow.

Exceptions in a Pipelined Implementation
A pipelined implementation treats exceptions as another form of control haz ard.
For example, suppose there is an arithmetic overflow in an add instruction. Just as
we did for the taken branch in the previous section, we must flush the instructions
that follow the add instruction from the pipeline and begin fetching instructions
from the new address. We will use the same mechanism we used for taken branches,
but this time the exception causes the deasserting of control lines.

When we dealt with branch mispredict, we saw how to flush the instruction
in the IF stage by turning it into a nop. To flush instructions in the ID stage, we
use the multiplexor already in the ID stage that zeros control signals for stalls.

vectored interrupt An
inter rupt for which
the address to which
control is transferred is
determined by the cause
of the exception.

A new control signal, called ID.Flush, is ORed with the stall signal from the hazard
detec tion unit to flush during ID. To flush the instruction in the EX phase, we use
a new signal called EX.Flush to cause new multiplexors to zero the control lines. To
start fetching instructions from location 8000 0180hex, which is the MIPS exception
address, we simply add an additional input to the PC multiplexor that sends 8000
0180hex to the PC. Figure 4.66 shows these changes.

This example points out a problem with exceptions: if we do not stop execu tion
in the middle of the instruction, the programmer will not be able to see the original
value of register $1 that helped cause the overflow because it will be clobbered as
the Destination register of the add instruction. Because of careful plan ning, the
overflow exception is detected during the EX stage; hence, we can use the EX.Flush
signal to prevent the instruction in the EX stage from writing its result in the WB
stage. Many exceptions require that we eventually complete the instruc tion that
caused the exception as if it executed normally. The easiest way to do this is to flush
the instruction and restart it from the beginning after the exception is handled.

FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the value 8000 0180hex
in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save
the address of the instruction that caused the exception. The 8000 0180hex input to the multiplexor is the initial address to begin fetching
instructions in the event of an exception. Although not shown, the ALU overflow signal is an input to the control unit.

0

0

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

ALU

ID/EX

EX/MEM

Cause

EPC

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

M
u
x

Hazard
detection

unit

�

� Shift
left 2

�

IF.Flush

ID.Flush

EX.Flush

4

Sign-
extend

80000180

Registers

M
u
x

 4.9 Exceptions 387

388 Chapter 4 The Processor

The final step is to save the address of the offending instruction in the excep tion
program counter (EPC). In reality, we save the address + 4, so the exception handling
routine must first subtract 4 from the saved value. Figure 4.66 shows a stylized version
of the datapath, including the branch hardware and necessary accommodations to
handle exceptions.

Exception in a Pipelined Computer

Given this instruction sequence,

40hex sub $11, $2, $4
44hex and $12, $2, $5
48hex or $13, $2, $6
4Chex add $1, $2, $1
50hex slt $15, $6, $7
54hex lw $16, 50($7)
. . .

assume the instructions to be invoked on an exception begin like this:

80000180hex sw $26, 1000($0)
80000184hex sw $27, 1004($0)
. . .

Show what happens in the pipeline if an overflow exception occurs in the add
instruction.

Figure 4.67 shows the events, starting with the add instruction in the EX stage.
The overflow is detected during that phase, and 8000 0180hex is forced into the
PC. Clock cycle 7 shows that the add and following instructions are flushed,
and the first instruction of the exception code is fetched. Note that the address
of the instruction following the add is saved: 4Chex + 4 = 50hex.

We mentioned five examples of exceptions on page 385, and we will see others
in Chapters 5 and 6. With five instructions active in any clock cycle, the challenge
is to associate an exception with the appropriate instruction. Moreover, multiple
exceptions can occur simultaneously in a single clock cycle. The solution is to
prioritize the exceptions so that it is easy to determine which is serviced first. In
most MIPS implementations, the hardware sorts exceptions so that the earliest
instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specific
instruction, so the implementation has some flexibility as to when to interrupt the
pipeline. Hence, the mechanism used for other exceptions works just fine.

EXAMPLE

ANSWER

FIGURE 4.67 The result of an exception due to arithmetic overflow in the add instruction. The overflow is detected during
the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 = 50hex). Overflow causes all the Flush signals to be
set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted
to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—sw $25,1000($0)—from instruction location
8000 0180hex. Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown, the ALU overflow signal
is an input to the control unit.

lw $16, 50($7) slt $15, $6, $7 add $1, $2, $1 or $13, . . . and $12, . . .

sw $26, 1000($0)

Clock 6

Clock 7

bubble (nop) bubble bubble or $13, . . .

0

0

000

50

0

10

10

10

0

0 0

00

000000

0

0

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

a ard
d t tion

unit

+

+ i t
l t

=

IF.Flush
ID.Flush

EX.Flush

4

58

54

54

$115

Sign-
extend

80000180

gi t r

u

u

Cau

PC

12

$6
$2

$1

$7

13 12

0 0 M

WB

WB

ata
or

n tru tion
or

uu

u

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

M
u
x

M
u
x

Hazard
detection

unit

+

+ Shift
left 2

=

IF.Flush
ID.Flush

EX.Flush

4

58

Sign-
extend

80000180

80000180

80000180

80000184

Registers

M
u
x

Cause

EPC

13

13

ALU

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

 4.9 Exceptions 389

390 Chapter 4 The Processor

The EPC captures the address of the interrupted instructions, and the MIPS
Cause register records all possible exceptions in a clock cycle, so the exception
software must match the exception to the instruction. An important clue is know-
ing in which pipeline stage a type of exception can occur. For example, an unde-
fined instruction is discovered in the ID stage, and invoking the operating system
occurs in the EX stage. Exceptions are collected in the Cause register in a pending
exception field so that the hardware can interrupt based on later exceptions, once
the earliest one has been serviced.

The hardware and the operating system must work in conjunction so that excep tions
behave as you would expect. The hardware contract is normally to stop the offending
instruction in midstream, let all prior instructions complete, flush all following
instructions, set a register to show the cause of the exception, save the address of
the offending instruction, and then jump to a prearranged address. The operating
system contract is to look at the cause of the exception and act appro priately. For
an undefined instruction, hardware failure, or arithmetic overflow exception, the
operating system normally kills the program and returns an indica tor of the reason.
For an I/O device request or an operating system service call, the operating system
saves the state of the program, performs the desired task, and, at some point in the
future, restores the program to continue execution. In the case of I/O device requests,
we may often choose to run another task before resuming the task that requested
the I/O, since that task may often not be able to proceed until the I/O is complete.
This is why the ability to save and restore the state of any task is critical. One of the
most important and frequent uses of exceptions is han dling page faults and TLB
exceptions; Chapter 5 describes these exceptions and their handling in more detail.

Elaboration: The difficulty of always associating the correct exception with the correct
instruction in pipelined computers has led some computer designers to relax this
requirement in noncritical cases. Such processors are said to have imprecise interrupts
or imprecise excep tions. In the example above, PC would normally have 58hex at the
start of the clock cycle after the exception is detected, even though the offending
instruction is at address 4Chex. A processor with imprecise exceptions might put 58hex
into EPC and leave it up to the operating system to determine which instruction caused
the problem. MIPS and the vast majority of computers today support precise interrupts
or precise exceptions. (One reason is to support virtual memory, which we shall see in
Chapter 5.)

Elaboration: Although MIPS uses the exception entry address 8000 0180hex for
almost all exceptions, it uses the address 8000 0000hex to improve performance of the
exception handler for TLB-miss exceptions (see Chapter 5).

Hardware/
Software
Interface

imprecise interrupt
Also called imprecise
exception. Interrupts or
exceptions in pipe lined
computers that are not
associated with the exact
instruction that was the
cause of the interrupt or
exception.

precise interrupt Also
called precise exception.
An interrupt or exception
that is always associated
with the correct
instruc ion in pipelined
 computers.

Which exception should be recognized first in this sequence?

1. add $1, $2, $1 # arithmetic overflow

2. XXX $1, $2, $1 # undefined instruction

3. sub $1, $2, $1 # hardware error

 4.10
Parallelism and Advanced Instruction-
Level Parallelism

Be forewarned: this section is a brief overview of fascinating but advanced
topics. If you want to learn more details, you should consult our more advanced
book, Computer Architecture: A Quantitative Approach, fourth edition, where the
material covered in the next 13 pages is expanded to almost 200 pages (including
Appendices)!

Pipelining exploits the potential parallelism among instructions. This parallelism
is called instruction-level parallelism (ILP). There are two primary methods
for increasing the potential amount of instruction-level parallelism. The first is
increasing the depth of the pipeline to overlap more instructions. Using our laundry
analogy and assuming that the washer cycle was longer than the others were, we
could divide our washer into three machines that perform the wash, rinse, and spin
steps of a traditional washer. We would then move from a four-stage to a six-stage
pipeline. To get the full speed-up, we need to rebalance the remaining steps so they
are the same length, in processors or in laundry. The amount of parallelism being
exploited is higher, since there are more operations being overlapped. Performance
is potentially greater since the clock cycle can be shorter.

Another approach is to replicate the internal components of the computer so
that it can launch multiple instructions in every pipeline stage. The general name
for this technique is multiple issue. A multiple-issue laundry would replace our
household washer and dryer with, say, three washers and three dryers. You would
also have to recruit more assistants to fold and put away three times as much laun-
dry in the same amount of time. The downside is the extra work to keep all the
machines busy and transferring the loads to the next pipeline stage.

Launching multiple instructions per stage allows the instruction execution
rate to exceed the clock rate or, stated alternatively, the CPI to be less than 1. It
is sometimes useful to flip the metric and use IPC, or instructions per clock cycle.
Hence, a 4 GHz four-way multiple-issue microprocessor can execute a peak rate
of 16 billion instructions per second and have a best-case CPI of 0.25, or an IPC
of 4. Assuming a five-stage pipeline, such a processor would have 20 instructions
in execution at any given time. Today’s high-end microprocessors attempt to issue
from three to six instructions in every clock cycle. There are typically, however,
many constraints on what types of instructions may be executed simultaneously
and what happens when dependences arise.

Check
Yourself

instruction-level
parallelism The
parallelism among
instructions.

multiple issue
A scheme whereby
multiple instructions are
launched in one clock
cycle.

 4.10 Parallelism and Advanced Instruction-Level Parallelism 391

392 Chapter 4 The Processor

There are two major ways to implement a multiple-issue processor, with the
major difference being the division of work between the compiler and the hard ware.
Because the division of work dictates whether decisions are being made stat ically
(that is, at compile time) or dynamically (that is, during execution), the approaches
are sometimes called static multiple issue and dynamic multiple issue. As we will
see, both approaches have other, more commonly used names, which may be less
precise or more restrictive.

There are two primary and distinct responsibilities that must be dealt with in a
multiple-issue pipeline:

1. Packaging instructions into issue slots: how does the processor determine
how many instructions and which instructions can be issued in a given
clock cycle? In most static issue processors, this process is at least partially
handled by the compiler; in dynamic issue designs, it is normally dealt with
at runtime by the processor, although the compiler will often have already
tried to help improve the issue rate by placing the instructions in a benefi cial
order.

2. Dealing with data and control hazards: in static issue processors, some or
all of the consequences of data and control hazards are handled statically by
the compiler. In contrast, most dynamic issue processors attempt to allevi-
ate at least some classes of hazards using hardware techniques operating at
execution time.

Although we describe these as distinct approaches, in reality techniques from one
approach are often borrowed by the other, and neither approach can claim to be
perfectly pure.

The Concept of Speculation

One of the most important methods for finding and exploiting more ILP is
speculation. Speculation is an approach that allows the compiler or the processor
to “guess” about the properties of an instruction, so as to enable execution to begin
for other instructions that may depend on the speculated instruction. For example,
we might speculate on the outcome of a branch, so that instructions after the
branch could be executed earlier. Another example is that we might speculate that
a store that precedes a load does not refer to the same address, which would allow
the load to be executed before the store. The difficulty with speculation is that it
may be wrong. So, any speculation mechanism must include both a method to
check if the guess was right and a method to unroll or back out the effects of the
instructions that were executed speculatively. The implementation of this back-out
capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the
compiler can use speculation to reorder instructions, moving an instruction across

static multiple issue
An approach to
implementing a multiple-
issue processor where
many decisions are made
by the compiler before
execution.

dynamic multiple
issue An approach to
implementing a multiple-
issue processor where
many decisions are made
during execution by the
processor.

issue slots The positions
from which instructions
could issue in a given
clock cycle; by analogy,
these correspond to
positions at the starting
blocks for a sprint.

speculation An
approach whereby the
compiler or proces sor
guesses the outcome of an
instruction to remove it as
a dependence in executing
other instructions.

a branch or a load across a store. The processor hardware can perform the same
transformation at runtime using techniques we discuss later in this section.

The recovery mechanisms used for incorrect speculation are rather different. In
the case of speculation in software, the compiler usually inserts additional instruc-
tions that check the accuracy of the speculation and provide a fix-up routine to use
when the speculation is incorrect. In hardware speculation, the processor usu ally
buffers the speculative results until it knows they are no longer speculative. If the
speculation is correct, the instructions are completed by allowing the contents of
the buffers to be written to the registers or memory. If the speculation is incor rect,
the hardware flushes the buffers and re-executes the correct instruction sequence.

Speculation introduces one other possible problem: speculating on certain
instructions may introduce exceptions that were formerly not present. For exam-
ple, suppose a load instruction is moved in a speculative manner, but the address
it uses is not legal when the speculation is incorrect. The result would be that an
exception that should not have occurred will occur. The problem is complicated by
the fact that if the load instruction were not speculative, then the exception must
occur! In compiler-based speculation, such problems are avoided by adding spe-
cial speculation support that allows such exceptions to be ignored until it is clear
that they really should occur. In hardware-based speculation, exceptions are simply
buffered until it is clear that the instruction causing them is no longer speculative
and is ready to complete; at that point the exception is raised, and nor mal excep-
tion handling proceeds.

Since speculation can improve performance when done properly and decrease
performance when done carelessly, significant effort goes into deciding when it
is appropriate to speculate. Later in this section, we will examine both static and
dynamic techniques for speculation.

Static Multiple Issue
Static multiple-issue processors all use the compiler to assist with packaging instruc-
tions and handling hazards. In a static issue processor, you can think of the set of
instructions issued in a given clock cycle, which is called an issue packet, as one
large instruction with multiple operations. This view is more than an analogy. Since
a static multiple-issue processor usually restricts what mix of instruc tions can be
initiated in a given clock cycle, it is useful to think of the issue packet as a single
instruction allowing several operations in certain predefined fields. This view led to
the original name for this approach: Very Long Instruction Word (VLIW).

