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Instruction Set 
 The repertoire of instructions of a 

computer 
 Different computers have different 

instruction sets 
 But with many aspects in common 

 Early computers had very simple 
instruction sets 
 Simplified implementation 

 Many modern computers also have simple 
instruction sets 

§2.1 Introduction 

Presenter
Presentation Notes
MIPS -- Microprocessor without Interlocked Pipeline StagesInstructions of equal sizeVery large instruction word (VLIW)RISC, CISCVariable length instruction word
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The MIPS Instruction Set 
 Used as the example throughout the book 
 Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com) 
 Large share of embedded core market 

 Applications in consumer electronics, network/storage 
equipment, cameras, printers, … 

 Typical of many modern ISAs 
 See MIPS Reference Data tear-out card, and 

Appendixes B and E 
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Arithmetic Operations 
 Add and subtract, three operands 

 Two sources and one destination 
 add a, b, c  # a gets b + c 

 All arithmetic operations have this form 
 Design Principle 1: Simplicity favours 

regularity 
 Regularity makes implementation simpler 
 Simplicity enables higher performance at 

lower cost 

§2.2 O
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Arithmetic Example 
 C code: 
 f = (g + h) - (i + j); 

 Compiled MIPS code: 
 add t0, g, h   # temp t0 = g + h 
add t1, i, j   # temp t1 = i + j 
sub f, t0, t1  # f = t0 - t1 
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Register Operands 
 Arithmetic instructions use register 

operands 
 MIPS has a 32 × 32-bit register file 

 Use for frequently accessed data 
 Numbered 0 to 31 
 32-bit data called a “word” 

 Assembler names 
 $t0, $t1, …, $t9 for temporary values 
 $s0, $s1, …, $s7 for saved variables 

 Design Principle 2: Smaller is faster 
 c.f. main memory: millions of locations 

§2.3 O
perands of the C
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Register Operand Example 
 C code: 
 f = (g + h) - (i + j); 

 f, …, j in $s0, …, $s4 
 Compiled MIPS code: 
 add $t0, $s1, $s2 
add $t1, $s3, $s4 
sub $s0, $t0, $t1 
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Memory Operands 
 Main memory used for composite data 

 Arrays, structures, dynamic data 
 To apply arithmetic operations 

 Load values from memory into registers 
 Store result from register to memory 

 Memory is byte addressed 
 Each address identifies an 8-bit byte 

 Words are aligned in memory 
 Address must be a multiple of 4 

 MIPS is Big Endian 
 Most-significant byte at least address of a word 
 c.f. Little Endian: least-significant byte at least address 
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Memory Operand Example 1 
 C code: 
 g = h + A[8]; 

 g in $s1, h in $s2, base address of A in $s3 
 Compiled MIPS code: 

 Index 8 requires offset of 32 
 4 bytes per word 

 lw  $t0, 32($s3)    # load word 
add $s1, $s2, $t0 

offset base register 
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Memory Operand Example 2 
 C code: 
 A[12] = h + A[8]; 

 h in $s2, base address of A in $s3 
 Compiled MIPS code: 

 Index 8 requires offset of 32 
 lw  $t0, 32($s3)    # load word 
add $t0, $s2, $t0 
sw  $t0, 48($s3)    # store word 
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Registers vs. Memory 
 Registers are faster to access than 

memory 
 Operating on memory data requires loads 

and stores 
 More instructions to be executed 

 Compiler must use registers for variables 
as much as possible 
 Only spill to memory for less frequently used 

variables 
 Register optimization is important! 
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Immediate Operands 
 Constant data specified in an instruction 
 addi $s3, $s3, 4 

 No subtract immediate instruction 
 Just use a negative constant 
 addi $s2, $s1, -1 

 Design Principle 3: Make the common 
case fast 
 Small constants are common 
 Immediate operand avoids a load instruction 
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The Constant Zero 
 MIPS register 0 ($zero) is the constant 0 

 Cannot be overwritten 
 Useful for common operations 

 E.g., move between registers 
 add $t2, $s1, $zero 
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Unsigned Binary Integers 
 Given an n-bit number 

