
Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers
 Operations on integers

 Addition and subtraction
 Multiplication and division
 Dealing with overflow

 Floating-point real numbers
 Representation and operations

§3.1 Introduction

Chapter 3 — Arithmetic for Computers — 3

Integer Addition
 Example: 7 + 6

§3.2 A
ddition and S

ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow
 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction
 Add negation of second operand
 Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow
 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 5

Dealing with Overflow
 Some languages (e.g., C) ignore overflow

 Use MIPS addu, addui, subu instructions
 Other languages (e.g., Ada, Fortran)

require raising an exception
 Use MIPS add, addi, sub instructions
 On overflow, invoke exception handler

 Save PC in exception program counter (EPC)
register

 Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can

retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 6

Arithmetic for Multimedia
 Graphics and media processing operates

on vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable

value
 c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 7

Multiplication
 Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 9

Optimized Multiplier
 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 10

Faster Multiplier
 Uses multiple adders

 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 11

MIPS Multiplication
 Two 32-bit registers for product

 HI: most-significant 32 bits
 LO: least-significant 32-bits

 Instructions
 mult rs, rt / multu rs, rt

 64-bit product in HI/LO
 mfhi rd / mflo rd

 Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 12

Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next

dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back
 Signed division

 Divide using absolute values
 Adjust sign of quotient and remainder

as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Chapter 3 — Arithmetic for Computers — 13

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 14

Division Example
Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem - Div 0000 0010 0000 1110 0111

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem - Div 0000 0001 0000 1111 0111

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111

3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem - Div 0000 0000 1000 1111 1111

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111

3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem - Div 0000 0000 0100 0000 0011

2a: Rem ≥ 0 → sll Q, Q0 = 1 0001 0000 0100 0000 0011

3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem - Div 0001 0000 0010 0000 0001

2a: Rem ≥ 0 → sll Q, Q0 = 1 0011 0000 0010 0000 0001

3: Shift Div right 0011 0000 0001 0000 0001

 11
0010 0111
 - 10
 11
 -10
 1

n + 1 = 4 + 1
steps

Chapter 3 — Arithmetic for Computers — 15

Optimized Divider

 One cycle per partial-remainder subtraction
 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 16

Faster Division
 Can’t use parallel hardware as in multiplier

 Subtraction is conditional on sign of remainder
 Faster dividers (e.g. SRT devision)

generate multiple quotient bits per step
 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 17

MIPS Division
 Use HI/LO registers for result

 HI: 32-bit remainder
 LO: 32-bit quotient

 Instructions
 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 18

Floating Point
 Representation for non-integral numbers

 Including very small and very large numbers
 Like scientific notation

 –2.34 × 1056
 +0.002 × 10–4
 +987.02 × 109

 In binary
 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§3.5 Floating P
oint

Chapter 3 — Arithmetic for Computers — 19

Floating Point Standard
 Defined by IEEE Std 754-1985
 Developed in response to divergence of

representations
 Portability issues for scientific code

 Now almost universally adopted
 Two representations

 Single precision (32-bit)
 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 20

IEEE Floating-Point Format

 S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored
 Exponent: excess representation: actual exponent + Bias

 Ensures exponent is unsigned
 Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −×+×−=

Chapter 3 — Arithmetic for Computers — 21

Single-Precision Range
 Exponents 00000000 and 11111111 reserved
 Smallest value

 Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126

 Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value
 exponent: 11111110
⇒ actual exponent = 254 – 127 = +127

 Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 22

Double-Precision Range
 Exponents 0000…00 and 1111…11 reserved
 Smallest value

 Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value
 Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Precision
 Relative precision

 all fraction bits are significant
 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Example
 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1
 Fraction = 1000…002
 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102
 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00
 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 25

Floating-Point Example
 What number is represented by the single-

precision float
 11000000101000…00

 S = 1
 Fraction = 01000…002
 Exponent = 100000012 = 129

 x = (–1)1 × (1 + .012) × 2(129 – 127)
 = (–1) × 1.25 × 22
 = –5.0

Chapter 3 — Arithmetic for Computers — 26

Denormal Numbers
 Exponent = 000...0 ⇒ hidden bit is 0

 Smaller than normal numbers
 allow for gradual underflow, with

diminishing precision

 Denormal with fraction = 000...0

Two representations
of 0.0!

BiasS 2Fraction)(01)(x −×+×−=

0.0±=×+×−= −BiasS 20)(01)(x

Chapter 3 — Arithmetic for Computers — 27

Infinities and NaNs
 Exponent = 111...1, Fraction = 000...0

 ±Infinity
 Can be used in subsequent calculations,

avoiding need for overflow check
 Exponent = 111...1, Fraction ≠ 000...0

 Not-a-Number (NaN)
 Indicates illegal or undefined result

 e.g., 0.0 / 0.0
 Can be used in subsequent calculations

Chapter 3 — Arithmetic for Computers — 28

Floating-Point Addition
 Consider a 4-digit decimal example

 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent
 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 29

Floating-Point Addition
 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
 1. Align binary points

 Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 30

FP Adder Hardware
 Much more complex than integer adder
 Doing it in one clock cycle would take too

long
 Much longer than integer operations
 Slower clock would penalize all instructions

 FP adder usually takes several cycles
 Can be pipelined

Chapter 3 — Arithmetic for Computers — 31

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 32

Floating-Point Multiplication
 Consider a 4-digit decimal example

 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
 For biased exponents, subtract bias from sum
 New exponent = 10 + –5 = 5

 2. Multiply significands
 1.110 × 9.200 = 10.212 ⇒ 10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

 5. Determine sign of result from signs of operands
 +1.021 × 106

Chapter 3 — Arithmetic for Computers — 33

Floating-Point Multiplication
 Now consider a 4-digit binary example

 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)
 1. Add exponents

 Unbiased: –1 + –2 = –3
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 ⇒ 1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve ⇒ –ve
 –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 34

FP Arithmetic Hardware
 FP multiplier is of similar complexity to FP

adder
 But uses a multiplier for significands instead of

an adder
 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division,
reciprocal, square-root

 FP ↔ integer conversion
 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 35

FP Instructions in MIPS
 FP hardware is coprocessor 1

 Adjunct processor that extends the ISA
 Separate FP registers

 32 single-precision: $f0, $f1, … $f31
 Paired for double-precision: $f0/$f1, $f2/$f3, …

 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s
 FP instructions operate only on FP registers

 Programs generally don’t do integer ops on FP data,
or vice versa

 More registers with minimal code-size impact
 FP load and store instructions

 lwc1, ldc1, swc1, sdc1
 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 36

FP Instructions in MIPS
 Single-precision arithmetic

 add.s, sub.s, mul.s, div.s
 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6
 Single- and double-precision comparison

 c.xx.s, c.xx.d (xx is eq, lt, le, …)
 Sets or clears FP condition-code bit

 e.g. c.lt.s $f3, $f4
 Branch on FP condition code true or false

 bc1t, bc1f
 e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 37

FP Example: °F to °C
 C code:
 float f2c (float fahr) {
 return ((5.0/9.0)*(fahr - 32.0));
}

 fahr in $f12, result in $f0, literals in global memory
space

 Compiled MIPS code:
 f2c: lwc1 $f16, const5($gp)
 lwc2 $f18, const9($gp)
 div.s $f16, $f16, $f18
 lwc1 $f18, const32($gp)
 sub.s $f18, $f12, $f18
 mul.s $f0, $f16, $f18
 jr $ra

Chapter 3 — Arithmetic for Computers — 38

FP Example: Array Multiplication
 X = X + Y × Z

 All 32 × 32 matrices, 64-bit double-precision elements
 C code:
 void mm (double x[][],
 double y[][], double z[][]) {
 int i, j, k;
 for (i = 0; i! = 32; i = i + 1)
 for (j = 0; j! = 32; j = j + 1)
 for (k = 0; k! = 32; k = k + 1)
 x[i][j] = x[i][j]
 + y[i][k] * z[k][j];
}

 Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 39

FP Example: Array Multiplication
 MIPS code:
 li $t1, 32 # $t1 = 32 (row size/loop end)

 li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

 sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

 addu $t2, $t2, $s1 # $t2 = i * size(row) + j

 sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

 addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

 l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)

 addu $t0, $t0, $s1 # $t0 = k * size(row) + j

 sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

 addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

 l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

 …

Chapter 3 — Arithmetic for Computers — 40

FP Example: Array Multiplication
 …

 sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)

 addu $t0, $t0, $s2 # $t0 = i*size(row) + k

 sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

 addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

 l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

 mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

 add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

 addiu $s2, $s2, 1 # $k k + 1

 bne $s2, $t1, L3 # if (k != 32) go to L3

 s.d $f4, 0($t2) # x[i][j] = $f4

 addiu $s1, $s1, 1 # $j = j + 1

 bne $s1, $t1, L2 # if (j != 32) go to L2

 addiu $s0, $s0, 1 # $i = i + 1

 bne $s0, $t1, L1 # if (i != 32) go to L1

Chapter 3 — Arithmetic for Computers — 41

Accurate Arithmetic
 IEEE Std 754 specifies additional rounding

control
 Extra bits of precision (guard, round, sticky)
 Choice of rounding modes
 Allows programmer to fine-tune numerical behavior of

a computation
 Not all FP units implement all options

 Most programming languages and FP libraries just
use defaults

 Trade-off between hardware complexity,
performance, and market requirements

Chapter 3 — Arithmetic for Computers — 42

Interpretation of Data

 Bits have no inherent meaning
 Interpretation depends on the instructions

applied
 Computer representations of numbers

 Finite range and precision
 Need to account for this in programs

The BIG Picture

Chapter 3 — Arithmetic for Computers — 43

Associativity
 Parallel programs may interleave

operations in unexpected orders
 Assumptions of associativity may fail

§3.6 P
arallelism

 and C
om

puter A
rithm

etic: A
ssociativity

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

 Need to validate parallel programs under
varying degrees of parallelism

Chapter 3 — Arithmetic for Computers — 44

x86 FP Architecture
 Originally based on 8087 FP coprocessor

 8 × 80-bit extended-precision registers
 Used as a push-down stack
 Registers indexed from TOS: ST(0), ST(1), …