Most static issue processors also rely on the compiler to take on some respon-
sibility for handling data and control hazards. The compiler’s responsibilities may
include static branch prediction and code scheduling to reduce or prevent all
hazards. Let’s look at a simple static issue version of a MIPS processor, before we
describe the use of these techniques in more aggressive processors.

issue packet The set of
instruc tions that issues
together in one clock
cycle; the packet may be
determined statically by
the compiler or dynami-
cally by the processor.

Very Long Instruction
Word (VLIW) A style
of instruction set archi-
tecture that launches
many operations that are
defined to be independent
in a single wide instruc-
tion, typi cally with many
separate opcode fields.

 4.10 Parallelism and Advanced Instruction-Level Parallelism 393

394 Chapter 4 The Processor

An Example: Static Multiple Issue with the MIPS ISA
To give a flavor of static multiple issue, we consider a simple two-issue MIPS pro-
cessor, where one of the instructions can be an integer ALU opera tion or branch
and the other can be a load or store. Such a design is like that used in some
embedded MIPS processors. Issuing two instructions per cycle will require fetch-
ing and decoding 64 bits of instructions. In many static multiple-issue processors,
and essentially all VLIW processors, the layout of simultaneously issuing instruc-
tions is restricted to simplify the decoding and instruction issue. Hence, we will
require that the instruc tions be paired and aligned on a 64-bit boundary, with the
ALU or branch portion appearing first. Furthermore, if one instruction of the pair
cannot be used, we require that it be replaced with a nop. Thus, the instructions
always issue in pairs, possibly with a nop in one slot. Figure 4.68 shows how the
instructions look as they go into the pipeline in pairs.

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

FIGURE 4.68 Static two-issue pipeline in operation. The ALU and data transfer instructions
are is sued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg-
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise
exception model, which become more difficult in multiple-issue processors.

Static multiple-issue processors vary in how they deal with potential data and
control hazards. In some designs, the compiler takes full responsibility for remov-
ing all hazards, scheduling the code and inserting no-ops so that the code executes
without any need for hazard detection or hardware-generated stalls. In others,
the hardware detects data hazards and generates stalls between two issue packets,
while requiring that the compiler avoid all dependences within an instruction pair.
Even so, a hazard generally forces the entire issue packet containing the dependent
instruction to stall. Whether the software must handle all hazards or only try to
reduce the fraction of hazards between separate issue packets, the appearance of
having a large single instruction with multiple operations is rein forced. We will
assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the first need for
additional hardware—beyond the usual hazard detection and stall logic—is extra
ports in the register file (see Figure 4.69). In one clock cycle we may need to read

two registers for the ALU operation and two more for a store, and also one write
port for an ALU operation and one write port for a load. Since the ALU is tied
up for the ALU operation, we also need a separate adder to calculate the effective
address for data transfers. Without these extra resources, our two-issue pipeline
would be hindered by structural hazards.

Clearly, this two-issue processor can improve performance by up to a factor
of 2. Doing so, however, requires that twice as many instructions be overlapped
in execution, and this additional overlap increases the relative performance loss
from data and control hazards. For example, in our simple five-stage pipeline,
loads have a use la tency of one clock cycle, which prevents one instruction from
using the result without stalling. In the two-issue, five-stage pipeline the result of
a load instruction cannot be used on the next clock cycle. This means that the next
two instruc tions cannot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline now have a

use latency Number of
clock cycles between a
load instruc tion and an
instruction that can use
the result of the load with-
out stalling the pipeline.

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction
memory, two more read ports and one more write port on the register file, and another ALU. Assume the bottom ALU handles address
calculations for data transfers and the top ALU handles everything else.

Data
memory

Instruction
memory

M
u
x

M
u
x

ALU

ALU

PC

�

�

Sign-
extend

Registers

4

M
u
x

80000180

Write
data

Address

Sign-
extend

 4.10 Parallelism and Advanced Instruction-Level Parallelism 395

396 Chapter 4 The Processor

one-instruction use latency, since the results cannot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple-issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and static
multiple issue requires that the compiler take on this role.

Simple Multiple-Issue Code Scheduling

How would this loop be scheduled on a static two-issue pipe line for MIPS?

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0,$t0,$s2# add scalar in $s2
 sw $t0, 0($s1)# store result
 addi $s1,$s1,–4# decrement pointer
 bne $s1,$zero,Loop# branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware.

The first three instructions have data dependences, and so do the last two.
Figure 4.70 shows the best schedule for these instructions. Notice that just
one pair of instructions has both issue slots used. It takes four clocks per loop
iteration; at four clocks to execute five instructions, we get the disappointing
CPI of 0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice
that in computing CPI or IPC, we do not count any nops executed as useful
instructions. Doing so would improve CPI, but not performance!

ALU or branch instruction Data transfer instruction Clock cycle

Loop: lw $t0, 0($s1) 1

addi $s1,$s1,–4 2

addu $t0,$t0,$s2 3

bne $s1,$zero,Loop sw $t0, 4($s1) 4

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. The empty
slots are nops.

EXAMPLE

ANSWER

An important compiler technique to get more performance from loops is loop
unrolling, where multiple copies of the loop body are made. After unrolling, there
is more ILP available by overlapping instructions from different iterations.

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above. For
simplicity assume that the loop index is a multiple of four.

To schedule the loop without any delays, it turns out that we need to make
four copies of the loop body. After unrolling and eliminating the unnecessary
loop overhead instructions, the loop will contain four copies each of lw, add,
and sw, plus one addi and one bne. Figure 4.71 shows the unrolled and
scheduled code.

During the unrolling process, the compiler introduced additional registers
($t1, $t2, $t3). The goal of this process, called register renaming, is to elim-
inate dependences that are not true data dependences, but could either lead to
potential hazards or prevent the compiler from flexibly scheduling the code.
Consider how the unrolled code would look using only $t0. There would be
repeated instances of lw $t0,0($$s1), addu $t0,$t0,$s2 followed by sw
t0,4($s1), but these sequences, despite using $t0, are actually completely
independent—no data values flow between one pair of these instructions and
the next pair. This is what is called an antidependence or name dependence,
which is an ordering forced purely by the reuse of a name, rather than a real
data dependence which is also called a true dependence.

Renaming the registers during the unrolling process allows the compiler to
move these independent instructions subsequently so as to better schedule the
code. The renaming process eliminates the name dependences, while preserv-
ing the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as pairs. It
takes 8 clocks for 4 loop iterations, or 2 clocks per iteration, which yields a
CPI of 8/14 = 0.57. Loop unrolling and scheduling with dual issue gave us
an improvement factor of almost 2, partly from reducing the loop control
instructions and partly from dual issue execution. The cost of this performance
improve ment is using four temporary registers rather than one, as well as a
significant increase in code size.

Dynamic Multiple-Issue Processors

Dynamic multiple-issue processors are also known as superscalar processors, or
simply superscalars. In the simplest superscalar processors, instructions issue in
order, and the processor decides whether zero, one, or more instructions can issue

loop unrolling
A technique to get more
performance from loops
that access arrays, in
which multiple copies of
the loop body are made
and instruc tions from
different iterations are
scheduled together.

EXAMPLE

ANSWER

register renaming The
renam ing of registers
by the compiler or
hardware to remove
antide pendences.

antidependence Also
called name dependence.
An order ing forced by the
reuse of a name, typically
a register, rather than by
a true dependence that
carries a value between
two instructions.

superscalar An advanced
pipe lining technique that
enables the processor to
execute more than one
instruction per clock cycle
by selecting them during
execu tion.

 4.10 Parallelism and Advanced Instruction-Level Parallelism 397

398 Chapter 4 The Processor

in a given clock cycle. Obviously, achieving good performance on such a processor
still requires the compiler to try to schedule instructions to move dependences
apart and thereby improve the instruction issue rate. Even with such compiler
scheduling, there is an important difference between this simple superscalar and
a VLIW processor: the code, whether scheduled or not, is guaranteed by the hard-
ware to execute correctly. Furthermore, compiled code will always run correctly
independent of the issue rate or pipeline structure of the processor. In some VLIW
designs, this has not been the case, and recompilation was required when moving
across different processor models; in other static issue processors, code would run
correctly across different implementations, but often so poorly as to make compi-
lation effectively required.

Many superscalars extend the basic framework of dynamic issue decisions to
include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses
which instructions to execute in a given clock cycle while trying to avoid hazards
and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the
following code sequence:

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw and
addu to complete first, which might take many clock cycles if memory is slow.
(Chapter 5 explains cache misses, the reason that memory accesses are sometimes
very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either
fully or partially.

dynamic pipeline
scheduling Hardware
support for reordering
the order of instruction
execution so as to avoid
stalls.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi $s1,$s1,–16 lw $t0, 0($s1) 1

lw $t1,12($s1) 2

addu $t0,$t0,$s2 lw $t2, 8($s1) 3

addu $t1,$t1,$s2 lw $t3, 4($s1) 4

addu $t2,$t2,$s2 sw $t0, 16($s1) 5

addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2, 8($s1) 7

bne $s1,$zero,Loop sw $t3, 4($s1) 8

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static
two-issue MIPS pipeline. The empty slots are nops. Since the first instruction in the loop decrements $s1
by 16, the addresses loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12.

Dynamic Pipeline Scheduling
Dynamic pipeline scheduling chooses which instructions to execute next, possibly
reordering them to avoid stalls. In such processors, the pipeline is divided into
three major units: an instruction fetch and issue unit, multiple functional units
(a dozen or more in high-end designs in 2008), and a commit unit. Figure 4.72
shows the model. The first unit fetches instructions, decodes them, and sends each
instruction to a corresponding functional unit for execution. Each functional
unit has buffers, called reservation stations, which hold the operands and the
operation. (In the next section, we will discuss an alternative to reservation stations
used by many recent processors.) As soon as the buffer contains all its operands
and the functional unit is ready to execute, the result is calculated. When the result
is completed, it is sent to any reservation stations waiting for this particular result
as well as to the commit unit, which buffers the result until it is safe to put the
result into the register file or, for a store, into memory. The buffer in the commit
unit, often called the reorder buffer, is also used to supply operands, in much the
same way as forwarding logic does in a statically scheduled pipeline. Once a result
is committed to the register file, it can be fetched directly from there, just as in a
normal pipeline.

commit unit The unit
in a dynamic or out-
of-order execution
pipeline that decides
when it is safe to release
the result of an operation
to programmer- visible
registers and memory.

reservation station
A buffer within a
functional unit that holds
the operands and the
operation.

reorder buffer The
buffer that holds results in
a dynamically scheduled
processor until it is safe
to store the results to
memory or a register.

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. The final step of
updating the state is also called retirement or graduation.

Instruction fetch
and decode unit

Reservation
station

Reservation
station

Reservation
station

Reservation
station

Integer Integer
Floating

point
Load-
store

Commit
unit

In-order issue

Out-of-order exeFunctional
units

In-order commit

. . .

. . . cute

 4.10 Parallelism and Advanced Instruction-Level Parallelism 399

400 Chapter 4 The Processor

The combination of buffering operands in the reservation stations and results
in the reorder buffer provides a form of register renaming, just like that used by
the compiler in our earlier loop-unrolling example on page 397. To see how this
conceptually works, consider the following steps:

1. When an instruction issues, it is copied to a reservation station for the
appropriate functional unit. Any operands that are available in the register
file or reorder buffer are also immediately copied into the reservation sta-
tion. The instruction is buffered in the reservation station until all the oper-
ands and the functional unit are available. For the issuing instruction, the
register copy of the operand is no longer required, and if a write to that
reg ister occurred, the value could be overwritten.

2. If an operand is not in the register file or reorder buffer, it must be waiting to
be produced by a functional unit. The name of the functional unit that will
produce the result is tracked. When that unit eventually produces the result,
it is copied directly into the waiting reservation station from the functional
unit bypassing the registers.

These steps effectively use the reorder buffer and the reservation stations to imple-
ment register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as analyzing
the data flow structure of a program. The processor then executes the instructions
in some order that preserves the data flow order of the program. This style of
execution is called an out-of-order execution, since the instructions can be
executed in a different order than they were fetched.

To make programs behave as if they were running on a simple in-order pipe line,
the instruction fetch and decode unit is required to issue instructions in order,
which allows dependences to be tracked, and the commit unit is required to write
results to registers and memory in program fetch order. This conservative mode is
called in-order commit. Hence, if an exception occurs, the computer can point to
the last instruction executed, and the only registers updated will be those written
by instructions before the instruction causing the exception. Although, the front
end (fetch and issue) and the back end (commit) of the pipeline run in order,
the functional units are free to initiate execution whenever the data they need is
available. Today, all dynamically scheduled pipelines use in-order commit.

Dynamic scheduling is often extended by including hardware-based specula-
tion, especially for branch outcomes. By predicting the direction of a branch, a
dynamically scheduled processor can continue to fetch and execute instructions
along the predicted path. Because the instructions are committed in order, we know
whether or not the branch was correctly predicted before any instructions from the
predicted path are committed. A speculative, dynamically scheduled pipeline can
also support speculation on load addresses, allowing load-store reor dering, and
using the commit unit to avoid incorrect speculation. In the next sec tion, we will
look at the use of dynamic scheduling with speculation in the AMD Opteron X4
(Barcelona) design.

out-of-order execution
A sit uation in pipelined
execution when an instruc-
tion blocked from executing
does not cause the follow-
ing instructions to wait.

in-order commit
A commit in which
the results of pipelined
execution are written to
the programmer- visible
state in the same order
that instructions are
fetched.

Given that compilers can also schedule code around data dependences, you might
ask why a superscalar processor would use dynamic scheduling. There are three
major reasons. First, not all stalls are predictable. In particular, cache misses (see
Chapter 5) cause unpredictable stalls. Dynamic scheduling allows the processor to
hide some of those stalls by continuing to execute instructions while waiting for
the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch
prediction, it cannot know the exact order of instructions at compile time, since
it depends on the predicted and actual behavior of branches. Incorporating
dynamic speculation to exploit more instruction-level parallelism (ILP) without
incorporating dynamic scheduling would significantly restrict the benefits of
speculation.

Third, as the pipeline latency and issue width change from one implementation
to another, the best way to compile a code sequence also changes. For example, how
to schedule a sequence of dependent instructions is affected by both issue width
and latency. The pipeline structure affects both the number of times a loop must be
unrolled to avoid stalls as well as the process of compiler-based register renaming.
Dynamic scheduling allows the hardware to hide most of these details. Thus, users
and software distributors do not need to worry about having multiple versions of
a program for different implementations of the same instruction set. Similarly, old
legacy code will get much of the benefit of a new implementation without the need
for recompilation.