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= −

−
−

− 

 Range: 0 to +2n – 1 
 Example 

 0000 0000 0000 0000 0000 0000 0000 10112 
= 0 + … + 1×23 + 0×22 +1×21 +1×20 
= 0 + … + 8 + 0 + 2 + 1 = 1110 

 Using 32 bits 
 0 to +4,294,967,295 

§2.4 S
igned and U

nsigned N
um

bers 
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2s-Complement Signed Integers 
 Given an n-bit number 

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++−= −

−
−

− 

 Range: –2n – 1 to +2n – 1 – 1 
 Example 

 1111 1111 1111 1111 1111 1111 1111 11002 
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20 
= –2,147,483,648 + 2,147,483,644 = –410 

 Using 32 bits 
 –2,147,483,648 to +2,147,483,647 
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2s-Complement Signed Integers 
 Bit 31 is sign bit 

 1 for negative numbers 
 0 for non-negative numbers 

 –(–2n – 1) can’t be represented 
 Non-negative numbers have the same unsigned 

and 2s-complement representation 
 Some specific numbers 

   0: 0000 0000 … 0000 
 –1: 1111 1111 … 1111 
 Most-negative: 1000 0000 … 0000 
 Most-positive: 0111 1111 … 1111 
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Signed Negation 
 Complement and add 1 

 Complement means 1 → 0, 0 → 1 

x1x

11111...111xx 2

−=+

−==+

 Example: negate +2 
 +2 = 0000 0000 … 00102 
 –2 = 1111 1111 … 11012 + 1 

     = 1111 1111 … 11102 
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Sign Extension 
 Representing a number using more bits 

 Preserve the numeric value 
 In MIPS instruction set 

 addi: extend immediate value 
 lb, lh: extend loaded byte/halfword 
 beq, bne: extend the displacement 

 Replicate the sign bit to the left 
 c.f. unsigned values: extend with 0s 

 Examples: 8-bit to 16-bit 
 +2: 0000 0010 => 0000 0000 0000 0010 
 –2: 1111 1110 => 1111 1111 1111 1110 
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Representing Instructions 
 Instructions are encoded in binary 

 Called machine code 
 MIPS instructions 

 Encoded as 32-bit instruction words 
 Small number of formats encoding operation code 

(opcode), register numbers, … 
 Regularity! 

 Register numbers 
 $t0 – $t7 are reg’s 8 – 15 
 $t8 – $t9 are reg’s 24 – 25 
 $s0 – $s7 are reg’s 16 – 23 

§2.5 R
epresenting Instructions in the C

om
puter 
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MIPS R-format Instructions 

 Instruction fields 
 op: operation code (opcode) 
 rs: first source register number 
 rt: second source register number 
 rd: destination register number 
 shamt: shift amount (00000 for now) 
 funct: function code (extends opcode) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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R-format Example 

 add $t0, $s1, $s2 

special $s1 $s2 $t0 0 add 

0 17 18 8 0 32 

000000 10001 10010 01000 00000 100000 

000000100011001001000000001000002 = 0232402016 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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Hexadecimal 
 Base 16 

 Compact representation of bit strings 
 4 bits per hex digit 

0 0000 4 0100 8 1000 c 1100 
1 0001 5 0101 9 1001 d 1101 
2 0010 6 0110 a 1010 e 1110 
3 0011 7 0111 b 1011 f 1111 

 Example: eca8 6420 
 1110 1100 1010 1000 0110 0100 0010 0000 
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MIPS I-format Instructions 

 Immediate arithmetic and load/store instructions 
 rt: destination or source register number 
 Constant: –215 to +215 – 1 
 Address: offset added to base address in rs 

 Design Principle 4: Good design demands good 
compromises 
 Different formats complicate decoding, but allow 32-bit 

instructions uniformly 
 Keep formats as similar as possible 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 



Chapter 2 — Instructions: Language of the Computer — 24 

Stored Program Computers 
 Instructions represented in 

binary, just like data 
 Instructions and data stored 

in memory 
 Programs can operate on 

programs 
 e.g., compilers, linkers, … 

 Binary compatibility allows 
compiled programs to work 
on different computers 
 Standardized ISAs 

