
Chapter 2
Instructions: Language
of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets

§2.1 Introduction

Presenter
Presentation Notes
MIPS -- Microprocessor without Interlocked Pipeline StagesInstructions of equal sizeVery large instruction word (VLIW)RISC, CISCVariable length instruction word

Chapter 2 — Instructions: Language of the Computer — 3

The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination
 add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favours

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Example
 C code:
 f = (g + h) - (i + j);

 Compiled MIPS code:
 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 6

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 × 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 7

Register Operand Example
 C code:
 f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4
 Compiled MIPS code:
 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example 1
 C code:
 g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3
 Compiled MIPS code:

 Index 8 requires offset of 32
 4 bytes per word

 lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example 2
 C code:
 A[12] = h + A[8];

 h in $s2, base address of A in $s3
 Compiled MIPS code:

 Index 8 requires offset of 32
 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 11

Registers vs. Memory
 Registers are faster to access than

memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands
 Constant data specified in an instruction
 addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
 addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common
 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 13

The Constant Zero
 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten
 Useful for common operations

 E.g., move between registers
 add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 14

Unsigned Binary Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= −

−
−

−

 Range: 0 to +2n – 1
 Example

 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 15

2s-Complement Signed Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++−= −

−
−

−

 Range: –2n – 1 to +2n – 1 – 1
 Example

 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20
= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers
 Bit 31 is sign bit

 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 17

Signed Negation
 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

−=+

−==+

 Example: negate +2
 +2 = 0000 0000 … 00102
 –2 = 1111 1111 … 11012 + 1

 = 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 18

Sign Extension
 Representing a number using more bits

 Preserve the numeric value
 In MIPS instruction set

 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 19

Representing Instructions
 Instructions are encoded in binary

 Called machine code
 MIPS instructions

 Encoded as 32-bit instruction words
 Small number of formats encoding operation code

(opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C

om
puter

Chapter 2 — Instructions: Language of the Computer — 20

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)
 rs: first source register number
 rt: second source register number
 rd: destination register number
 shamt: shift amount (00000 for now)
 funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 21

R-format Example

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 22

Hexadecimal
 Base 16

 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 23

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 24

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 25

Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Chapter 2 — Instructions: Language of the Computer — 26

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 27

AND Operations
 Useful to mask bits in a word

 Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 28

OR Operations
 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 29

NOT Operations
 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0
 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000 $t1

1111 1111 1111 1111 1100 0011 1111 1111 $t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 30

Conditional Operations
 Branch to a labeled instruction if a

condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

Chapter 2 — Instructions: Language of the Computer — 31

Compiling If Statements
 C code:
 if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …
 Compiled MIPS code:
 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 32

Compiling Loop Statements
 C code:
 while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:
 Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 33

Basic Blocks
 A basic block is a sequence of instructions

with
 No embedded branches (except at end)
 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 34

More Conditional Operations
 Set result to 1 if a condition is true

 Otherwise, set to 0
 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;
 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;
 Use in combination with beq, bne

 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 35

Branch Instruction Design
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!
 beq and bne are the common case
 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 36

Signed vs. Unsigned
 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
 slt $t0, $s0, $s1 # signed

 –1 < +1 ⇒ $t0 = 1
 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 ⇒ $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 37

Procedure Calling
 Steps required

1. Place parameters in registers
2. Transfer control to procedure
3. Acquire storage for procedure
4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 38

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 39

Procedure Call Instructions
 Procedure call: jump and link
 jal ProcedureLabel

 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
 jr $ra

 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 40

Leaf Procedure Example
 C code:
 int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}

 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 41

Leaf Procedure Example
 MIPS code:
 leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 42

Non-Leaf Procedures
 Procedures that call other procedures
 For nested call, caller needs to save on the

stack:
 Its return address
 Any arguments and temporaries needed after

the call
 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 43

Non-Leaf Procedure Example
 C code:
 int fact (int n)
{
 if (n < 1) return 1;
 else return n * fact(n - 1);
}

 Argument n in $a0
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 44

Non-Leaf Procedure Example
 MIPS code:
 fact:

 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 45

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 46

Memory Layout
 Text: program code
 Static data: global

variables
 e.g., static variables in C,

constant arrays and strings
 $gp initialized to address

allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java
 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 47

Character Data
 Byte-encoded character sets

 ASCII: 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

Chapter 2 — Instructions: Language of the Computer — 48

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 49

String Copy Example
 C code (naïve):

 Null-terminated string
 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

 Addresses of x, y in $a0, $a1
 i in $s0

Chapter 2 — Instructions: Language of the Computer — 50

String Copy Example
 MIPS code:
 strcpy:

 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 51

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient
 For the occasional 32-bit constant
 lui rt, constant

 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0011 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