Both pipelining and multiple-issue execution increase peak instruction
throughput and attempt to exploit instruction-level parallelism (ILP).
Data and control dependences in programs, however, offer an upper limit
on sustained performance because the processor must sometimes wait for
a dependence to be resolved. Software-centric approaches to exploit ing
ILP rely on the ability of the compiler to find and reduce the effects of
such dependences, while hardware-centric approaches rely on extensions
to the pipeline and issue mechanisms. Speculation, performed by the
compiler or the hardware, can increase the amount of ILP that can be
exploited, although care must be taken since speculating incorrectly is
likely to reduce performance.

Understanding
Program
Performance

The BIG
Picture

 4.10 Parallelism and Advanced Instruction-Level Parallelism 401

402 Chapter 4 The Processor

Modern, high-performance microprocessors are capable of issuing several
instructions per clock; unfortunately, sustaining that issue rate is very difficult. For
example, despite the existence of processors with four to six issues per clock, very
few applications can sustain more than two instructions per clock. There are two
primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise from depen-
dences that cannot be alleviated, thus reducing the parallelism among instruc-
tions and the sustained issue rate. Although little can be done about true data
 dependences, often the compiler or hardware does not know precisely whether a
dependence exists or not, and so must conservatively assume the dependence exists.
For example, code that makes use of pointers, particularly in ways that may lead to
aliasing, will lead to more implied potential dependences. In contrast, the greater
regularity of array accesses often allows a compiler to deduce that no dependences
exist. Similarly, branches that cannot be accurately predicted whether at runtime
or compile time will limit the ability to exploit ILP. Often, additional ILP is avail-
able, but the ability of the compiler or the hardware to find ILP that may be widely
 separated (sometimes by the execution of thousands of instructions) is limited.

Second, losses in the memory system (the topic of Chapter 5) also limit the
ability to keep the pipeline full. Some memory system stalls can be hidden, but
limited amounts of ILP also limit the extent to which such stalls can be hidden.

Power Efficiency and Advanced Pipelining
The downside to the increasing exploitation of instruction-level parallelism via
dynamic multiple issue and speculation is power efficiency. Each innovation
was able to turn more transistors into performance, but they often did so very
inefficiently. Now that we have hit the power wall, we are seeing designs with
multiple proces sors per chip where the processors are not as deeply pipelined or as
aggressively speculative as the predecessors.

The belief is that while the simpler processors are not as fast as their sophisti-
cated brethren, they deliver better performance per watt, so that they can deliver
more performance per chip when designs are constrained more by power than they
are by number of transistors.

Figure 4.73 shows the number of pipeline stages, the issue width, speculation
level, clock rate, cores per chip, and power of several past and recent microproces-
sors. Note the drop in pipeline stages and power as companies switch to multicore
designs.

Elaboration: A commit unit controls updates to the register file and memory. Some
dynam ically scheduled processors update the register file immediately during execution,
using extra registers to implement the renaming function and preserving the older copy

Hardware/
Software
Interface

of a register until the instruction updating the register is no longer speculative. Other
processors buffer the result, typically in a structure called a reorder buffer, and the
actual update to the register file occurs later as part of the commit. Stores to memory
must be buffered until commit time either in a store buffer (see Chapter 5) or in the
reorder buffer. The commit unit allows the store to write to memory from the buffer when
the buffer has a valid address and valid data, and when the store is no longer dependent
on predicted branches.

Elaboration: Memory accesses benefit from nonblocking caches, which continue
servic ing cache accesses during a cache miss (see Chapter 5). Out-of-order execution
processors need the cache design to allow instructions to execute during a miss.

State whether the following techniques or components are associated primarily
with a software- or hardware-based approach to exploiting ILP. In some cases, the
answer may be both.

1. Branch prediction

2. Multiple issue

3. VLIW

4. Superscalar

5. Dynamic scheduling

6. Out-of-order execution

7. Speculation

8. Reorder buffer

9. Register renaming

Check
Yourself

FIGURE 4.73 Record of Intel and Sun Microprocessors in terms of pipeline complexity, number of cores, and power.
The Pen tium 4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper.

Microprocessor Year Clock Rate
Pipeline
Stages

Issue
Width

Out-of-Order/
Speculation

Cores/
Chip Power

Intel 486 1989 25 MHz 5 1 No 1 5 W

Intel Pentium 1993 66 MHz 5 2 No 1 10 W

Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 W

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W

UltraSPARC IV+ 2005 2100 MHz 14 4 No 1 90 W

Sun UltraSPARC T1 (Niagara) 2005 1200 MHz 6 1 No 8 70 W

 4.10 Parallelism and Advanced Instruction-Level Parallelism 403

404 Chapter 4 The Processor

 4.11
 Real Stuff: the AMD Opteron X4
(Barcelona) Pipeline

Like most modern computers, x86 microprocessors employ sophisticated
pipelining approaches. These processors, however, are still faced with the challenge
of implementing the complex x86 instruction set, described in Chapter 2. Both
AMD and Intel fetch x86 instructions and translate them internal to MIPS-like
instructions, which AMD calls RISC operations (Rops) and Intel calls micro-
operations. The RISC operations are then executed by a sophisticated, dynamically
scheduled, speculative pipeline capable of sustaining an execution rate of three
RISC operations per clock cycle in the AMD Opteron X4 (Barcelona). This section
focuses on that RISC operation pipeline.

When we consider the design of sophisticated, dynamically scheduled proces-
sors, the design of the functional units, the cache and register file, instruction issue,
and overall pipeline control become intermingled, making it difficult to separate the
datapath from the pipeline. Because of this, many engineers and researchers have
adopted the term microarchitecture to refer to the detailed internal architecture
of a processor. Figure 4.74 shows the microarchitecture of the X4, focusing on the
structures for executing the RISC operations.

Another way to look at the X4 is to see the pipeline stages that a typical instruc-
tion goes through. Figure 4.75 shows the pipeline structure and the typical number
of clock cycles spent in each; of course, the number of clock cycles varies due to
the nature of dynamic scheduling as well as the requirements of individual RISC
operations.

Elaboration: Opteron X4 uses a scheme for resolving antidependences and incorrect
specu lation that uses a reorder buffer together with register renaming. Register
renaming explicitly renames the architectural registers in a processor (16 in the case of
the 64-bit version of the x86 architecture) to a larger set of physical registers (72 in the
X4). X4 uses register renaming to remove antidependences. Register renaming requires
the processor to maintain a map between the architectural registers and the physical
registers, indicating which physical register is the most current copy of an architectural
register. By keeping track of the renamings that have occurred, register renaming offers
another approach to recovery in the event of incor rect speculation: simply undo the
mappings that have occurred since the first incorrectly specu lated instruction. This will
cause the state of the processor to return to the last correctly executed instruction,
keeping the correct mapping between the architectural and physical regis ters.

Are the following statements true or false?

1. The Opteron X4 multiple-issue pipeline directly executes x86 instructions.

2. X4 uses dynamic scheduling but no speculation.

microarchitecture The
orga nization of the
processor, including the
major functional units,
their interconnection, and
control.

architectural registers
The instruction set of
visible registers of a
processor; for example,
in MIPS, these are the 32
integer and 16 floating-
point registers.

Check
Yourself

3. The X4 microarchitecture has many more registers than x86 requires.

4. X4 uses less than half the pipeline stages of the earlier Pentium 4 Prescott
(see Figure 4.73).

FIGURE 4.74 The microarchitecture of AMD Opteron X4. The extensive queues allow up to 106 RISC operations to be outstanding,
includ ing 24 integer operations, 36 floating point/SSE operations, and 44 loads and stores. The load and store units are actually separated into
two parts, with the first part handling address calculation in the Integer ALU units and the second part responsible for the actual memory
reference. There is an extensive bypass network among the functional units; since the pipeline is dynamic rather than static, bypassing is done
by tagging results and tracking source operands, so as to allow a match when a result is produced for an instruction in one of the queues that
needs the result.

Instruction prefetch
and decodeBranch

prediction

Register file

Integer
ALU

Integer
ALU.

Multiplier

Integer
ALU

Floating
point

Adder/
SSE

Floating
point

Multiplier/
SSE

Floating
point
Misc

Data
cache

Instruction cache

RISC-operation queue

Dispatch and register renaming

Integer and floating-point operation queue

Load/Store queue

Commit
unit

 4.11 Real Stuff: The AMD Opteron X4 (Barcelona) Pipeline 405

406 Chapter 4 The Processor

The Opteron X4 combines a 12-stage pipeline and aggressive multiple issue to
achieve high performance. By keeping the latencies for back-to-back operations
low, the impact of data dependences is reduced. What are the most serious potential
per formance bottlenecks for programs running on this processor? The following
list includes some potential performance problems, the last three of which can
apply in some form to any high-performance pipelined processor.

 ■ The use of x86 instructions that do not map to a few simple RISC
operations

 ■ Branches that are difficult to predict, causing misprediction stalls and restarts
when speculation fails

 ■ Long dependences—typically caused by long-running instructions or data
cache misses—that lead to stalls

 ■ Performance delays arising in accessing memory (see Chapter 5) that cause
the processor to stall

 4.12 Advanced Topic: an Introduction to
Digital Design Using a Hardware Design
Language to Describe and Model a
Pipeline and More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern
computer-aided synthesis tools that can create detailed hardware designs from the
descriptions using both libraries and logic synthesis. Entire books are written on
such languages and their use in digital design. This section, which appears on the
CD, gives a brief introduction and shows how a hardware design language, Verilog
in this case, can be used to describe the MIPS control both behaviorally and in a

Understanding
Program

Performance

Number of
clock cycles

Reorder
buffer

allocation +
register

renaming

Instruction
Fetch

Scheduling
+ dispatch

unit

Decode
and

translate
Execution

Data Cache/
Commit

RISC-operation
queue

Reorder
buffer

2 23 22 1

FIGURE 4.75 The Opteron X4 pipeline showing the pipeline flow for a typical instruction and the number of clock
cycles for the major steps in the 12-stage pipeline for integer RISC-operations. The floating point execution queue is 17 stages
long. The major buffers where RISC-operations wait are also shown.

form suitable for hardware synthesis. It then provides a series of behavioral models
in Verilog of the MIPS five-stage pipeline. The initial model ignores hazards, and
additions to the model highlight the changes for forwarding, data hazards, and
branch hazards.

We then provide about a dozen illustrations using the single-cycle graphical
pipeline representation for readers who want to see more detail on how pipelines
work for a few sequences of MIPS instructions.

 4.13 Fallacies and Pitfalls

Fallacy: Pipelining is easy.

Our books testify to the subtlety of correct pipeline execution. Our advanced
book had a pipeline bug in its first edition, despite its being reviewed by more
than 100 people and being class-tested at 18 universities. The bug was uncovered
only when someone tried to build the computer in that book. The fact that the
Verilog to describe a pipeline like that in Opteron X4 will be thousands of lines is
an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology.

When the number of transistors on-chip and the speed of transistors made a five-
stage pipeline the best solution, then the delayed branch (see the first Elaboration
on page 381) was a simple solution to control hazards. With longer pipelines,
superscalar execution, and dynamic branch prediction, it is now redundant. In
the early 1990s, dynamic pipeline scheduling took too many resources and was
not required for high performance, but as transistor budgets continued to double
and logic became much faster than memory, then multiple functional units and
dynamic pipelining made more sense. Today, concerns about power are leading to
less aggressive designs.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the difficul ties of pipelining arise because of instruction set complica tions.
Here are some examples:

 ■ Widely variable instruction lengths and running times can lead to imbal ance
among pipeline stages and severely compli cate hazard detection in a design
pipelined at the instruction set level. This problem was overcome, initially in
the DEC VAX 8500 in the late 1980s, using the micropipelined scheme that
the Opteron X4 employs today. Of course, the overhead of translation and
maintaining correspondence between the micro-operations and the actual
instructions remains.

 ■ Sophisticated addressing modes can lead to different sorts of problems.
Addressing modes that update registers complicate hazard detection. Other

 4.13 Fallacies and Pitfalls 407

408 Chapter 4 The Processor

addressing modes that require multiple memory accesses sub stantially
complicate pipeline control and make it difficult to keep the pipeline flowing
smoothly.

Perhaps the best example is the DEC Alpha and the DEC NVAX. In com parable
technology, the newer instruction set architecture of the Alpha allowed an imple-
mentation whose performance is more than twice as fast as NVAX. In another
example, Bhandarkar and Clark [1991] compared the MIPS M/2000 and the DEC
VAX 8700 by counting clock cycles of the SPEC benchmarks; they concluded
that although the MIPS M/2000 executes more instructions, the VAX on average
executes 2.7 times as many clock cycles, so the MIPS is faster.

 4.14 Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor can
be designed starting with the instruction set architecture and an understanding of
the basic characteristics of the technology. In Section 4.3, we saw how the datapath
for a MIPS processor could be constructed based on the architecture and the deci-
sion to build a single-cycle implementation. Of course, the underlying technology
also affects many design decisions by dictating what components can be used in the
datapath, as well as whether a single-cycle implementation even makes sense.

Pipelining improves throughput but not the inherent execution time, or
instruction latency, of instructions; for some instructions, the latency is similar
in length to the single-cycle approach. Multiple instruction issue adds additional
datapath hardware to allow multiple instructions to begin every clock cycle, but at
an increase in effective latency. Pipelining was presented as reducing the clock cycle
time of the simple single-cycle datapath. Multiple instruction issue, in com parison,
clearly focuses on reducing clock cycles per instruction (CPI).

Pipelining and multiple issue both attempt to exploit instruction-level parallel-
ism. The presence of data and control dependences, which can become hazards, are
the primary limitations on how much parallelism can be exploited. Scheduling and
speculation, both in hardware and in software, are the primary techniques used to
reduce the performance impact of dependences.

The switch to longer pipelines, multiple instruction issue, and dynamic sched-
uling in the mid-1990s has helped sustain the 60% per year processor perfor mance
increase that started in the early 1980s. As mentioned in Chapter 1, these micro-
processors preserved the sequential programming model, but they eventu ally ran
into the power wall. Thus, the industry has been forced to try multi processors,
which exploit parallelism at much coarser levels (the subject of Chapter 7). This
trend has also caused designers to reassess the power-performance implications

Nine-tenths of wisdom
con sists of being wise
in time.

American proverb

instruction latency The
inherent execution time
for an instruction.

of some of the inventions since the mid-1990s, resulting in a simplifi cation of
pipelines in the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel processors,
Amdahl’s law suggests that another part of the system will become the bottleneck.
That bottleneck is the topic of the next chapter: the memory system.