The BIG Picture 
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Logical Operations 
 Instructions for bitwise manipulation 

Operation C Java MIPS 
Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

 Useful for extracting and inserting 
groups of bits in a word 

§2.6 Logical O
perations 
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Shift Operations 

 shamt: how many positions to shift  
 Shift left logical 

 Shift left and fill with 0 bits 
 sll by i bits multiplies by 2i 

 Shift right logical 
 Shift right and fill with 0 bits 
 srl by i bits divides by 2i (unsigned only) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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AND Operations 
 Useful to mask bits in a word 

 Select some bits, clear others to 0 

 and $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0000 1100 0000 0000 $t0 



Chapter 2 — Instructions: Language of the Computer — 28 

OR Operations 
 Useful to include bits in a word 

 Set some bits to 1, leave others unchanged 

 or $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0011 1101 1100 0000 $t0 
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NOT Operations 
 Useful to invert bits in a word 

 Change 0 to 1, and 1 to 0 
 MIPS has NOR 3-operand instruction 

 a NOR b == NOT ( a OR b ) 

 nor $t0, $t1, $zero 

0000 0000 0000 0000 0011 1100 0000 0000 $t1 

1111 1111 1111 1111 1100 0011 1111 1111 $t0 

Register 0: always 
read as zero 
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Conditional Operations 
 Branch to a labeled instruction if a 

condition is true 
 Otherwise, continue sequentially 

 beq rs, rt, L1 
 if (rs == rt) branch to instruction labeled L1; 

 bne rs, rt, L1 
 if (rs != rt) branch to instruction labeled L1; 

 j L1 
 unconditional jump to instruction labeled L1 

§2.7 Instructions for M
aking D

ecisions 
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Compiling If Statements 
 C code: 
 if (i==j) f = g+h; 
else f = g-h; 

 f, g, … in $s0, $s1, … 
 Compiled MIPS code: 
       bne $s3, $s4, Else 
      add $s0, $s1, $s2 
      j   Exit 
Else: sub $s0, $s1, $s2 
Exit: … 

Assembler calculates addresses 
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Compiling Loop Statements 
 C code: 
 while (save[i] == k) i += 1; 

 i in $s3, k in $s5, address of save in $s6 
 Compiled MIPS code: 
 Loop: sll  $t1, $s3, 2 
      add  $t1, $t1, $s6 
      lw   $t0, 0($t1) 
      bne  $t0, $s5, Exit 
      addi $s3, $s3, 1 
      j    Loop 
Exit: … 



Chapter 2 — Instructions: Language of the Computer — 33 

Basic Blocks 
 A basic block is a sequence of instructions 

with 
 No embedded branches (except at end) 
 No branch targets (except at beginning) 

 A compiler identifies basic 
blocks for optimization 

 An advanced processor 
can accelerate execution 
of basic blocks 
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More Conditional Operations 
 Set result to 1 if a condition is true 

 Otherwise, set to 0 
 slt rd, rs, rt 

 if (rs < rt) rd = 1; else rd = 0; 
 slti rt, rs, constant 

 if (rs < constant) rt = 1; else rt = 0; 
 Use in combination with beq, bne 

 slt $t0, $s1, $s2  # if ($s1 < $s2) 
bne $t0, $zero, L  #   branch to L 
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Branch Instruction Design 
 Why not blt, bge, etc? 
 Hardware for <, ≥, … slower than =, ≠ 

 Combining with branch involves more work 
per instruction, requiring a slower clock 

 All instructions penalized! 
 beq and bne are the common case 
 This is a good design compromise 
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Signed vs. Unsigned 
 Signed comparison: slt, slti 
 Unsigned comparison: sltu, sltui 
 Example 

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111 

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001 
 slt  $t0, $s0, $s1  # signed 

 –1 < +1 ⇒ $t0 = 1 
 sltu $t0, $s0, $s1  # unsigned 

 +4,294,967,295 > +1 ⇒ $t0 = 0 
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Procedure Calling 
 Steps required 

1. Place parameters in registers 
2. Transfer control to procedure 
3. Acquire storage for procedure 
4. Perform procedure’s operations 
5. Place result in register for caller 
6. Return to place of call 