§2.10 M
IP

S
 A

ddressing for 32-B
it Im

m
ediates and A

ddresses

Chapter 2 — Instructions: Language of the Computer — 52

Branch Addressing
 Branch instructions specify

 Opcode, two registers, target address
 Most branch targets are near branch

 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 53

Jump Addressing
 Jump (j and jal) targets could be

anywhere in text segment
 Encode full address in instruction

op address
6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 54

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 55

Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code
 Example

 beq $s0,$s1, L1

 ↓
 bne $s0,$s1, L2
 j L1
L2: …

Chapter 2 — Instructions: Language of the Computer — 56

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 57

Synchronization
 Two processors sharing an area of memory

 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation
 No other access to the location allowed between the

read and write
 Could be a single instruction

 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions

§2.11 P
arallelism

 and Instructions: S
ynchronization

Chapter 2 — Instructions: Language of the Computer — 58

Synchronization in MIPS
 Load linked: ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll
 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

 ll $t1,0($s1) ;load linked

 sc $t0,0($s1) ;store conditional

 beq $t0,$zero,try ;branch store fails

 add $s4,$zero,$t1 ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 59

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 Translating and S
tarting a P

rogram

Chapter 2 — Instructions: Language of the Computer — 60

Assembler Pseudoinstructions
 Most assembler instructions represent

machine instructions one-to-one
 Pseudoinstructions: figments of the

assembler’s imagination
 move $t0, $t1 → add $t0, $zero, $t1

 blt $t0, $t1, L → slt $at, $t0, $t1
 bne $at, $zero, L

 $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 61

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 62

Linking Object Modules
 Produces an executable image

1. Merges segments
2. Resolve labels (determine their addresses)
3. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location

in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 63

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in
4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 64

Dynamic Linking
 Only link/load library procedure when it is

called
 Requires procedure code to be relocatable
 Avoids image bloat caused by static linking of

all (transitively) referenced libraries
 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 65

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Chapter 2 — Instructions: Language of the Computer — 66

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

Chapter 2 — Instructions: Language of the Computer — 67

C Sort Example
 Illustrates use of assembly instructions

for a C bubble sort function
 Swap procedure (leaf)

 void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§2.13 A C
 S

ort E
xam

ple to P
ut It A

ll Together

Chapter 2 — Instructions: Language of the Computer — 68

The Procedure Swap
swap: sll $t1, $a1, 2 # $t1 = k * 4

 add $t1, $a0, $t1 # $t1 = v+(k*4)

 # (address of v[k])

 lw $t0, 0($t1) # $t0 (temp) = v[k]

 lw $t2, 4($t1) # $t2 = v[k+1]

 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 sw $t0, 4($t1) # v[k+1] = $t0 (temp)

 jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 69

The Sort Procedure in C
 Non-leaf (calls swap)

 void sort (int v[], int n)
 {
 int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v,j);
 }
 }
 }
 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 70

The Procedure Body
 move $s2, $a0 # save $a0 into $s2

 move $s3, $a1 # save $a1 into $s3

 move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

 addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

 sll $t1, $s1, 2 # $t1 = j * 4

 add $t2, $s2, $t1 # $t2 = v + (j * 4)

 lw $t3, 0($t2) # $t3 = v[j]

 lw $t4, 4($t2) # $t4 = v[j + 1]

 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

 move $a0, $s2 # 1st param of swap is v (old $a0)

 move $a1, $s1 # 2nd param of swap is j

 jal swap # call swap procedure

 addi $s1, $s1, –1 # j –= 1

 j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

 j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 71

sort: addi $sp,$sp, –20 # make room on stack for 5 registers

 sw $ra, 16($sp) # save $ra on stack

 sw $s3,12($sp) # save $s3 on stack

 sw $s2, 8($sp) # save $s2 on stack

 sw $s1, 4($sp) # save $s1 on stack

 sw $s0, 0($sp) # save $s0 on stack

 … # procedure body

 …

 exit1: lw $s0, 0($sp) # restore $s0 from stack

 lw $s1, 4($sp) # restore $s1 from stack

 lw $s2, 8($sp) # restore $s2 from stack

 lw $s3,12($sp) # restore $s3 from stack

 lw $ra,16($sp) # restore $ra from stack

 addi $sp,$sp, 20 # restore stack pointer

 jr $ra # return to calling routine

The Full Procedure

Chapter 2 — Instructions: Language of the Computer — 72

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Chapter 2 — Instructions: Language of the Computer — 73

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

Chapter 2 — Instructions: Language of the Computer — 74

Lessons Learnt
 Instruction count and CPI are not good

performance indicators in isolation
 Compiler optimizations are sensitive to the

algorithm
 Java/JIT compiled code is significantly

faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 75

Arrays vs. Pointers
 Array indexing involves

 Multiplying index by element size
 Adding to array base address

 Pointers correspond directly to memory
addresses
 Can avoid indexing complexity

§2.14 A
rrays versus P

ointers

Chapter 2 — Instructions: Language of the Computer — 76

Example: Clearing and Array
clear1(int array[], int size) {
 int i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}

clear2(int *array, int size) {
 int *p;
 for (p = &array[0]; p < &array[size];
 p = p + 1)
 *p = 0;
}

 move $t0,$zero # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

 add $t2,$a0,$t1 # $t2 =

 # &array[i]

 sw $zero, 0($t2) # array[i] = 0

 addi $t0,$t0,1 # i = i + 1

 slt $t3,$t0,$a1 # $t3 =

 # (i < size)

 bne $t3,$zero,loop1 # if (…)
 # goto loop1

 move $t0,$a0 # p = & array[0]

 sll $t1,$a1,2 # $t1 = size * 4

 add $t2,$a0,$t1 # $t2 =

 # &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

 addi $t0,$t0,4 # p = p + 4

 slt $t3,$t0,$t2 # $t3 =

 #(p<&array[size])

 bne $t3,$zero,loop2 # if (…)