4.15 Historical Perspective and Further
Reading

This section, which appears on the CD, discusses the history of the first pipelined
processors, the earliest superscalars, and the development of out-of-order and
speculative techniques, as well as important developments in the accompanying
compiler technology.

 4.16 Exercises
Contributed by Milos Prvulovic of Georgia Tech

Exercise 4.1
Different instructions utilize different hardware blocks in the basic single-cycle
implementation. The next three problems in this exercise refer to the following
instruction:

Instruction Interpretation

a. AND Rd,Rs,Rt Reg[Rd] = Reg[Rs] AND Reg[Rt]

b. SW Rt,Offs(Rs) Mem[Reg[Rs] + Offs] = Reg[Rt]

4.1.1 [5] <4.1> What are the values of control signals generated by the control in
Figure 4.2 for this instruction?

4.1.2 [5] <4.1> Which resources (blocks) perform a useful function for this
instruction?

4.1.3 [10] <4.1> Which resources (blocks) produce outputs, but their outputs
are not used for this instruction? Which resources produce no outputs for this
instruction?

 4.16 Exercises 409

410 Chapter 4 The Processor

Different execution units and blocks of digital logic have different latencies (time
needed to do their work). In Figure 4.2 there are seven kinds of major blocks. Laten-
cies of blocks along the critical (longest-latency) path for an instruction determine
the minimum latency of that instruction. For the remaining three problems in this
exercise, assume the following resource latencies:

I-Mem Add Mux ALU Regs D-Mem Control

a. 200ps 70ps 20ps 90ps 90ps 250ps 40ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 300ps

4.1.4 [5] <4.1> What is the critical path for an MIPS AND instruction?

4.1.5 [5] <4.1> What is the critical path for an MIPS load (LD) instruction?

4.1.6 [10] <4.1> What is the critical path for an MIPS BEQ instruction?

Exercise 4.2
The basic single-cycle MIPS implementation in Figure 4.2 can only implement
some instructions. New instructions can be added to an existing ISA, but the deci-
sion whether or not to do that depends, among other things, on the cost and com-
plexity such an addition introduces into the processor datapath and control. The
first three problems in this exercise refer to this new instruction:

Instruction Interpretation

a. SEQ Rd,Rs,Rt Reg[Rd] = Boolean value (0 or 1) of (Reg[Rs] == Reg[Rs])

b. LWI Rt,Rd(Rs) Reg[Rt] = Mem[Reg[Rd]+Reg[Rs]]

4.2.1 [10] <4.1> Which existing blocks (if any) can be used for this instruction?

4.2.2 [10] <4.1> Which new functional blocks (if any) do we need for this
instruction?

4.2.3 [10] <4.1> What new signals do we need (if any) from the control unit to
support this instruction?

When processor designers consider a possible improvement to the processor
datapath, the decision usually depends on the cost/performance trade-off. In the
 following three problems, assume that we are starting with a datapath from Figure
4.2, where I-Mem, Add, Mux, ALU, Regs, D-Mem, and Control blocks have laten-
cies of 400ps, 100ps, 30ps, 120ps, 200ps, 350ps, and 100ps, respectively, and costs of
1000, 30, 10, 100, 200, 2000, and 500, respectively. The remaining three problems in
this exercise refer to the following processor improvement:

Improvement Latency Cost Benefit

a. Add Multiplier
to ALU

+300ps for ALU +600 for ALU Lets us add MUL instruction.
Allows us to execute 5% fewer
instructions (MUL no longer
emulated).

b. Simpler Control +100ps for Control –400 for Control Control becomes slower but
cheaper logic.

4.2.4 [10] <4.1> What is the clock cycle time with and without this improvement?

4.2.5 [10] <4.1> What is the speedup achieved by adding this improvement?

4.2.6 [10] <4.1> Compare the cost/performance ratio with and without this
improvement.

Exercise 4.3
Problems in this exercise refer to the following logic block:

Logic Block

a. Small Multiplexor (Mux) with four 8-bit data inputs

b. Small 8-bit ALU that can do either AND, OR, or NOT

4.3.1 [5] <4.1, 4.2> Does this block contain logic only, flip-flops only, or both?

4.3.2 [20] <4.1, 4.2> Show how this block can be implemented. Use only AND,
OR, NOT, and D Flip-Flops.

4.3.3 [10] <4.1, 4.2> Repeat Problem 4.3.2, but the AND and OR gates you use
must all be 2-input gates.

Cost and latency of digital logic depends on the kinds of basic logic elements
(gates) that are available and on the properties of these gates. The remaining three
problems in this exercise refer to these gates, latencies, and costs:

NOT
2-Input

AND or OR
Each Additional

Input for AND/OR
D-Element

Latency Cost Latency Cost Latency Cost Latency Cost

a. 10ps 2 12ps 4 +2ps +1 30ps 10

b. 20ps 2 40ps 3 +30ps +1 80ps 9

 4.16 Exercises 411

412 Chapter 4 The Processor

4.3.4 [5] <4.1, 4.2> What is the latency of your implementation from 4.3.2?

4.3.5 [5] <4.1, 4.2> What is the cost of your implementation from 4.3.2?

4.3.6 [20] <4.1, 4.2> Change your design to minimize the latency, then to mini-
mize the cost. Compare the cost and latency of these two optimized designs.

Exercise 4.4
When implementing a logic expression in digital logic, one must use the available
logic gates to implement an operator for which a gate is not available. Problems in
this exercise refer to the following logic expressions:

Control Signal 1 Control Signal 2

a. (((A AND B) XOR C) OR
(A XOR C)) OR (A XOR B)

(A XOR B) OR (A XOR C)

b. (((A OR B) AND C) OR
((A OR C) OR (A OR B))

(A AND C) OR (B AND C)

4.4.1 [5] <4.2> Implement the logic for the Control signal 1. Your circuit should
directly implement the given expression (do not reorganize the expression to “opti-
mize” it), using NOT gates and 2-input AND, OR, and XOR gates.

4.4.2 [10] Assuming that all gates have equal latencies, what is the length (in
gates) of the critical path in your circuit from 4.4.1?

4.4.3 [10] <4.2> When multiple logic expressions are implemented, it is possible
to reduce implementation cost by using the same signals in more than one expres-
sion. Repeat 4.4.1, but implement both Control signal 1 and Control signal 2, and
try to “share” circuitry between expressions whenever possible.

For the remaining three problems in this exercise, we assume that the following basic
digital logic elements are available, and that their latency and cost are as follows:

NOT 2-Input AND 2-Input OR 2-Input XOR

Latency Cost Latency Cost Latency Cost Latency Cost

a. 10ps 2 12ps 4 20ps 5 30ps 10

b. 20ps 2 40ps 3 50ps 3 50ps 8

4.4.4 [10] <4.2> What is the length of the critical path in your circuit from 4.4.3?

4.4.5 [10] <4.2> What is the cost of your circuit from 4.4.3?

4.4.6 [10] <4.2> What fraction of the cost was saved in your circuit from 4.4.3 by
implementing these two control signals together instead of separately?

Exercise 4.5
The goal of this exercise is to help you familiarize yourself with the design and
operation of sequential logical circuits. Problems in this exercise refer to this ALU
operation:

ALU Operation

a. Add (X+Y)

b. Subtract-one (X–1) in 2’s complement

4.5.1 [20] <4.2> Design a circuit with 1-bit data inputs and a 1-bit data output
that accomplishes this operation serially, starting with the least-significant bit. In a
serial implementation, the circuit is processing input operands bit by bit, generat-
ing output bits one by one. For example, a serial AND circuit is simply an AND
gate; in cycle N we give it the Nth bit from each of the operands and we get the Nth
bit of the result. In addition to data inputs, the circuit has a Clk (clock) input and
a “Start” input that is set to 1 only in the very first cycle of the operation. In your
design, you can use D Flip-Flops and NOT, AND, OR, and XOR gates.

4.5.2 [20] <4.2> Repeat 4.5.1, but now design a circuit that accomplishes this
operation 2 bits at a time.

In the rest of this exercise, we assume that the following basic digital logic elements
are available, and that their latency and cost are as follows:

NOT AND OR XOR D-Element

Latency Cost Latency Cost Latency Cost Latency Cost Latency Cost

a. 10ps 2 12ps 4 12ps 4 14ps 6 30ps 10

b. 50ps 1 100ps 2 90ps 2 120ps 3 160ps 2

The time given for a D-element is its setup time. The data input of a flip-flop must
have the correct value one setup-time before the clock edge (end of clock cycle)
that stores that value into the flip-flop.

4.5.3 [10] <4.2> What is the cycle time for the circuit you designed in 4.5.1? How
long does it take to perform the 32-bit operation?

4.5.4 [10] <4.2> What is the cycle time for the circuit you designed in 4.5.2?
What is the speedup achieved by using this circuit instead of the one from 4.5.1 for
a 32-bit operation?

 4.16 Exercises 413

414 Chapter 4 The Processor

4.5.5 [10] <4.2> Compute the cost for the circuit you designed in 4.5.1, and then
for the circuit you designed in 4.5.2.

4.5.6 [5] <4.2> Compare cost/performance ratios for the two circuits you
designed in 4.5.1 and 4.5.2. For this problem, performance of a circuit is the inverse
of the time needed to perform a 32-bit operation.

Exercise 4.6
Problems in this exercise assume that logic blocks needed to implement a proces-
sor’s datapath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 0ps

4.6.1 [10] <4.3> If the only thing we need to do in a processor is fetch consecu-
tive instructions (Figure 4.6), what would the cycle time be?

4.6.2 [10] <4.3> Consider a datapath similar to the one in Figure 4.11, but for a
processor that only has one type of instruction: unconditional PC-relative branch.
What would the cycle time be for this datapath?

4.6.3 [10] <4.3> Repeat 4.6.2, but this time we need to support only conditional
PC-relative branches.

The remaining three problems in this exercise refer to the following logic block
(resource) in the datapath:

Resource

a. Shift-left-2

b. Registers

4.6.4 [10] <4.3> Which kinds of instructions require this resource?

4.6.5 [20] <4.3> For which kinds of instructions (if any) is this resource on the
critical path?

4.6.6 [10] <4.3> Assuming that we only support BEQ and ADD instructions, dis-
cuss how changes in the given latency of this resource affect the cycle time of the
processor. Assume that the latencies of other resources do not change.

Exercise 4.7
In this exercise we examine how latencies of individual components of the data-
path affect the clock cycle time of the entire datapath, and how these components
are utilized by instructions. For problems in this exercise, assume the following
latencies for logic blocks in the datapath:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 5ps

4.7.1 [10] <4.3> What is the clock cycle time if the only types of instructions we
need to support are ALU instructions (ADD, AND, etc.)?

4.7.2 [10] <4.3> What is the clock cycle time if we only have to support LW
instructions?

4.7.3 [20] <4.3> What is the clock cycle time if we must support ADD, BEQ, LW,
and SW instructions?

For the remaining problems in this exercise, assume that there are no pipeline stalls
and that the breakdown of executed instructions is as follows:

ADD ADDI NOT BEQ LW SW

a. 20% 20% 0% 25% 25% 10%

b. 30% 10% 0% 10% 30% 20%

4.7.4 [10] <4.3> In what fraction of all cycles is the data memory used?

4.7.5 [10] <4.3> In what fraction of all cycles is the input of the sign-extend
circuit needed? What is this circuit doing in cycles in which its input is not
needed?

4.7.6 [10] <4.3> If we can improve the latency of one of the given datapath com-
ponents by 10%, which component should it be? What is the speedup from this
improvement?

Exercise 4.8
When silicon chips are fabricated, defects in materials (e.g., silicon) and manufac-
turing errors can result in defective circuits. A very common defect is for one wire
to affect the signal in another. This is called a cross-talk fault. A special class of

 4.16 Exercises 415

416 Chapter 4 The Processor

cross-talk faults is when a signal is connected to a wire that has a constant logical
value (e.g., a power supply wire). In this case we have a stuck-at-0 or a stuck-at-1
fault, and the affected signal always has a logical value of 0 or 1, respectively.

The following problems refer to the following signal from Figure 4.24:

Signal

a. Registers, input Write Register, bit 0

b. Add unit in upper right corner, ALU result, bit 0

4.8.1 [10] <4.3, 4.4> Let us assume that processor testing is done by filling the
PC, registers, and data and instruction memories with some values (you can choose
which values), letting a single instruction execute, then reading the PC, memories,
and registers. These values are then examined to determine if a particular fault is
present. Can you design a test (values for PC, memories, and registers) that would
determine if there is a stuck-at-0 fault on this signal?

4.8.2 [10] <4.3, 4.4> Repeat 4.8.1 for a stuck-at-1 fault. Can you use a sin-
gle test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, explain
why not.

4.8.3 [60] <4.3, 4.4> If we know that the processor has a stuck-at-1 fault on this
signal, is the processor still usable? To be usable, we must be able to convert any
program that executes on a normal MIPS processor into a program that works on
this processor. You can assume that there is enough free instruction memory and
data memory to let you make the program longer and store additional data. Hint:
the processor is usable if every instruction “broken” by this fault can be replaced
with a sequence of “working” instructions that achieve the same effect.

The following problems refer to the following fault:

Fault

a. Stuck-at-0

b. Becomes 0 if RegDst control signal is 0, no fault otherwise

4.8.4 [10] <4.3, 4.4> Repeat 4.8.1, but now the fault to test for is whether the
“MemRead” control signal has this fault.

4.8.5 [10] <4.3, 4.4> Repeat 4.8.1, but now the fault to test for is whether the
“Jump” control signal has this fault.

4.8.6 [40] <4.3, 4.4> Using a single test described in 4.8.1, we can test for faults
in several different signals, but typically not all of them. Describe a series of tests
to look for this fault in all Mux outputs (every output bit from each of the five
Muxes). Try to do this with as few single-instruction tests as possible.

Exercise 4.9
In this exercise we examine the operation of the single-cycle datapath for a particu-
lar instruction. Problems in this exercise refer to the following MIPS instruction:

Instruction

a. SW R4,–100(R16)

b. SLT R1,R2,R3

4.9.1 [10] <4.4> What is the value of the instruction word?

4.9.2 [10] <4.4> What is the register number supplied to the register file’s “Read
register 1” input? Is this register actually read? How about “Read register 2”?

4.9.3 [10] <4.4> What is the register number supplied to the register file’s “Write
register” input? Is this register actually written?

Different instructions require different control signals to be asserted in the data-
path. The remaining problems in this exercise refer to the following two control
signals from Figure 4.24:

Control Signal 1 Control Signal 2

a. ALUSrc Branch

b. Jump RegDst

4.9.4 [20] <4.4> What is the value of these two signals for this instruction?