§2.8 S
upporting P

rocedures in C
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puter H
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Register Usage 
 $a0 – $a3: arguments (reg’s 4 – 7) 
 $v0, $v1: result values (reg’s 2 and 3) 
 $t0 – $t9: temporaries 

 Can be overwritten by callee 
 $s0 – $s7: saved 

 Must be saved/restored by callee 
 $gp: global pointer for static data (reg 28) 
 $sp: stack pointer (reg 29) 
 $fp: frame pointer (reg 30) 
 $ra: return address (reg 31) 
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Procedure Call Instructions 
 Procedure call: jump and link 
 jal ProcedureLabel 

 Address of following instruction put in $ra 
 Jumps to target address 

 Procedure return: jump register 
 jr $ra 

 Copies $ra to program counter 
 Can also be used for computed jumps 

 e.g., for case/switch statements 



Chapter 2 — Instructions: Language of the Computer — 40 

Leaf Procedure Example 
 C code: 
 int leaf_example (int g, h, i, j) 
{ int f; 
  f = (g + h) - (i + j); 
  return f; 
} 

 Arguments g, …, j in $a0, …, $a3 
 f in $s0 (hence, need to save $s0 on stack) 
 Result in $v0 
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Leaf Procedure Example 
 MIPS code: 
 leaf_example: 
  addi $sp, $sp, -4 
  sw   $s0, 0($sp) 
  add  $t0, $a0, $a1 
  add  $t1, $a2, $a3 
  sub  $s0, $t0, $t1 
  add  $v0, $s0, $zero 
  lw   $s0, 0($sp) 
  addi $sp, $sp, 4 
  jr   $ra 

Save $s0 on stack 

Procedure body 

Restore $s0 

Result 

Return 
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Non-Leaf Procedures 
 Procedures that call other procedures 
 For nested call, caller needs to save on the 

stack: 
 Its return address 
 Any arguments and temporaries needed after 

the call 
 Restore from the stack after the call 
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Non-Leaf Procedure Example 
 C code: 
 int fact (int n) 
{  
  if (n < 1) return 1; 
  else return n * fact(n - 1); 
} 

 Argument n in $a0 
 Result in $v0 
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Non-Leaf Procedure Example 
 MIPS code: 
 fact: 

    addi $sp, $sp, -8     # adjust stack for 2 items 
    sw   $ra, 4($sp)      # save return address 
    sw   $a0, 0($sp)      # save argument 
    slti $t0, $a0, 1      # test for n < 1 
    beq  $t0, $zero, L1 
    addi $v0, $zero, 1    # if so, result is 1 
    addi $sp, $sp, 8      #   pop 2 items from stack 
    jr   $ra              #   and return 
L1: addi $a0, $a0, -1     # else decrement n   
    jal  fact             # recursive call 
    lw   $a0, 0($sp)      # restore original n 
    lw   $ra, 4($sp)      #   and return address 
    addi $sp, $sp, 8      # pop 2 items from stack 
    mul  $v0, $a0, $v0    # multiply to get result 
    jr   $ra              # and return 
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Local Data on the Stack 

 Local data allocated by callee 
 e.g., C automatic variables 

 Procedure frame (activation record) 
 Used by some compilers to manage stack storage 
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Memory Layout 
 Text: program code 
 Static data: global 

variables 
 e.g., static variables in C, 

constant arrays and strings 
 $gp initialized to address 

allowing ±offsets into this 
segment 

 Dynamic data: heap 
 E.g., malloc in C, new in 

Java 
 Stack: automatic storage 
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Character Data 
 Byte-encoded character sets 

 ASCII: 128 characters 
 95 graphic, 33 control 

 Latin-1: 256 characters 
 ASCII, +96 more graphic characters 

 Unicode: 32-bit character set 
 Used in Java, C++ wide characters, … 
 Most of the world’s alphabets, plus symbols 
 UTF-8, UTF-16: variable-length encodings 

§2.9 C
om

m
unicating w
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Byte/Halfword Operations 
 Could use bitwise operations 
 MIPS byte/halfword load/store 