 # goto loop2

Chapter 2 — Instructions: Language of the Computer — 77

Comparison of Array vs. Ptr
 Multiply “strength reduced” to shift
 Array version requires shift to be inside

loop
 Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers
 Induction variable elimination
 Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 78

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

Chapter 2 — Instructions: Language of the Computer — 79

Compare and Branch in ARM
 Uses condition codes for result of an

arithmetic/logical instruction
 Negative, zero, carry, overflow
 Compare instructions to set condition codes

without keeping the result
 Each instruction can be conditional

 Top 4 bits of instruction word: condition value
 Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 80

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 81

The Intel x86 ISA
 Evolution with backward compatibility

 8080 (1974): 8-bit microprocessor
 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations
 Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

Chapter 2 — Instructions: Language of the Computer — 82

The Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension)

instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers
 Pentium 4 (2001)

 New microarchitecture
 Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 83

The Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

Chapter 2 — Instructions: Language of the Computer — 84

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 85

Basic x86 Addressing Modes
 Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

 Memory addressing modes
 Address in register
 Address = Rbase + displacement
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
 Address = Rbase + 2scale × Rindex + displacement

Chapter 2 — Instructions: Language of the Computer — 86

x86 Instruction Encoding
 Variable length

encoding
 Postfix bytes specify

addressing mode
 Prefix bytes modify

operation
 Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 87

Implementing IA-32
 Complex instruction set makes

implementation difficult
 Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1
 Complex instructions: 1–many

 Microengine similar to RISC
 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

Chapter 2 — Instructions: Language of the Computer — 88

Fallacies
 Powerful instruction ⇒ higher performance

 Fewer instructions required
 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors
 More lines of code ⇒ more errors and less

productivity

§2.18 Fallacies and P
itfalls

Chapter 2 — Instructions: Language of the Computer — 89

Fallacies
 Backward compatibility ⇒ instruction set

doesn’t change
 But they do accrete more instructions

x86 instruction set

Chapter 2 — Instructions: Language of the Computer — 90

Pitfalls
 Sequential words are not at sequential

addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 91

Concluding Remarks
 Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.19 C
oncluding R

em
arks

Chapter 2 — Instructions: Language of the Computer — 92

Concluding Remarks
 Measure MIPS instruction executions in

benchmark programs
 Consider making the common case fast
 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

Chapter 1 — Computer Abstractions and Technology — 93

Exercises
 Answer the following exercises, and send your

answers as a PDF attachment to the email address
listed below

xamiri@fi.muni.cz
 Leave body of the email blank
 Deadline is March 25th

Chapter 1 — Computer Abstractions and Technology — 94

Exercise 1
 Assume that the stack and the static data segments are empty and

that the stack and global pointers start at address 0x7fff fffc and
0x1000 8000, respectively.

 int my_global = 100;
 main()
 {
 int x = 10;
 int y = 20;
 int z;
 z = my_function(x, my_global)
 }
 int my_function(int x, int y)
 {
 return x – y;
 }
 1) Show the contents of the stack and the static data segments after

each function call.
 2) Write MIPS code for the code above.

Chapter 1 — Computer Abstractions and Technology — 95

Exercise 2
 For the following problems, use the hexadecimal data in the table

below.

 1) If the PC is at address 0x00000000, how many branch (no jump
instructions) do you need to get to the addresses in the table above?

 2) If the PC is at address 0x00000000, how many jump instructions
(no jump register instructions or branch instructions) are required to
get to the target addresses in the table above?

a. 0x00001000
b. 0xFFFC0000

Chapter 1 — Computer Abstractions and Technology — 96

Exercise 3
 Each entry in the following table has code and also shows the

contents of various registers. The notation, “($s1)” shows the
contents of a memory location pointed to by register $s1. The
assembly code in the table is executed in the cycle shown on
parallel processors with a shared memory space. Fill out the table
with the value of the registers for each given cycle.

Processor 1 Processor 2 Cycle
Processor 1 MEM

($s1)
Processor 2

$s4 $t1 $t0 $s4 $t1 $t0
0 2 3 4 99 10 20 30

try: add $t0, $0, $s4 1

try: add $t0, $0, $s4 ll $t1, 0($s1) 2

 ll $t1, 0($s1) 3

 sc $t0, 0($s1) 4

 beqz $t0, try sc $t0, 0($s1) 5

 add $s4, $0, $t1 beqz $t0, try 6