4.9.5 [20] <4.4> For the datapath from Figure 4.24, draw the logic diagram for
the part of the control unit that implements just the first signal. Assume that we
only need to support LW, SW, BEQ, ADD, and J (jump) instructions.

4.9.6 [20] <4.4> Repeat 4.9.5, but now implement both of these signals.

 4.16 Exercises 417

418 Chapter 4 The Processor

Exercise 4.10
In this exercise we examine how the clock cycle time of the processor affects the
design of the control unit, and vice versa. Problems in this exercise assume that the
logic blocks used to implement the datapath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2 ALU Ctrl

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps 30ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 5ps 70ps

4.10.1 [10] <4.2, 4.4> To avoid lengthening the critical path of the datapath
shown in Figure 4.24, how much time can the control unit take to generate the
MemWrite signal?

4.10.2 [20] <4.2, 4.4> Which control signal in Figure 4.24 has the most slack and
how much time does the control unit have to generate it if it wants to avoid being
on the critical path?

4.10.3 [20] <4.2, 4.4> Which control signal in Figure 4.24 is the most critical to
generate quickly and how much time does the control unit have to generate it if it
wants to avoid being on the critical path?

The remaining problems in this exercise assume that the time needed by the con-
trol unit to generate individual control signals is as follows

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 500ps 500ps 450ps 200ps 450ps 200ps 500ps 100ps 500ps

b. 1100ps 1000ps 1100ps 800ps 1200ps 300ps 1300ps 400ps 1200ps

4.10.4 [20] <4.4> What is the clock cycle time of the processor?

4.10.5 [20] <4.4> If you can speed up the generation of control signals, but the
cost of the entire processor increases by $1 for each 5ps improvement of a sin-
gle control signal, which control signals would you speed up and by how much
to maximize performance? What is the cost (per processor) of this performance
improvement?

4.10.6 [30] <4.4> If the processor is already too expensive, instead of paying to
speed it up as we did in 4.10.5, we want to minimize its cost without further slow-
ing it down. If you can use slower logic to implement control signals, saving $1 of
the processor cost for each 5ps you add to the latency of a single control signal,
which control signals would you slow down and by how much to reduce the pro-
cessor’s cost without slowing it down?

Exercise 4.11
In this exercise we examine in detail how an instruction is executed in a single-cycle
datapath. Problems in this exercise refer to a clock cycle in which the processor
fetches the following instruction word:

Instruction word

a. 10101100011000100000000000010100

b. 00000000100000100000100000101010

4.11.1 [5] <4.4> What are the outputs of the sign-extend and the jump “Shift left
2” unit (near the top of Figure 4.24) for this instruction word?

4.11.2 [10] <4.4> What are the values of the ALU control unit’s inputs for this
instruction?

4.11.3 [10] <4.4> What is the new PC address after this instruction is executed?
Highlight the path through which this value is determined.

The remaining problems in this exercise assume that data memory is all zeros and
that the processor’s registers have the following values at the beginning of the cycle
in which the above instruction word is fetched:

R0 R1 R2 R3 R4 R5 R6 R8 R12 R31

a. 0 –1 2 –3 –4 10 6 8 2 –16

b. 0 256 –128 19 –32 13 –6 –1 16 –2

4.11.4 [10] <4.4> For each Mux, show the values of its data output during the
execution of this instruction and these register values.

4.11.5 [10] <4.4> For the ALU and the two add units, what are their data input values?

4.11.6 [10] <4.4> What are the values of all inputs for the “Registers” unit?

Exercise 4.12
In this exercise, we examine how pipelining affects the clock cycle time of the pro-
cessor. Problems in this exercise assume that individual stages of the datapath have
the following latencies:

IF ID EX MEM WB

a. 250ps 350ps 150ps 300ps 200ps

b. 200ps 170ps 220ps 210ps 150ps

 4.16 Exercises 419

420 Chapter 4 The Processor

4.12.1 [5] <4.5> What is the clock cycle time in a pipelined and non-pipelined
processor?

4.12.2 [10] <4.5> What is the total latency of an LW instruction in a pipelined
and non-pipelined processor?

4.12.3 [10] <4.5> If we can split one stage of the pipelined datapath into two new
stages, each with half the latency of the original stage, which stage would you split
and what is the new clock cycle time of the processor?

The remaining problems in this exercise assume that instructions executed by the
processor are broken down as follows:

ALU BEQ LW SW

a. 45% 20% 20% 15%

b. 55% 15% 15% 15%

4.12.4 [10] <4.5> Assuming there are no stalls or hazards, what is the utilization
of the data memory?

4.12.5 [10] <4.5> Assuming there are no stalls or hazards, what is the utilization
of the write-register port of the “Registers” unit?

4.12.6 [30] <4.5> Instead of a single-cycle organization, we can use a multi-
cycle organization where each instruction takes multiple cycles but one instruction
finishes before another is fetched. In this organization, an instruction only goes
through stages it actually needs (e.g., ST only takes 4 cycles because it does not need
the WB stage). Compare clock cycle times and execution times with single-cycle,
multi-cycle, and pipelined organization.

Exercise 4.13
In this exercise, we examine how data dependences affect execution in the basic
5-stage pipeline described in Section 4.5. Problems in this exercise refer to the fol-
lowing sequence of instructions:

Instruction Sequence

a. SW R16,–100(R6)
LW R4,8(R16)
ADD R5,R4,R4

b. OR R1,R2,R3
OR R2,R1,R4
OR R1,R1,R2

4.13.1 [10] <4.5> Indicate dependences and their type.

4.13.2 [10] <4.5> Assume there is no forwarding in this pipelined processor.
Indicate hazards and add NOP instructions to eliminate them.

4.13.3 [10] <4.5> Assume there is full forwarding. Indicate hazards and add NOP
instructions to eliminate them.

Without Forwarding With Full Forwarding With ALU-ALU Forwarding Only

a. 250ps 300ps 290ps

b. 180ps 240ps 210ps

4.13.4 [10] <4.5> What is the total execution time of this instruction sequence
without forwarding and with full forwarding? What is the speedup achieved by
adding full forwarding to a pipeline that had no forwarding?

4.13.5 [10] <4.5> Add NOP instructions to this code to eliminate hazards if there
is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage).

4.13.6 [10] <4.5> What is the total execution time of this instruction sequence
with only ALU-ALU forwarding? What is the speedup over a no-forwarding pipe-
line?

Exercise 4.14
In this exercise, we examine how resource hazards, control hazards, and ISA design
can affect pipelined execution. Problems in this exercise refer to the following frag-
ment of MIPS code:

Instruction sequence

a. SW R16,12(R6)
 LW R16,8(R6)
 BEQ R5,R4,Label ; Assume R5 != R4
 ADD R5,R1,R4
 SLT R5,R15,R4

b. SW R2,0(R3)
 OR R1,R2,R3
 BEQ R2,R0,Label ; Assume R2 == R0
 OR R2,R2,R0
Label: ADD R1,R4,R3

4.14.1 [10] <4.5> For this problem, assume that all branches are perfectly pre-
dicted (this eliminates all control hazards) and that no delay slots are used. If we

 4.16 Exercises 421

422 Chapter 4 The Processor

only have one memory (for both instructions and data), there is a structural haz-
ard every time we need to fetch an instruction in the same cycle in which another
instruction accesses data. To guarantee forward progress, this hazard must always
be resolved in favor of the instruction that accesses data. What is the total execution
time of this instruction sequence in the 5-stage pipeline that only has one memory?
We have seen that data hazards can be eliminated by adding NOPs to the code. Can
you do the same with this structural hazard? Why?

4.14.2 [20] <4.5> For this problem, assume that all branches are perfectly pre-
dicted (this eliminates all control hazards) and that no delay slots are used. If we
change load/store instructions to use a register (without an offset) as the address,
these instructions no longer need to use the ALU. As a result, MEM and EX stages
can be overlapped and the pipeline has only 4 stages. Change this code to accom-
modate this changed ISA. Assuming this change does not affect clock cycle time,
what speedup is achieved in this instruction sequence?

4.14.3 [10] <4.5> Assuming stall-on-branch and no delay slots, what speedup is
achieved on this code if branch outcomes are determined in the ID stage, relative to
the execution where branch outcomes are determined in the EX stage?

The remaining problems in this exercise assume that individual pipeline stages
have the following latencies:

IF ID EX MEM WB

a. 200ps 120ps 150ps 190ps 100ps

b. 150ps 200ps 200ps 200ps 100ps

4.14.4 [10] <4.5> Given these pipeline stage latencies, repeat the speedup cal-
culation from 4.14.2, but take into account the (possible) change in clock cycle
time. When EX and MEM are done in a single stage, most of their work can be
done in parallel. As a result, the resulting EX/MEM stage has a latency that is the
larger of the original two, plus 20ps needed for the work that could not be done
in parallel.

4.14.5 [10] <4.5> Given these pipeline stage latencies, repeat the speedup
calculation from 4.14.3, taking into account the (possible) change in clock
cycle time. Assume that the latency ID stage increases by 50% and the latency
of the EX stage decreases by 10ps when branch outcome resolution is moved
from EX to ID.

4.14.6 [10] <4.5> Assuming stall-on-branch and no delay slots, what is the new
clock cycle time and execution time of this instruction sequence if BEQ address

computation is moved to the MEM stage? What is the speedup from this change?
Assume that the latency of the EX stage is reduced by 20ps and the latency of
the MEM stage is unchanged when branch outcome resolution is moved from EX
to MEM.

Exercise 4.15
In this exercise, we examine how the ISA affects pipeline design. Problems in this
exercise refer to the following new instruction:

a. ADDM Rd,Rt+Offs(Rs) Rd=Rt+Mem[Offs+Rs]

b. BEQM Rd,Rt,Offs(Rs) if Rt=Mem[Offs+Rs] then PC = Rd

4.15.1 [20] <4.5> What must be changed in the pipelined datapath to add this
instruction to the MIPS ISA?

4.15.2 [10] <4.5> Which new control signals must be added to your pipeline
from 4.15.1?

4.15.3 [20] <4.5, 4.13> Does support for this instruction introduce any new haz-
ards? Are stalls due to existing hazards made worse?

4.15.4 [10] <4.5, 4.13> Give an example of where this instruction might be useful
and a sequence of existing MIPS instructions that are replaced by this instruction.

4.15.5 [10] <4.5, 4.11, 4.13> If this instruction already exists in a legacy ISA,
explain how it would be executed in a modern processor like AMD Barcelona.

The last problem in this exercise assumes that each use of the new instruction
replaces the given number of original instructions, that the replacement can be
made once in the given number of original instructions, and that each time the
new instruction is executed the given number of extra stall cycles is added to the
program’s execution time:

Replaces Once in every Extra Stall Cycles

a. 2 30 2

b. 3 40 1

4.15.6 [10] <4.5> What is the speedup achieved by adding this new instruction?
In your calculation, assume that the CPI of the original program (without the new
instruction) is 1.

 4.16 Exercises 423

424 Chapter 4 The Processor

Exercise 4.16
The first three problems in this exercise refer to the following MIPS instruction:

Instruction

a. SW R16,–100(R6)

b. OR R2,R1,R0

4.16.1 [5] <4.6> As this instruction executes, what is kept in each register located
between two pipeline stages?

4.16.2 [5] <4.6> Which registers need to be read, and which registers are actually
read?

4.16.3 [5] <4.6> What does this instruction do in the EX and MEM stages?

The remaining three problems in this exercise refer to the following loop. Assume
that perfect branch prediction is used (no stalls due to control hazards), that there
are no delay slots, and that the pipeline has full forwarding support. Also assume
that many iterations of this loop are executed before the loop exits.

Loop

a. Loop: ADD R1,R2,R1
 LW R2,0(R1)
 LW R2,16(R2)
 SLT R1,R2,R4
 BEQ R1,R9,Loop

b. Loop: LW R1,0(R1)
 AND R1,R1,R2
 LW R1,0(R1)
 LW R1,0(R1)
 BEQ R1,R0,Loop

4.16.4 [10] <4.6> Show a pipeline execution diagram for the third iteration of
this loop, from the cycle in which we fetch the first instruction of that iteration up
to (but not including) the cycle in which we can fetch the first instruction of the
next iteration. Show all instructions that are in the pipeline during these cycles (not
just those from the third iteration).

4.16.5 [10] <4.6> How often (as a percentage of all cycles) do we have a cycle in
which all five pipeline stages are doing useful work?

4.16.6 [10] <4.6> At the start of the cycle in which we fetch the first instruction
of the third iteration of this loop, what is stored in the IF/ID register?

Exercise 4.17
Problems in this exercise assume that instructions executed by a pipelined proces-
sor are broken down as follows:

ADD BEQ LW SW

a. 40% 30% 25% 5%

b. 60% 10% 20% 10%

4.17.1 [5] <4.6> Assuming there are no stalls and that 60% of all conditional
branches are taken, in what percentage of clock cycles does the branch adder in the
EX stage generate a value that is actually used?

4.17.2 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles)
do we actually need to use all three register ports (two reads and a write) in the
same cycle?

4.17.3 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles)
do we use the data memory?

Each pipeline stage in Figure 4.33 has some latency. Additionally, pipelining
introduces registers between stages (Figure 4.35), and each of these adds an addi-
tional latency. The remaining problems in this exercise assume the following
latencies for logic within each pipeline stage and for each register between two
stages:

IF ID EX MEM WB Pipeline Register

a. 200ps 120ps 150ps 190ps 100ps 15ps

b. 150ps 200ps 200ps 200ps 100ps 15ps

4.17.4 [5] <4.6> Assuming there are no stalls, what is the speedup achieved by
pipelining a single-cycle datapath?

4.17.5 [10] <4.6> We can convert all load/store instructions into register-based
(no offset) and put the memory access in parallel with the ALU. What is the clock
cycle time if this is done in the single-cycle and in the pipelined datapath? Assume
that the latency of the new EX/MEM stage is equal to the longer of their latencies.

4.17.6 [10] <4.6> The change in 4.17.5 requires many existing LW/SW instruc-
tions to be converted into two-instruction sequences. If this is needed for 50%
of these instructions, what is the overall speedup achieved by changing from the
5-stage pipeline to the 4-stage pipeline where EX and MEM are done in parallel?