 String processing is a common case 
lb rt, offset(rs)     lh rt, offset(rs) 

 Sign extend to 32 bits in rt 
lbu rt, offset(rs)    lhu rt, offset(rs) 

 Zero extend to 32 bits in rt 
sb rt, offset(rs)     sh rt, offset(rs) 

 Store just rightmost byte/halfword 
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String Copy Example 
 C code (naïve): 

 Null-terminated string 
 void strcpy (char x[], char y[]) 
{ int i; 
  i = 0; 
  while ((x[i]=y[i])!='\0') 
    i += 1; 
} 

 Addresses of x, y in $a0, $a1 
 i in $s0 
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String Copy Example 
 MIPS code: 
 strcpy: 

    addi $sp, $sp, -4      # adjust stack for 1 item 
    sw   $s0, 0($sp)       # save $s0 
    add  $s0, $zero, $zero # i = 0 
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1 
    lbu  $t2, 0($t1)       # $t2 = y[i] 
    add  $t3, $s0, $a0     # addr of x[i] in $t3 
    sb   $t2, 0($t3)       # x[i] = y[i] 
    beq  $t2, $zero, L2    # exit loop if y[i] == 0   
    addi $s0, $s0, 1       # i = i + 1 
    j    L1                # next iteration of loop 
L2: lw   $s0, 0($sp)       # restore saved $s0 
    addi $sp, $sp, 4       # pop 1 item from stack 
    jr   $ra               # and return 
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0000 0000 0011 1101 0000 0000 0000 0000 

32-bit Constants 
 Most constants are small 

 16-bit immediate is sufficient 
 For the occasional 32-bit constant 
 lui rt, constant 

 Copies 16-bit constant to left 16 bits of rt 
 Clears right 16 bits of rt to 0 

lui $s0, 61 

0000 0000 0011 1101 0000 1001 0000 0000 ori $s0, $s0, 2304 

§2.10 M
IP
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Branch Addressing 
 Branch instructions specify 

 Opcode, two registers, target address 
 Most branch targets are near branch 

 Forward or backward 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 

 PC-relative addressing 
 Target address = PC + offset × 4 
 PC already incremented by 4 by this time 
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Jump Addressing 
 Jump (j and jal) targets could be 

anywhere in text segment 
 Encode full address in instruction 

op address 
6 bits 26 bits 

 (Pseudo)Direct jump addressing 
 Target address = PC31…28 : (address × 4) 
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Target Addressing Example 
 Loop code from earlier example 

 Assume Loop at location 80000 

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 
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Branching Far Away 
 If branch target is too far to encode with 

16-bit offset, assembler rewrites the code 
 Example 

  beq $s0,$s1, L1 

    ↓ 
  bne $s0,$s1, L2 
 j L1 
L2: … 
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Addressing Mode Summary 
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Synchronization 
 Two processors sharing an area of memory 

 P1 writes, then P2 reads 
 Data race if P1 and P2 don’t synchronize 

 Result depends of order of accesses 

 Hardware support required 
 Atomic read/write memory operation 
 No other access to the location allowed between the 

read and write 
 Could be a single instruction 

 E.g., atomic swap of register ↔ memory 
 Or an atomic pair of instructions 

§2.11 P
arallelism

 and Instructions: S
ynchronization 
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Synchronization in MIPS  
 Load linked: ll rt, offset(rs) 
 Store conditional: sc rt, offset(rs) 

 Succeeds if location not changed since the ll 
 Returns 1 in rt 

 Fails if location is changed 
 Returns 0 in rt 

 Example: atomic swap (to test/set lock variable) 
try: add $t0,$zero,$s4 ;copy exchange value 

     ll  $t1,0($s1)    ;load linked 

     sc  $t0,0($s1)    ;store conditional 

     beq $t0,$zero,try ;branch store fails 

     add $s4,$zero,$t1 ;put load value in $s4 
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Translation and Startup 