 FP values are 32-bit or 64 in memory
 Converted on load/store of memory operand
 Integer operands can also be converted

on load/store
 Very difficult to generate and optimize code

 Result: poor FP performance

§3.7 R
eal S

tuff: Floating P
oint in the x86

Chapter 3 — Arithmetic for Computers — 45

x86 FP Instructions

 Optional variations
 I: integer operand
 P: pop operand from stack
 R: reverse operand order
 But not all combinations allowed

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Arithmetic for Computers — 46

Streaming SIMD Extension 2 (SSE2)

 Adds 4 × 128-bit registers
 Extended to 8 registers in AMD64/EM64T

 Can be used for multiple FP operands
 2 × 64-bit double precision
 4 × 32-bit single precision
 Instructions operate on them simultaneously

 Single-Instruction Multiple-Data

Chapter 3 — Arithmetic for Computers — 47

Right Shift and Division
 Left shift by i places multiplies an integer

by 2i
 Right shift divides by 2i?

 Only for unsigned integers
 For signed integers

 Arithmetic right shift: replicate the sign bit
 e.g., –5 / 4

 111110112 >> 2 = 111111102 = –2
 Rounds toward –∞

 c.f. 111110112 >>> 2 = 001111102 = +62

§3.8 Fallacies and P
itfalls

Chapter 3 — Arithmetic for Computers — 48

Who Cares About FP Accuracy?
 Important for scientific code

 But for everyday consumer use?
 “My bank balance is out by 0.0002¢!”

 The Intel Pentium FDIV bug
 The market expects accuracy
 See Colwell, The Pentium Chronicles

Chapter 3 — Arithmetic for Computers — 49

Concluding Remarks
 ISAs support arithmetic

 Signed and unsigned integers
 Floating-point approximation to reals

 Bounded range and precision
 Operations can overflow and underflow

 MIPS ISA
 Core instructions: 54 most frequently used

 100% of SPECINT, 97% of SPECFP
 Other instructions: less frequent

§3.9 C
oncluding R

em
arks

Chapter 1 — Computer Abstractions and Technology — 50

Exercises
 Answer the following exercises, and send your

answers as a PDF attachment to the email address
listed below

xamiri@fi.muni.cz
 Leave body of the email blank
 Deadline is April 8th

Chapter 1 — Computer Abstractions and Technology — 51

Exercise 1
 Calculate the product of the octal unsigned 6-bit integers A = 50 and

B = 23 using the hardware described below (adjust the register
sizes). You should show the contents of each register on each step.

Chapter 1 — Computer Abstractions and Technology — 52

Exercise 2
 Calculate the product of the hexadecimal unsigned 8-bit integers A =

66 and B = 04 using the hardware described below (adjust the
register sizes). You should show the contents of each register on
each step.

Chapter 1 — Computer Abstractions and Technology — 53

Exercise 3
 Calculate A = 50 divided by B = 23 using the hardware described

below. You should show the contents of each register on each step.
Assume A and B are octal unsigned 6-bit integers (adjust the register
sizes in the hardware).

Chapter 1 — Computer Abstractions and Technology — 54

Exercise 4
 Calculate A = 50 divided by B = 23 using the hardware described

below. You should show the contents of each register on each step.
Assume A and B are octal unsigned 6-bit integers (adjust the register
sizes in the hardware).

Chapter 1 — Computer Abstractions and Technology — 55

Exercise 5
 What decimal number does the following bit pattern represent if it is

a floating-point number? Use the IEEE 754 standard.

 0xAFBF0000

Chapter 1 — Computer Abstractions and Technology — 56

Exercise 6
 Write down the binary representation of the following decimal

number:

- - 938.8125

 a) assuming the IEEE 754 single precision format.
 b) assuming the IEEE 754 double precision format.

Chapter 1 — Computer Abstractions and Technology — 57

Exercise 7
 NVIDIA has a “half” format, which is similar to IEEE 754 except that

it is only 16 bits wide. The leftmost bit is still the sign bit, the
exponent is 5 bits wide (exponent bias = 011112 = 15), and the
mantissa is 10 bits long. A hidden 1 is assumed.

 a) Calculate the sum of the following decimal numbers A and B by
hand, assuming A and B are stored in the 16-bit NVIDIA format.
Assume one guard bit, one round bit and one sticky bit, and round to
the nearest even. Show all the steps.

 A = 2.3109375 × 101 B = 6.391601562 × 10-1

 b) Calculate the product of the following decimal numbers A and B
by hand, assuming A and B are stored in the 16-bit NVIDIA format.
Assume one guard bit, one round bit and one sticky bit, and round to
the nearest even. Show all the steps; however, do the multiplication
in human-readable format instead of using any techniques. Write
your answer as a 16-bit pattern. How accurate is your result?

 A = 6.18 × 102 B = 5.796875 × 101