 4.16 Exercises 425

426 Chapter 4 The Processor

Exercise 4.18
The first three problems in this exercise refer to the execution of the following
instruction in the pipelined datapath from Figure 4.51, and assume the following
clock cycle time, ALU latency, and Mux latency:

Instruction Clock Cycle Time ALU Latency Mux Latency

a. LW R1,32(R2) 50ps 30ps 15ps

b. OR R1,R5,R6 200ps 170ps 25ps

4.18.1 [10] <4.6> For each stage of the pipeline, what are the values of the control
signals asserted by this instruction in that pipeline stage?

4.18.2 [10] <4.6, 4.7> How much time does the control unit have to generate the
ALUSrc control signal? Compare this to a single-cycle organization.

4.18.3 What is the value of the PCSrc signal for this instruction? This signal is
generated early in the MEM stage (only a single AND gate). What would be a rea-
son in favor of doing this in the EX stage? What is the reason against doing it in the
EX stage?

The remaining problems in this exercise refer to the following signals from
 Figure 4.48:

Signal 1 Signal 2

a. ALUSrc PCSrc

b. Branch RegWrite

4.18.4 [5] <4.6> For each of these signals, identify the pipeline stage in which it
is generated and the stage in which it is used.

4.18.5 [5] <4.6> For which MIPS instruction(s) are both of these signals set to 1?

4.18.6 [10] <4.6> One of these signals goes back through the pipeline. Which
signal is it? Is this a time-travel paradox? Explain.

Exercise 4.19
This exercise is intended to help you understand the cost/complexity/performance
trade-offs of forwarding in a pipelined processor. Problems in this exercise refer
to pipelined datapaths from Figure 4.45. These problems assume that, of all the
instructions executed in a processor, the following fraction of these instructions

have a particular type of RAW data dependence. The type of RAW data dependence
is identified by the stage that produces the result (EX or MEM) and the instruction
that consumes the result (1st instruction that follows the one that produces the
result, 2nd instruction that follows, or both). We assume that the register write is
done in the first half of the clock cycle and that register reads are done in the second
half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences are not counted
because they cannot result in data hazards. Also, assume that the CPI of the proces-
sor is 1 if there are no data hazards.

EX to 1st
Only

MEM to 1st
Only

EX to 2nd
only

MEM to 2nd
Only

EX to 1st and
MEM to 2nd

Other RAW
Dependences

a. 5% 20% 5% 10% 10% 10%

b. 20% 10% 15% 10% 5% 0%

4.19.1 [10] <4.7> If we use no forwarding, what fraction of cycles are we stalling
due to data hazards?

4.19.2 [5] <4.7> If we use full forwarding (forward all results that can be for-
warded), what fraction of cycles are we staling due to data hazards?

4.19.3 [10] <4.7> Let us assume that we cannot afford to have three-input Muxes
that are needed for full forwarding. We have to decide if it is better to forward
only from the EX/MEM pipeline register (next-cycle forwarding) or only from
the MEM/WB pipeline register (two-cycle forwarding). Which of the two options
results in fewer data stall cycles?

The remaining three problems in this exercise refer to the following latencies for
individual pipeline stages. For the EX stage, latencies are given separately for a pro-
cessor without forwarding and for a processor with different kinds of forwarding.

IF ID
EX

(no FW)
EX (full FW)

EX (FW from
EX/MEM only)

EX (FW from
MEM/WB only)

MEM WB

a. 150ps 100ps 120ps 150ps 140ps 130ps 120ps 100ps

b. 300ps 200ps 300ps 350ps 330ps 320ps 290ps 100ps

4.19.4 [10] <4.7> For the given hazard probabilities and pipeline stage latencies,
what is the speedup achieved by adding full forwarding to a pipeline that had no
forwarding?

4.19.5 [10] <4.7> What would be the additional speedup (relative to a proces-
sor with forwarding) if we added time-travel forwarding that eliminates all data

 4.16 Exercises 427

428 Chapter 4 The Processor

 hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100ps to
the latency of the full-forwarding EX stage.

4.19.6 [20] <4.7> Repeat 4.19.3 but this time determine which of the two options
results in shorter time per instruction.

Exercise 4.20
Problems in this exercise refer to the following instruction sequences:

Instruction Sequence

a. ADD R1,R2,R1
LW R2,0(R1)
LW R1,4(R1)
OR R3,R1,R2

b. LW R1,0(R1)
AND R1,R1,R2
LW R2,0(R1)
LW R1,0(R3)

4.20.1 [5] <4.7> Find all data dependences in this instruction sequence.

4.20.2 [10] <4.7> Find all hazards in this instruction sequence for a 5-stage pipe-
line with and then without forwarding.

4.20.3 [10] <4.7> To reduce clock cycle time, we are considering a split of the
MEM stage into two stages. Repeat 4.20.2 for this 6-stage pipeline.

The remaining three problems in this exercise assume that, before any of the above
is executed, all values in data memory are zeroes and that registers R0 through R3
have the following initial values:

R0 R1 R2 R3

a. 0 –1 31 1500

b. 0 4 63 3000

4.20.4 [5] <4.7> Which value is the first one to be forwarded and what is the
value it overrides?

4.20.5 [10] <4.7> If we assume forwarding will be implemented when we design
the hazard detection unit, but then we forget to actually implement forwarding,
what are the final register values after this instruction sequence?

4.20.6 [10] <4.7> For the design described in 4.20.5, add NOPs to this instruction
sequence to ensure correct execution in spite of missing support for forwarding.

Exercise 4.21
This exercise is intended to help you understand the relationship between forward-
ing, hazard detection, and ISA design. Problems in this exercise refer to the follow-
ing sequences of instructions, and assume that it is executed on a 5-stage pipelined
datapath:

Instruction sequence

a. ADD R5,R2,R1
LW R3,4(R5)
LW R2,0(R2)
OR R3,R5,R3
SW R3,0(R5)

b. LW R2,0(R1)
AND R1,R2,R1
LW R3,0(R2)
LW R1,0(R1)
SW R1,0(R2)

4.21.1 [5] <4.7> If there is no forwarding or hazard detection, insert NOPs to
ensure correct execution.

4.21.2 [10] <4.7> Repeat 4.21.1 but now use NOPs only when a hazard cannot be
avoided by changing or rearranging these instructions. You can assume register R7
can be used to hold temporary values in your modified code.

4.21.3 [10] <4.7> If the processor has forwarding, but we forgot to implement
the hazard detection unit, what happens when this code executes?

4.21.4 [20] <4.7> If there is forwarding, for the first five cycles during the execu-
tion of this code, specify which signals are asserted in each cycle by hazard detec-
tion and forwarding units in Figure 4.60.

4.21.5 [10] <4.7> If there is no forwarding, what new inputs and output signals
do we need for the hazard detection unit in Figure 4.60? Using this instruction
sequence as an example, explain why each signal is needed.

4.21.6 [20] <4.7> For the new hazard detection unit from 4.21.5, specify which
output signals it asserts in each of the first five cycles during the execution of this
code.

 4.16 Exercises 429

430 Chapter 4 The Processor

Exercise 4.22
This exercise is intended to help you understand the relationship between delay
slots, control hazards, and branch execution in a pipelined processor. In this exer-
cise, we assume that the following MIPS code is executed on a pipelined processor
with a 5-stage pipeline, full forwarding, and a predict-taken branch predictor:

a. Label1: LW R2,0(R2)
 BEQ R2,R0,Label ; Taken once, then not taken
 OR R2,R2,R3
 SW R2,0(R5)

b. LW R2,0(R1)
Label1: BEQ R2,R0,Label2 ; Not taken once, then taken
 LW R3,0(R2)
 BEQ R3,R0,Label1 ; Taken
 ADD R1,R3,R1
Label2: SW R1,0(R2)

4.22.1 [10] <4.8> Draw the pipeline execution diagram for this code, assuming
there are no delay slots and that branches execute in the EX stage.

4.22.2 [10] <4.8> Repeat 4.22.1, but assume that delay slots are used. In the given
code, the instruction that follows the branch is now the delay slot instruction for
that branch.

4.22.3 [20] <4.8> One way to move the branch resolution one stage earlier is
to not need an ALU operation in conditional branches. The branch instructions
would be “BEZ Rd,Label” and “BNEZ Rd,Label”, and it would branch if the reg-
ister has and does not have a zero value, respectively. Change this code to use these
branch instructions instead of BEQ. You can assume that register R8 is available for
you to use as a temporary register, and that an SEQ (set if equal) R-type instruction
can be used.

Section 4.8 describes how the severity of control hazards can be reduced by moving
branch execution into the ID stage. This approach involves a dedicated comparator
in the ID stage, as shown in Figure 4.62. However, this approach potentially adds
to the latency of the ID stage, and requires additional forwarding logic and hazard
detection.

4.22.4 [10] <4.8> Using the first branch instruction in the given code as an
example, describe the hazard detection logic needed to support branch execution
in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed
to detect?

4.22.5 [10] <4.8> For the given code, what is the speedup achieved by moving
branch execution into the ID stage? Explain your answer. In your speedup calcula-
tion, assume that the additional comparison in the ID stage does not affect clock
cycle time.

4.22.6 [10] <4.8> Using the first branch instruction in the given code as an
example, describe the forwarding support that must be added to support branch
execution in the ID stage. Compare the complexity of this new forwarding unit to
the complexity of the existing forwarding unit in Figure 4.62.

Exercise 4.23
The importance of having a good branch predictor depends on how often condi-
tional branches are executed. Together with branch predictor accuracy, this will
determine how much time is spent stalling due to mispredicted branches. In this
exercise, assume that the breakdown of dynamic instructions into various instruc-
tion categories is as follows:

R-Type BEQ JMP LW SW

a. 40% 25% 5% 25% 5%

b. 60% 8% 2% 20% 10%

Also, assume the following branch predictor accuracies:

Always-Taken Always-Not-Taken 2-Bit

a. 45% 55% 85%

b. 65% 35% 98%

4.23.1 [10] <4.8> Stall cycles due to mispredicted branches increase the CPI.
What is the extra CPI due to mispredicted branches with the always-taken predic-
tor? Assume that branch outcomes are determined in the EX stage, that there are
no data hazards, and that no delay slots are used.

4.23.2 [10] <4.8> Repeat 4.23.1 for the “always-not-taken” predictor.

4.23.3 [10] <4.8> Repeat 4.23.1 for the 2-bit predictor.

4.23.4 [10] <4.8> With the 2-bit predictor, what speedup would be achieved if
we could convert half of the branch instructions in a way that replaces a branch
instruction with an ALU instruction? Assume that correctly and incorrectly pre-
dicted instructions have the same chance of being replaced.

 4.16 Exercises 431

432 Chapter 4 The Processor

4.23.5 [10] <4.8> With the 2-bit predictor, what speedup would be achieved if
we could convert half of the branch instructions in a way that replaced each branch
instruction with two ALU instructions? Assume that correctly and incorrectly pre-
dicted instructions have the same chance of being replaced.

4.23.6 [10] <4.8> Some branch instructions are much more predictable than
others. If we know that 80% of all executed branch instructions are easy-to-predict
loop-back branches that are always predicted correctly, what is the accuracy of the
2-bit predictor on the remaining 20% of the branch instructions?

Exercise 4.24
This exercise examines the accuracy of various branch predictors for the following
repeating pattern (e.g., in a loop) of branch outcomes:

Branch Outcomes

a. T, T, NT, NT

b. T, NT, T, T, NT

4.24.1 [5] <4.8> What is the accuracy of always-taken and always-not-taken pre-
dictors for this sequence of branch outcomes?

4.24.2 [5] <4.8> What is the accuracy of the two-bit predictor for the first 4
branches in this pattern, assuming that the predictor starts off in the bottom left
state from Figure 4.63 (predict not taken)?

4.24.3 [10] <4.8> What is the accuracy of the two-bit predictor if this pattern is
repeated forever?

4.24.4 [30] <4.8> Design a predictor that would achieve a perfect accuracy if
this pattern is repeated forever. You predictor should be a sequential circuit with
one output that provides a prediction (1 for taken, 0 for not taken) and no inputs
other than the clock and the control signal that indicates that the instruction is a
conditional branch.

4.24.5 [10] <4.8> What is the accuracy of your predictor from 4.24.4 if it is given
a repeating pattern that is the exact opposite of this one?

4.24.6 [20] <4.8> Repeat 4.24.4, but now your predictor should be able to even-
tually (after a warm-up period during which it can make wrong predictions) start
perfectly predicting both this pattern and its opposite. Your predictor should have
an input that tells it what the real outcome was. Hint: this input lets your predictor
determine which of the two repeating patterns it is given.

Exercise 4.25
This exercise explores how exception handling affects pipeline design. The first
three problems in this exercise refer to the following two instructions:

Instruction 1 Instruction 2

a. BNE R1,R2,Label LW R1,0(R1)

b. JUMP Label SW R5,0(R1)

4.25.1 [5] <4.9> Which exceptions can each of these instructions trigger? For
each of these exceptions, specify the pipeline stage in which it is detected.

4.25.2 [10] <4.9> If there is a separate handler address for each exception, show
how the pipeline organization must be changed to be able to handle this exception.
You can assume that the addresses of these handlers are known when the processor
is designed.

4.25.3 [10] <4.9> If the second instruction from this table is fetched right after
the instruction from the first table, describe what happens in the pipeline when the
first instruction causes the first exception you listed in 4.25.1. Show the pipeline
execution diagram from the time the first instruction is fetched until the time the
first instruction of the exception handler is completed.

The remaining three problems in this exercise assume that exception handlers are
located at the following addresses:

Overflow

Invalid Data
Address

Undefined
Instruction

Invalid Instruction
Address

Hardware
Malfunction

a. 0x1000CB05 0x1000D230 0x1000D780 0x1000E230 00x1000F254

b. 0x450064E8 0xC8203E20 0xC8203E20 0x678A0000 0x00000010

4.25.4 [5] <4.9> What is the address of the exception handler in 4.25.3?
What happens if there is an invalid instruction at that address in instruction
memory?

4.25.5 [20] <4.9> In vectored exception handling, the table of exception handler
addresses is in data memory at a known (fixed) address. Change the pipeline to
implement this exception handling mechanism. Repeat 4.25.3 using this modified
pipeline and vectored exception handling.

4.25.6 [15] <4.9> We want to emulate vectored exception handling (described in
4.25.5) on a machine that has only one fixed handler address. Write the code that
should be at that fixed address. Hint: this code should identify the exception, get
the right address from the exception vector table, and transfer execution to that
handler.

 4.16 Exercises 433

434 Chapter 4 The Processor

Exercise 4.26
This exercise explores how exception handling affects control unit design and pro-
cessor clock cycle time. The first three problems in this exercise refer to the follow-
ing MIPS instruction that triggers an exception:

Instruction Exception

a. BNE R1,R2,Label Invalid target address

b. SUB R2,R4,R5 Arithmetic overflow

4.26.1 [10] <4.9> For each stage of the pipeline, determine the values of excep-
tion-related control signals from Figure 4.66 as this instruction passes through that
pipeline stage.