Many compilers produce 
object modules directly 

Static linking 

§2.12 Translating and S
tarting a P

rogram
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Assembler Pseudoinstructions 
 Most assembler instructions represent 

machine instructions one-to-one 
 Pseudoinstructions: figments of the 

assembler’s imagination 
 move $t0, $t1 → add $t0, $zero, $t1 

 blt $t0, $t1, L  →  slt $at, $t0, $t1 
  bne $at, $zero, L 

 $at (register 1): assembler temporary 



Chapter 2 — Instructions: Language of the Computer — 61 

Producing an Object Module 
 Assembler (or compiler) translates program into 

machine instructions 
 Provides information for building a complete 

program from the pieces 
 Header: described contents of object module 
 Text segment: translated instructions 
 Static data segment: data allocated for the life of the 

program 
 Relocation info: for contents that depend on absolute 

location of loaded program 
 Symbol table: global definitions and external refs 
 Debug info: for associating with source code 
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Linking Object Modules 
 Produces an executable image 

1. Merges segments 
2. Resolve labels (determine their addresses) 
3. Patch location-dependent and external refs 

 Could leave location dependencies for 
fixing by a relocating loader 
 But with virtual memory, no need to do this 
 Program can be loaded into absolute location 

in virtual memory space 
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Loading a Program 
 Load from image file on disk into memory 

1. Read header to determine segment sizes 
2. Create virtual address space 
3. Copy text and initialized data into memory 

 Or set page table entries so they can be faulted in 
4. Set up arguments on stack 
5. Initialize registers (including $sp, $fp, $gp) 
6. Jump to startup routine 

 Copies arguments to $a0, … and calls main 
 When main returns, do exit syscall 



Chapter 2 — Instructions: Language of the Computer — 64 

Dynamic Linking 
 Only link/load library procedure when it is 

called 
 Requires procedure code to be relocatable 
 Avoids image bloat caused by static linking of 

all (transitively) referenced libraries 
 Automatically picks up new library versions 
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Lazy Linkage 

Indirection table 

Stub: Loads routine ID, 
Jump to linker/loader 

Linker/loader code 

Dynamically 
mapped code 
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Starting Java Applications 

Simple portable 
instruction set for 

the JVM 

Interprets 
bytecodes 

Compiles 
bytecodes of 
“hot” methods 

into native 
code for host 

machine 
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C Sort Example 
 Illustrates use of assembly instructions 

for a C bubble sort function 
 Swap procedure (leaf) 

 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

 v in $a0, k in $a1, temp in $t0 

§2.13 A C
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The Procedure Swap 
swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 
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The Sort Procedure in C 
 Non-leaf (calls swap) 

 void sort (int v[], int n) 
 { 
   int i, j; 
   for (i = 0; i < n; i += 1) { 
     for (j = i – 1; 
          j >= 0 && v[j] > v[j + 1]; 
          j -= 1) { 
       swap(v,j); 
     } 
   } 
 } 
 v in $a0, k in $a1, i in $s0, j in $s1 
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The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 

         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 

         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 

         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 

         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 

         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 

         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 

         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass 
params 
& call 

Move 
params 

Inner loop 

Outer loop 

Inner loop 

Outer loop 
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sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 
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Effect of Compiler Optimization 
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Effect of Language and Algorithm 
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Lessons Learnt 
 Instruction count and CPI are not good 

performance indicators in isolation 
 Compiler optimizations are sensitive to the 

algorithm 
 Java/JIT compiled code is significantly 

faster than JVM interpreted 
 Comparable to optimized C in some cases 

 Nothing can fix a dumb algorithm! 
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Arrays vs. Pointers 
 Array indexing involves 

 Multiplying index by element size 
 Adding to array base address 

 Pointers correspond directly to memory 
addresses 
 Can avoid indexing complexity 

§2.14 A
rrays versus P

ointers 
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Example: Clearing and Array 
clear1(int array[], int size) { 
  int i; 
  for (i = 0; i < size; i += 1) 
    array[i] = 0; 
} 

clear2(int *array, int size) { 
  int *p; 
  for (p = &array[0]; p < &array[size]; 
       p = p + 1) 
    *p = 0; 
} 

       move $t0,$zero   # i = 0 

loop1: sll $t1,$t0,2    # $t1 = i * 4 

       add $t2,$a0,$t1  # $t2 = 

                        #   &array[i] 

       sw $zero, 0($t2) # array[i] = 0 

       addi $t0,$t0,1   # i = i + 1 

       slt $t3,$t0,$a1  # $t3 = 

                        #   (i < size) 

       bne $t3,$zero,loop1 # if (…) 
                           # goto loop1 

       move $t0,$a0    # p = & array[0] 

       sll $t1,$a1,2   # $t1 = size * 4 

       add $t2,$a0,$t1 # $t2 = 

                       #   &array[size] 

loop2: sw $zero,0($t0) # Memory[p] = 0 

       addi $t0,$t0,4  # p = p + 4 

       slt $t3,$t0,$t2 # $t3 = 

                       #(p<&array[size]) 

       bne $t3,$zero,loop2 # if (…) 

                           # goto loop2 



Chapter 2 — Instructions: Language of the Computer — 77 

Comparison of Array vs. Ptr 
 Multiply “strength reduced” to shift 
 Array version requires shift to be inside 

loop 
 Part of index calculation for incremented i 
 c.f. incrementing pointer 

 Compiler can achieve same effect as 
manual use of pointers 
 Induction variable elimination 
 Better to make program clearer and safer 
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ARM & MIPS Similarities 
 ARM: the most popular embedded core 
 Similar basic set of instructions to MIPS 

§2.16 R
eal S

tuff: A
R

M
 Instructions 

ARM MIPS 
Date announced 1985 1985 
Instruction size 32 bits 32 bits 
Address space 32-bit flat 32-bit flat 
Data alignment Aligned Aligned 
Data addressing modes 9 3 
Registers 15 × 32-bit 31 × 32-bit 
Input/output Memory 

mapped 
Memory 
mapped 
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Compare and Branch in ARM 
 Uses condition codes for result of an 

arithmetic/logical instruction 
 Negative, zero, carry, overflow 
 Compare instructions to set condition codes 

without keeping the result 
 Each instruction can be conditional 

 Top 4 bits of instruction word: condition value 
 Can avoid branches over single instructions 
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Instruction Encoding 
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The Intel x86 ISA 
 Evolution with backward compatibility 

 8080 (1974): 8-bit microprocessor 
 Accumulator, plus 3 index-register pairs 

 8086 (1978): 16-bit extension to 8080 
 Complex instruction set (CISC) 

 8087 (1980): floating-point coprocessor 
 Adds FP instructions and register stack 

 80286 (1982): 24-bit addresses, MMU 
 Segmented memory mapping and protection 

 80386 (1985): 32-bit extension (now IA-32) 
 Additional addressing modes and operations 
 Paged memory mapping as well as segments 

§2.17 R
eal S

tuff: x86 Instructions 
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The Intel x86 ISA 
 Further evolution… 

 i486 (1989): pipelined, on-chip caches and FPU 
 Compatible competitors: AMD, Cyrix, … 

 Pentium (1993): superscalar, 64-bit datapath 
 Later versions added MMX (Multi-Media eXtension) 

instructions 
 The infamous FDIV bug 

 Pentium Pro (1995), Pentium II (1997) 
 New microarchitecture (see Colwell, The Pentium Chronicles) 

 Pentium III (1999) 
 Added SSE (Streaming SIMD Extensions) and associated 

registers 
 Pentium 4 (2001) 

 New microarchitecture 
 Added SSE2 instructions 
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The Intel x86 ISA 
 And further… 

 AMD64 (2003): extended architecture to 64 bits 
 EM64T – Extended Memory 64 Technology (2004) 

 AMD64 adopted by Intel (with refinements) 
 Added SSE3 instructions 

 Intel Core (2006) 
 Added SSE4 instructions, virtual machine support 

 AMD64 (announced 2007): SSE5 instructions 
 Intel declined to follow, instead… 

 Advanced Vector Extension (announced 2008) 
 Longer SSE registers, more instructions 

 If Intel didn’t extend with compatibility, its 
competitors would! 
 Technical elegance ≠ market success 
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Basic x86 Registers 
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Basic x86 Addressing Modes 
 Two operands per instruction 

Source/dest operand Second source operand 
Register Register 
Register Immediate 
Register Memory 
Memory Register 
Memory Immediate 