4.26.2 [5] <4.9> Some of the control signals generated in the ID stage are stored
into the ID/EX pipeline register, and some go directly into the EX stage. Explain
why, using this instruction as an example.

4.26.3 [10] <4.9> We can make the EX stage faster if we check for exceptions
in the stage after the one in which the exceptional condition occurs. Using this
instruction as an example, describe the main disadvantage of this approach.

The remaining three problems in this exercise assume that pipeline stages have the
following latencies:

IF ID EX MEM WB

a. 220ps 150ps 250ps 200ps 200ps

b. 175ps 150ps 200ps 175ps 140ps

4.26.4 [10] <4.9> If an overflow exception occurs once for every 100,000 instruc-
tions executed, what is the overall speedup if we move overflow checking into the
MEM stage? Assume that this change reduces EX latency by 30ns and that the IPC
achieved by the pipelined processor is 1 when there are no exceptions.

4.26.5 [20] <4.9> Can we generate exception control signals in EX instead
of in ID? Explain how this will work or why it will not work, using the “BNE
R4,R5,Label” instruction and these pipeline stage latencies as an example.

4.26.6 [10] <4.9> Assuming that each Mux has a latency of 40ps, determine how
much time does the control unit have to generate the flush signals? Which signal is
the most critical?

Exercise 4.27
This exercise examines how exception handling interacts with branch and load/
store instructions. Problems in this exercise refer to the following branch instruc-
tion and the corresponding delay slot instruction:

Branch and Delay Slot

a. BEQ R5,R4,Label
SLT R5,R15,R4

b. BEQ R1,R0,Label
LW R1,0(R1)

4.27.1 [20] <4.9> Assume that this branch is correctly predicted as taken, but
then the instruction at “Label” is an undefined instruction. Describe what is done
in each pipeline stage for each cycle, starting with the cycle in which the branch is
decoded up to the cycle in which the first instruction of the exception handler is
fetched.

4.27.2 [10] <4.9> Repeat 4.27.1, but this time assume that the instruction in the
delay slot also causes a hardware error exception when it is in MEM stage.

4.27.3 [10] <4.9> What is the value in the EPC if the branch is taken but the
delay slot causes an exception? What happens after the execution of the exception
handler is completed?

The remaining three problems in this exercise also refer to the following store
instruction:

Store Instruction

a. SW R5,–40(R15)

b. SW R1,0(R1)

4.27.4 [10] <4.9> What happens if the branch is taken, the instruction at “Label”
is an invalid instruction, the first instruction of the exception handler is the SW
instruction given above, and this store accesses an invalid data address?

4.27.5 [10] <4.9> If LD/ST address computation can overflow, can we delay
overflow exception detection into the MEM stage? Use the given store instruction
to explain what happens.

4.27.6 [10] <4.9> For debugging, it is useful to be able to detect when a par-
ticular value is written to a particular memory address. We want to add two new
registers, WADDR and WVAL. The processor should trigger an exception when the

 4.16 Exercises 435

436 Chapter 4 The Processor

value equal to WVAL is about to be written to address WADDR. How would you
change the pipeline to implement this? How would this SW instruction be handled
by your modified datapath?

Exercise 4.28
In this exercise we compare the performance of 1-issue and 2-issue processors, tak-
ing into account program transformations that can be made to optimize for 2-issue
execution. Problems in this exercise refer to the following loop (written in C):

C Code

a. for(i=0;i!=j;i+=2)
 a[i+1]=a[i];

b. for(i=0;i!=j;i+=2)
 b[i]=a[i]–a[i+1];

When writing MIPS code, assume that variables are kept in registers as follows, and
that all registers except those indicated as Free are used to keep various variables,
so they cannot be used for anything else.

i j a b c Free

a. R2 R8 R9 R10 R11 R3,R4,R5

b. R5 R6 R1 R2 R3 R10,R11,R12

4.28.1 [10] <4.10> Translate this C code into MIPS instructions. Your trans-
lation should be direct, without rearranging instructions to achieve better
 performance.

4.28.2 [10] <4.10> If the loop exits after executing only two iterations, draw a
pipeline diagram for your MIPS code from 4.28.1 executed on a 2-issue processor
shown in Figure 4.69. Assume the processor has perfect branch prediction and can
fetch any two instructions (not just consecutive instructions) in the same cycle.

4.28.3 [10] <4.10> Rearrange your code from 4.28.1 to achieve better perfor-
mance on a 2-issue statically scheduled processor from Figure 4.69.

4.28.4 [10] <4.10> Repeat 4.28.2, but this time use your MIPS code from 4.28.3.

4.28.5 [10] <4.10> What is the speedup of going from a 1-issue processor to a
2-issue processor from Figure 4.69? Use your code from 4.28.1 for both 1-issue
and 2-issue, and assume that 1,000,000 iterations of the loop are executed. As in

4.28.2, assume that the processor has perfect branch predictions, and that a 2-issue
processor can fetch any two instructions in the same cycle.

4.28.6 [10] <4.10> Repeat 4.28.5, but this time assume that in the 2-issue pro-
cessor one of the instructions to be executed in a cycle can be of any kind, and the
other must be a non-memory instruction.

Exercise 4.29
In this exercise, we consider the execution of a loop in a statically scheduled super-
scalar processor. To simplify the exercise, assume that any combination of instruc-
tion types can execute in the same cycle, e.g., in a 3-issue superscalar, the three
instructions can be 3 ALU operations, 3 branches, 3 load/store instructions, or any
combination of these instructions. Note that this only removes a resource con-
straint, but data and control dependences must still be handled correctly. Problems
in this exercise refer to the following loop:

Loop

a. Loop: ADDI R1,R1,4
 LW R2,0(R1)
 LW R3,16(R1)
 ADD R2,R2,R1
 ADD R2,R2,R3
 BEQ R2,zero,Loop

b. Loop: LW R1,0(R1)
 AND R1,R1,R2
 LW R2,0(R2)
 BEQ R1,zero,Loop

4.29.1 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed,
determine the fraction of all register reads that are useful in a 2-issue static super-
scalar processor.

4.29.2 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are exe-
cuted, determine the fraction of all register reads that are useful in a 3-issue
static superscalar processor. Compare this to your result for a 2-issue processor
from 4.29.1.

4.29.3 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed,
determine the fraction of cycles in which two or three register write ports are used
in a 3-issue static superscalar processor.

4.29.4 [20] <4.10> Unroll this loop once and schedule it for a 2-issue static
superscalar processor. Assume that the loop always executes an even number of

 4.16 Exercises 437

438 Chapter 4 The Processor

iterations. You can use registers R10 through R20 when changing the code to elimi-
nate dependences.

4.29.5 [20] <4.10> What is the speedup of using your code from 4.29.4 instead
of the original code with a 2-issue static superscalar processor? Assume that the
loop has many (e.g., 1,000,000) iterations.

4.29.6 [10] <4.10> What is the speedup of using your code from 4.29.4 instead
of the original code with a pipelined (1-issue) processor? Assume that the loop has
many (e.g., 1,000,000) iterations.

Exercise 4.30
In this exercise, we make several assumptions. First, we assume that an N-issue
superscalar processor can execute any N instructions in the same cycle, regardless
of their types. Second, we assume that every instruction is independently chosen,
without regard for the instruction that precedes or follows it. Third, we assume that
there are no stalls due to data dependences, that no delay slots are used, and that
branches execute in the EX stage of the pipeline. Finally, we assume that instruc-
tions executed in the program are distributed as follows:

ALU Correctly Predicted BEQ Incorrectly Predicted BEQ LW SW

a. 40% 20% 5% 25% 10%

b. 45% 4% 1% 30% 20%

4.30.1 [5] <4.10> What is the CPI achieved by a 2-issue static superscalar proces-
sor on this program?

4.30.2 [10] <4.10> In a 2-issue static superscalar whose predictor can only han-
dle one branch per cycle, what speedup is achieved by adding the ability to predict
two branches per cycle? Assume a stall-on-branch policy for branches that the pre-
dictor cannot handle.

4.30.3 [10] <4.10> In a 2-issue static superscalar processor that only has one reg-
ister write port, what speedup is achieved by adding a second register write port?

4.30.4 [5] <4.10> For a 2-issue static superscalar processor with a classic 5-stage
pipeline, what speedup is achieved by making the branch prediction perfect?

4.30.5 [10] <4.10> Repeat 4.30.4, but for a 4-issue processor. What conclusion
can you draw about the importance of good branch prediction when the issue
width of the processor is increased?

4.30.6 <4.10> Repeat 4.30.5, but now assume that the 4-issue processor has 50
pipeline stages. Assume that each of the original 5 stages is broken into 10 new
stages, and that branches are executed in the first of ten new EX stages. What

conclusion can you draw about the importance of good branch prediction when
the pipeline depth of the processor is increased?

Exercise 4.31
Problems in this exercise refer to the following loop, which is given as x86 code and also
as an MIPS translation of that code. You can assume that this loop executes many itera-
tions before it exits. When determining performance, this means that you only need to
determine what the performance would be in the “steady state,” not for the first few and
the last few iterations of the loop. Also, you can assume full forwarding support and
perfect branch prediction without delay slots, so the only hazards you have to worry
about are resource hazards and data hazards. Note that most x86 instructions in this
problem have two operands each. The last (usually second) operand of the instruction
indicates both the first source data value and the destination. If the operation needs a
second source data value, it is indicated by the other operand of the instruction. For
example, “sub (edx),eax” reads the memory location pointed by register edx, subtracts
that value from register eax, and puts the result back in register eax.

x86 Instructions MIPS-like Translation

a. Label: mov –4(esp), eax
 mov –4(esp), edx
 add (edi,eax,4),edx

 mov edx, –4(esp)
 mov –4(esp),eax
 cmp 0, (edi,eax,4)

 jne Label

Label: lw r2,–4(sp)
 lw r3,–4(sp)
 sll r2,r2,2
 add r2,r2,r4
 lw r2,0(r2)
 add r3,r3,r2
 sw r3,–4(sp)
 lw r2,–4(sp)
 sll r2,r2,2
 add r2,r2,r4
 lw r2,0(r2)
 bne r2,zero,Label

b. Label: add 4, edx
 mov (edx), eax
 add 4(edx), eax

 add 8(edx), eax

 mov eax, –4(edx)
 test edx, edx
 jl Label

Label: addi r4,r4,4
 lw r3,0(r4)
 lw r2,4(r4)
 add r2,r2,r3
 lw r3,8(r4)
 add r2,r2,r3
 sw r2,–4(r4)
 slt r1,r4,zero
 bne r1,zero,Label

4.31.1 [20] <4.11> What CPI would be achieved if the MIPS version of this loop
is executed on a 1-issue processor with static scheduling and a 5-stage pipeline?

4.31.2 [20] <4.11> What CPI would be achieved if the X86 version of this loop
is executed on a 1-issue processor with static scheduling and a 7-stage pipeline?
The stages of the pipeline are IF, ID, ARD, MRD, EXE, and WB. Stages IF and ID
are similar to those in the 5-stage MIPS pipeline. ARD computes the address of
the memory location to be read, MRD performs the memory read, EXE executes

 4.16 Exercises 439

440 Chapter 4 The Processor

the operation, and WB writes the result to register or memory. The data memory
has a read port (for instructions in the MRD stage) and a separate write port (for
instructions in the WB stage).

4.31.3 [20] <4.11> What CPI would be achieved if the X86 version of this loop is
executed on a processor that internally translates these instructions into MIPS-like
micro-operations, then executes these micro-operations on a 1-issue 5-stage pipe-
line with static scheduling. Note that the instruction count used in CPI computa-
tion for this processor is the X86 instruction count.

4.31.4 [20] <4.11> What CPI would be achieved if the MIPS version of this loop
is executed on a 1-issue processor with dynamic scheduling? Assume that our pro-
cessor is not doing register renaming, so you can only reorder instructions that
have no data dependences.

4.31.5 [30] <4.10, 4.11> Assuming that there are many free registers available,
rename the MIPS version of this loop to eliminate as many data dependences as
possible between instructions in the same iteration of the loop. Now repeat 4.31.4,
using your new renamed code.

4.31.6 [20] <4.10, 4.11> Repeat 4.31.4, but this time assume that the processor
assigns a new name to the result of each instruction as that instruction is decoded,
and then renames registers used by subsequent instructions to use correct register
values.

Exercise 4.32
Problems in this exercise assume that branches represent the following fraction
of all executed instructions, and the following branch predictor accuracy. Assume
that the processor is never stalled by data and resource dependences, i.e., the pro-
cessor always fetches and executes the maximum number of instructions per cycle
if there are no control hazards. For control dependences, the processor uses branch
prediction and continues fetching from the predicted path. If the branch has been
mispredicted, when the branch outcome is resolved the instructions fetched after
the mispredicted branch are discarded, and in the next cycle the processor starts
fetching from the correct path.

Branches as a % of All Executed Instructions Branch Prediction Accuracy

a. 25 95%

b. 25 99%

4.32.1 [5] <4.11> How many instructions are expected to be executed between
the time one branch misprediction is detected and the time the next branch mis-
prediction is detected?

The remaining problems in this exercise assume the following pipeline depth and
that the branch outcome is determined in the following pipeline stage (counting
from stage 1):

Pipeline Depth Branch Outcome Known in Stage

a. 15 12

b. 30 20

4.32.2 [5] <4.11> In a 4-issue processor with these pipeline parameters, how
many branch instructions can be expected to be “in progress” (already fetched but
not yet committed) at any given time?

4.32.3 [5] <4.11> How many instructions are fetched from the wrong path for
each branch misprediction in a 4-issue processor?

4.32.4 [10] <4.11> What is the speedup achieved by changing the processor from
4-issue to 8-issue? Assume that the 8-issue and the 4-issue processor differ only in
the number of instructions per cycle, and are otherwise identical (pipeline depth,
branch resolution stage, etc.).

4.32.5 [10] <4.11> What is the speedup of executing branches 1 stage earlier in
a 4-issue processor?

4.32.6 [10] <4.11> What is the speedup of executing branches 1 stage earlier in
an 8-issue processor? Discuss the difference between this result and the result from
4.32.5.

Exercise 4.33
This exercise explores how branch prediction affects performance of a deeply pipe-
lined multiple-issue processor. Problems in this exercise refer to a processor with
the following number of pipeline stages and instructions issued per cycle:

Pipeline Depth Issue Width

a. 15 2

b. 30 8

4.33.1 [10] <4.11> How many register read ports should the processor have to
avoid any resource hazards due to register reads?