 Memory addressing modes 
 Address in register 
 Address = Rbase + displacement 
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3) 
 Address =  Rbase + 2scale × Rindex + displacement 
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x86 Instruction Encoding 
 Variable length 

encoding 
 Postfix bytes specify 

addressing mode 
 Prefix bytes modify 

operation 
 Operand length, 

repetition, locking, … 
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Implementing IA-32 
 Complex instruction set makes 

implementation difficult 
 Hardware translates instructions to simpler 

microoperations 
 Simple instructions: 1–1 
 Complex instructions: 1–many 

 Microengine similar to RISC 
 Market share makes this economically viable 

 Comparable performance to RISC 
 Compilers avoid complex instructions 
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Fallacies 
 Powerful instruction ⇒ higher performance 

 Fewer instructions required 
 But complex instructions are hard to implement 

 May slow down all instructions, including simple ones 

 Compilers are good at making fast code from simple 
instructions 

 Use assembly code for high performance 
 But modern compilers are better at dealing with 

modern processors 
 More lines of code ⇒ more errors and less 

productivity 

§2.18 Fallacies and P
itfalls 
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Fallacies 
 Backward compatibility ⇒ instruction set 

doesn’t change 
 But they do accrete more instructions 

x86 instruction set 
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Pitfalls 
 Sequential words are not at sequential 

addresses 
 Increment by 4, not by 1! 

 Keeping a pointer to an automatic variable 
after procedure returns 
 e.g., passing pointer back via an argument 
 Pointer becomes invalid when stack popped 
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Concluding Remarks 
 Design principles 

1. Simplicity favors regularity 
2. Smaller is faster 
3. Make the common case fast 
4. Good design demands good compromises 

 Layers of software/hardware 
 Compiler, assembler, hardware 

 MIPS: typical of RISC ISAs 
 c.f. x86 

§2.19 C
oncluding R

em
arks 
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Concluding Remarks 
 Measure MIPS instruction executions in 

benchmark programs 
 Consider making the common case fast 
 Consider compromises 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 
Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, 
slti, sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 
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Exercises 
 Answer the following exercises, and send your 

answers as a PDF attachment to the email address 
listed below 

xamiri@fi.muni.cz   
 Leave body of the email blank 
 Deadline is March 25th 
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Exercise 1 
 Assume that the stack and the static data segments are empty and 

that the stack and global pointers start at address 0x7fff fffc and 
0x1000 8000, respectively. 

 int my_global = 100; 
 main() 
 { 
  int x = 10; 
  int y = 20; 
  int z; 
  z = my_function(x, my_global) 
 } 
 int my_function(int x, int y) 
 { 
  return x – y; 
 } 
 1) Show the contents of the stack and the static data segments after 

each function call. 
 2) Write MIPS code for the code above.   
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Exercise 2 
 For the following problems, use the hexadecimal data in the table 

below. 
 
 
 

 1) If the PC is at address 0x00000000, how many branch (no jump 
instructions) do you need to get to the addresses in the table above? 

 2) If the PC is at address 0x00000000, how many jump instructions 
(no jump register instructions or branch instructions) are required to 
get to the target addresses in the table above? 

a. 0x00001000 
b. 0xFFFC0000 
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Exercise 3 
 Each entry in the following table has code and also shows the 

contents of various registers. The notation, “($s1)” shows the 
contents of a memory location pointed to by register $s1. The 
assembly code in the table is executed in the cycle shown on 
parallel processors with a shared memory space. Fill out the table 
with the value of the registers for each given cycle. 
 

Processor 1 Processor 2 Cycle 
Processor 1 MEM 

($s1) 
Processor 2 

$s4 $t1 $t0 $s4 $t1 $t0 
0 2 3 4 99 10 20 30 

try: add $t0, $0, $s4  1 

try: add $t0, $0, $s4       ll $t1, 0($s1)  2 

     ll $t1, 0($s1)  3 

     sc $t0, 0($s1)  4 

     beqz $t0, try       sc $t0, 0($s1) 5 

     add $s4, $0, $t1       beqz $t0, try 6 