4.33.2 [10] <4.11> If there are no branch mispredictions and no data depen-
dences, what is the expected performance improvement over a 1-issue processor
with the classical 5-stage pipeline? Assume that the clock cycle time decreases in
proportion to the number of pipeline stages.

 4.16 Exercises 441

442 Chapter 4 The Processor

4.33.3 [10] <4.11> Repeat 4.33.2, but this time every executed instruction has
a RAW data dependence to the instruction that executes right after it. You can
assume that no stall cycles are needed, i.e., forwarding allows consecutive instruc-
tions to execute in back-to-back cycles.

For the remaining three problems in this exercise, unless the problem specifies oth-
erwise, assume the following statistics about what percentage of instructions are
branches, predictor accuracy, and performance loss due to branch mispredictions:

Branches as a Fraction of
All Executed Instructions

Branches Execute
in Stage

Predictor Accuracy Performance
Loss

a. 10% 9 96% 5%

b. 10% 5 98% 1%

4.33.4 [10] <4.11> If we have the given fraction of branch instructions and
branch prediction accuracy, what percentage of all cycles are entirely spent fetch-
ing wrong-path instructions? Ignore the performance loss number.

4.33.5 [20] <4.11> If we want to limit stalls due to mispredicted branches to no
more than the given percentage of the ideal (no stalls) execution time, what should
be our branch prediction accuracy? Ignore the given predictor accuracy number.

4.33.6 [10] <4.11> What should the branch prediction accuracy be if we are will-
ing to have a speedup of 0.5 (one half) relative to the same processor with an ideal
branch predictor?

Exercise 4.34
This exercise is designed to help you understand the discussion of the “Pipelining is
easy” fallacy from Section 4.13. The first four problems in this exercise refer to the
following MIPS instruction:

Instruction Interpretation

a. AND Rd,Rs,Rt Reg[Rd]=Reg[Rs] AND Reg[Rt]

b. SW Rt,Offs(Rs) Mem[Reg[Rs]+Offs] = Reg[Rt]

4.34.1 [10] <4.13> Describe a pipelined datapath needed to support only this
instruction. Your datapath should be designed with the assumption that the only
instructions that will ever be executed are instances of this instruction.

4.34.2 [10] <4.13> Describe the requirements of forwarding and hazard detec-
tion units for your datapath from 4.34.1.

4.34.3 [10] <4.13> What needs to be done to support undefined instruction
exceptions in your datapath from 4.34.1? Note that the undefined instruction
exception should be triggered whenever the processor encounters any other kind
of instruction.

The remaining two problems in this exercise also refer to this MIPS instruction:

Instruction Interpretation

a. ADD Rd,Rs,Rt Reg[Rd] =Reg[Rs] +Reg[Rt]

b. ADDI Rt,Rs,Imm Reg[Rt] =Reg[Rs] +Imm

4.34.4 [10] <4.13> Describe how to extend your datapath from 4.34.1 so it can
also support this instruction. Your extended datapath should be designed to only
support instances of these two instructions.

4.34.5 [10] <4.13> Repeat 4.34.2 for your extended datapath from 4.34.4.

4.34.6 [10] <4.13> Repeat 4.34.3 for your extended datapath from 4.34.4.

Exercise 4.35
This exercise is intended to help you better understand the relationship between
ISA design and pipelining. Problems in this exercise assume that we have a mul-
tiple-issue pipelined processor with the following number of pipeline stages,
instructions issued per cycle, stage in which branch outcomes are resolved, and
branch predictor accuracy:

Pipeline
Depth

Issue
Width

Branches Execute
in Stage

Branch Predictor
Accuracy

Branches as a % of
Instructions

a. 15 2 10 90% 25%

b. 25 4 15 96% 15%

4.35.1 [5] <4.8, 4.13> Control hazards can be eliminated by adding branch delay
slots. How many delay slots must follow each branch if we want to eliminate all
control hazards in this processor?

4.35.2 [10] <4.8, 4.13> What is the speedup that would be achieved by using
four branch delay slots to reduce control hazards in this processor? Assume that
there are no data dependences between instructions and that all four delay slots
can be filled with useful instructions without increasing the number of executed
instructions. To make your computations easier, you can also assume that the mis-
predicted branch instruction is always the last instruction to be fetched in a cycle,
i.e., no instructions that are in the same pipeline stage as the branch are fetched
from the wrong path.

 4.16 Exercises 443

444 Chapter 4 The Processor

4.35.3 [10] <4.8, 4.13> Repeat 4.35.2, but now assume that 10% of executed
branches have all four delay slots filled with useful instruction, 20% have only three
useful instructions in delay slots (the fourth delay slot is an NOP), 30% have only
two useful instructions in delay slots, and 40% have no useful instructions in their
delay slots.

The remaining four problems in this exercise refer to the following C loop:

a. for(i=0;i!=j;i++){
 c+=a[i];
}

b. for(i=0;i!=j;i+=2){
 c+=a[i]–a[i+1];
}

4.35.4 [10] <4.8, 4.13> Translate this C loop into MIPS instructions, assuming
that our ISA requires one delay slot for every branch. Try to fill delay slots with
non-NOP instructions when possible. You can assume that variables a, b, c, i,
and j are kept in registers r1, r2, r3, r4, and r5.

4.35.5 [10] <4.7, 4.13> Repeat 4.35.4 for a processor that has two delay slots for
every branch.

4.35.6 [10] <4.10, 4.13> How many iterations of your loop from 4.35.4 can be “in
flight” within this processor’s pipeline? We say that an iteration is “in flight” when
at least one of its instructions has been fetched and has not yet been committed.

Exercise 4.36
This exercise is intended to help you better understand the last pitfall from Section
4.13—failure to consider pipelining in instruction set design. The first four prob-
lems in this exercise refer to the following new MIPS instruction:

Instruction Interpretation

a. SWINC Rt,Offset(Rs) Mem[Reg[Rs] +Offset] =Reg[Rt]
Reg[Rs] =Reg[Rs] +4

b. SWI Rt,Rd(Rs) Mem[Reg[Rd] +Reg[Rs]]= Reg[Rt]

4.36.1 [10] <4.11, 4.13> Translate this instruction into MIPS micro-operations.

4.36.2 [10] <4.11, 4.13> How would you change the 5-stage MIPS pipeline to
add support for micro-op translation needed to support this new instruction?

4.36.3 [20] <4.13> If we want to add this instruction to the MIPS ISA, discuss
the changes to the pipeline (which stages, which structures in which stage) that are
needed to directly (without micro-ops) support this instruction.

4.36.4 [10] <4.13> How often do you expect this instruction can be used? Do
you think that we would be justified if we added this instruction to the MIPS ISA?

The remaining two problems in this exercise are about adding a new ADDM
instruction to the ISA. In a processor to which ADDM has been added, these prob-
lems assume the following breakdown of clock cycles according to which instruc-
tion is completed in that cycle (or which stall is preventing an instruction from
completing):

ADD BEQ LW SW ADDM Control Stalls Data Stalls

a. 25% 20% 20% 10% 3% 10% 12%

b. 25% 10% 25% 20% 5% 10% 5%

4.36.5 [10] <4.13> Given this breakdown of execution cycles in the proces-
sor with direct support for the ADDM instruction, what speedup is achieved by
replacing this instruction with a 3-instruction sequence (LW, ADD, and then SW)?
Assume that the ADDM instruction is somehow (magically) supported with a classi-
cal 5-stage pipeline without creating resource hazards.

4.36.6 [10] <4.13> Repeat 4.36.5, but now assume that ADDM was supported by
adding a pipeline stage. When ADDM is translated, this extra stage can be removed
and, as a result, half of the existing data stalls are eliminated. Note that the data stall
elimination applies only to stalls that existed before ADDM translation, not to stalls
added by the ADDM translation itself.

Exercise 4.37
This exercise explores some of the tradeoffs involved in pipelining, such as clock
cycle time and utilization of hardware resources. The first three problems in this
exercise refer to the following MIPS code. The code is written with an assumption
that the processor does not use delay slots.

a. SW R16,–100(R6)
 LW R16,8(R6)
 BEQ R5,R4,Label ; Assume R5 != R4
 ADD R5,R16,R4
 SLT R5,R15,R4

b. OR R1,R2,R3
 SW R1,0(R2)
 BEQ R1,R0,Label ; Assume R1 == R0
 OR R2,R1,R0
Label: ADD R1,R1,R3

 4.16 Exercises 445

446 Chapter 4 The Processor

4.37.1 [5] <4.3, 4.14> Which parts of the basic single-cycle datapath are used by
all of these instructions? Which parts are the least utilized?

4.37.2 [10] <4.6, 4.14> What is the utilization for the read and for the write port
of the data memory unit?

4.37.3 [10] <4.6, 4.14> Assume that we already have a single-cycle design. How
many bits in total do we need for pipeline registers to implement the pipelined
design?

The remaining three problems in this exercise assume that components of the dat-
apath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 5ps

4.37.4 [10] <4.3, 4.5, 4.14> Given these latencies for individual elements of the
datapath, compare clock cycle times of the single-cycle and the 5-stage pipelined
datapath.

4.37.5 [10] <4.3, 4.5, 4.14> Repeat 4.37.4, but now assume that we only want to
support ADD instructions.

4.37.6 [20] <4.3, 4.5, 4.14> If it costs $1 to reduce the latency of a single compo-
nent of the datapath by 1ps, what would it cost to reduce the clock cycle time by
20% in the single-cycle and in the pipelined design?

Exercise 4.38
This exercise explores energy efficiency and its relationship with performance.
Problems in this exercise assume the following energy consumption for activity in
Instruction memory, Registers, and Data memory. You can assume that the other
components of the datapath spend a negligible amount of energy.

I-Mem 1 Register Read Register Write D-Mem Read D-Mem Write

a. 140pJ 70pJ 60pJ 140pJ 120pJ

b. 70pJ 40pJ 40pJ 90pJ 100pJ

4.38.1 [10] <4.3, 4.6, 4.14> How much energy is spent to execute an ADD instruc-
tion in a single-cycle design and in the 5-stage pipelined design?

4.38.2 [10] <4.6, 4.14> What is the worst-case MIPS instruction in terms of
energy consumption, and what is the energy spent to execute it?

4.38.3 [10] <4.6, 4.14> If energy reduction is paramount, how would you change
the pipelined design? What is the percentage reduction in the energy spent by an
LW instruction after this change?

The remaining three problems in this exercise assume that components in the data-
path have the following latencies. You can assume that the other components of the
datapath have negligible latencies.

I-Mem Control Register Read or Write ALU D-Mem Read or Write

a. 200ps 150ps 90ps 90ps 250ps

b. 750ps 500ps 300ps 250ps 500ps

4.38.4 [10] <4.6, 4.14> What is the performance impact of your changes from
4.38.3?

4.38.5 [10] <4.6, 4.14> We can eliminate the MemRead control signal and have
the data memory be read in every cycle, i.e., we can permanently have MemRead=1.
Explain why the processor still functions correctly after this change. What is the
effect of this change on clock frequency and energy consumption?

4.38.6 [10] <4.6, 4.14> If an idle unit spends 10% of the power it would spend
if it were active, what is the energy spent by the instruction memory in each cycle?
What percentage of the overall energy spent by the instruction memory does this
idle energy represent?

Exercise 4.39
Problems in this exercise assume that, during an execution of the program, proces-
sor cycles are spent in the following way. A cycle is “spent” on an instruction if the
processor completes that type of instruction in that cycle; a cycle is “spent” on a
stall if the processor could not complete an instruction in that cycle because of a
stall.

ADD BEQ LW SW Control Stalls Data Stalls

a. 25% 20% 20% 10% 10% 15%

b. 25% 10% 25% 20% 10% 10%

Problems in this exercise also assume that individual pipeline stages have the
 following latency and energy consumption. The stage expends this energy in order

 4.16 Exercises 447

448 Chapter 4 The Processor

to do its work within the given latency. Note that no energy is spent in the MEM
stage during a cycle in which there is no memory access. Similarly, no energy is
spent in the WB stage in a cycle in which there is no register write. In several of
the following problems, we make assumptions about how energy consumption
changes if a stage performs its work slower or faster than this.

IF ID EX MEM WB

a. 250ps/100pJ 350ps/45pJ 150ps/50pJ 300ps/150pJ 200ps/50pJ

b. 200ps/75pJ 170ps/45pJ 220ps/100pJ 210ps/100pJ 150ps/35pJ

4.39.1 [10] <4.14> What is the performance (in instructions per second)?

4.39.2 [10] <4.14> What is the power dissipated in watts (joules per second)?

4.39.3 [10] <4.6, 4.14> Which pipeline stages can you slow down and by how
much, without affecting the clock cycle time?

4.39.4 [20] <4.6, 4.14> It is often possible to sacrifice some speed in a circuit in
order to reduce its energy consumption. Assume that we can reduce energy con-
sumption by a factor of X (new energy is 1/X times the old energy) when we increase
the latency by a factor of X (new latency is X times the old latency). Using this
tradeoff, we can adjust latencies of pipeline stages to minimize energy consumption
without sacrificing any performance. Repeat 4.39.2 for this adjusted processor.

4.39.5 [10] <4.6, 4.14> Repeat 4.39.4, but this time the goal is to minimize energy
spent per instruction while increasing the clock cycle time by no more than 10%.

4.39.6 [10] <4.6, 4.14> Repeat 4.39.5, but now assume that energy consumption
is reduced by a factor of X2 when latency is made X times longer. What are the
power savings compared to what you computed for 4.39.2?

§4.1, page 303: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 307: false. Edge-triggered state elements make simultaneous reading and
writing both possible and unambiguous.
§4.3, page 315: I. A. II. C.
§4.4, page 330: Yes, Branch and ALUOp0 are identical. In addition, MemtoReg and
RegDst are inverses of one another. You don’t need an inverter; simply use the other
signal and flip the order of the inputs to the multiplexor!
§4.5, page 343: 1. Stall on the LW result. 2. Bypass the first ADD result written into
$t1. 3. No stall or bypass required.
§4.6, page 358: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 383: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§4.9, page 391: The first instruction, since it is logically executed before the others.

Answers to
Check Yourself

§4.10, page 403: 1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware. 6. Hardware.
7. Both. 8. Hardware. 9. Both.
§4.11, page 404: First two are false and last two are true.
§4.12, page 4.12-3: Statements 1 and 3 are both true.
§4.12, page 4.12-5: The best answer is 2 (see the Elaboration on page 371)

 4.16 Exercises 449

