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Arithmetic for Computers 
 Operations on integers 

 Addition and subtraction 
 Multiplication and division 
 Dealing with overflow 

 Floating-point real numbers 
 Representation and operations  

§3.1 Introduction 
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Integer Addition 
 Example: 7 + 6 

§3.2 A
ddition and S

ubtraction 

 Overflow if result out of range 
 Adding +ve and –ve operands, no overflow 
 Adding two +ve operands 

 Overflow if result sign is 1 

 Adding two –ve operands 
 Overflow if result sign is 0 
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Integer Subtraction 
 Add negation of second operand 
 Example: 7 – 6 = 7 + (–6) 

 +7: 0000 0000 … 0000 0111 
–6: 1111 1111 … 1111 1010 
+1: 0000 0000 … 0000 0001 

 Overflow if result out of range 
 Subtracting two +ve or two –ve operands, no overflow 
 Subtracting +ve from –ve operand 

 Overflow if result sign is 0 

 Subtracting –ve from +ve operand 
 Overflow if result sign is 1 
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Dealing with Overflow 
 Some languages (e.g., C) ignore overflow 

 Use MIPS addu, addui, subu instructions 
 Other languages (e.g., Ada, Fortran) 

require raising an exception 
 Use MIPS add, addi, sub instructions 
 On overflow, invoke exception handler 

 Save PC in exception program counter (EPC) 
register 

 Jump to predefined handler address 
 mfc0 (move from coprocessor reg) instruction can 

retrieve EPC value, to return after corrective action 
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Arithmetic for Multimedia 
 Graphics and media processing operates 

on vectors of 8-bit and 16-bit data 
 Use 64-bit adder, with partitioned carry chain 

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors 
 SIMD (single-instruction, multiple-data) 

 Saturating operations 
 On overflow, result is largest representable 

value 
 c.f. 2s-complement modulo arithmetic 

 E.g., clipping in audio, saturation in video 
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Multiplication 
 Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 
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Multiplication Hardware 

Initially 0 



Chapter 3 — Arithmetic for Computers — 9 

Optimized Multiplier 
 Perform steps in parallel: add/shift 

 One cycle per partial-product addition 
 That’s ok, if frequency of multiplications is low 
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Faster Multiplier 
 Uses multiple adders 

 Cost/performance tradeoff 

 Can be pipelined 
 Several multiplication performed in parallel 
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MIPS Multiplication 
 Two 32-bit registers for product 

 HI: most-significant 32 bits 
 LO: least-significant 32-bits 

 Instructions 
 mult rs, rt  /  multu rs, rt 

 64-bit product in HI/LO 
 mfhi rd  /  mflo rd 

 Move from HI/LO to rd 
 Can test HI value to see if product overflows 32 bits 

 mul rd, rs, rt 

 Least-significant 32 bits of product –> rd 
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Division 
 Check for 0 divisor 
 Long division approach 

 If divisor ≤ dividend bits 
 1 bit in quotient, subtract 

 Otherwise 
 0 bit in quotient, bring down next 

dividend bit 

 Restoring division 
 Do the subtract, and if remainder 

goes < 0, add divisor back 
 Signed division 

 Divide using absolute values 
 Adjust sign of quotient and remainder 

as required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 
quotient and remainder 

quotient 

dividend 

remainder 

divisor 

§3.4 D
ivision 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 
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Division Example 
Iteration Step Quotient Divisor Remainder 

0 Initial values 0000 0010 0000 0000 0111 

1 

1: Rem = Rem - Div 0000 0010 0000 1110 0111 

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111 

3: Shift Div right 0000 0001 0000 0000 0111 

2 

1: Rem = Rem - Div 0000 0001 0000 1111 0111 

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111 

3: Shift Div right 0000 0000 1000 0000 0111 

3 

1: Rem = Rem - Div 0000 0000 1000 1111 1111 

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111 

3: Shift Div right 0000 0000 0100 0000 0111 

4 

1: Rem = Rem - Div 0000 0000 0100 0000 0011 

2a: Rem ≥ 0 → sll Q, Q0 = 1 0001 0000 0100 0000 0011 

3: Shift Div right 0001 0000 0010 0000 0011 

5 

1: Rem = Rem - Div 0001 0000 0010 0000 0001 

2a: Rem ≥ 0 → sll Q, Q0 = 1 0011 0000 0010 0000 0001 

3: Shift Div right 0011 0000 0001 0000 0001 

        11 
0010 0111 
    - 10 
       11 
      -10  
        1 

n + 1 = 4 + 1 
steps 
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Optimized Divider 

 One cycle per partial-remainder subtraction 
 Looks a lot like a multiplier! 

 Same hardware can be used for both 
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Faster Division 
 Can’t use parallel hardware as in multiplier 

 Subtraction is conditional on sign of remainder 
 Faster dividers (e.g. SRT devision) 

generate multiple quotient bits per step 
 Still require multiple steps 
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MIPS Division 
 Use HI/LO registers for result 

 HI: 32-bit remainder 
 LO: 32-bit quotient 

 Instructions 
 div rs, rt  /  divu rs, rt 

 No overflow or divide-by-0 checking 
 Software must perform checks if required 

 Use mfhi, mflo to access result 
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Floating Point 
 Representation for non-integral numbers 

 Including very small and very large numbers 
 Like scientific notation 

 –2.34 × 1056 
 +0.002 × 10–4 
 +987.02 × 109 

 In binary 
 ±1.xxxxxxx2 × 2yyyy 

 Types float and double in C 

normalized 

not normalized 

§3.5 Floating P
oint 
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Floating Point Standard 
 Defined by IEEE Std 754-1985 
 Developed in response to divergence of 

representations 
 Portability issues for scientific code 

 Now almost universally adopted 
 Two representations 

 Single precision (32-bit) 
 Double precision (64-bit)  
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IEEE Floating-Point Format 

 S: sign bit (0 ⇒ non-negative, 1 ⇒ negative) 
 Normalize significand: 1.0 ≤ |significand| < 2.0 

 Always has a leading pre-binary-point 1 bit, so no need to 
represent it explicitly (hidden bit) 

 Significand is Fraction with the “1.” restored 
 Exponent: excess representation: actual exponent + Bias 

 Ensures exponent is unsigned 
 Single: Bias = 127; Double: Bias = 1023 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x −×+×−=
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Single-Precision Range 
 Exponents 00000000 and 11111111 reserved 
 Smallest value 

 Exponent: 00000001 
⇒ actual exponent = 1 – 127 = –126 

 Fraction: 000…00 ⇒ significand = 1.0 
 ±1.0 × 2–126 ≈ ±1.2 × 10–38 

 Largest value 
 exponent: 11111110 
⇒ actual exponent = 254 – 127 = +127 

 Fraction: 111…11 ⇒ significand ≈ 2.0 
 ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 
 Exponents 0000…00 and 1111…11 reserved 
 Smallest value 

 Exponent: 00000000001 
⇒ actual exponent = 1 – 1023 = –1022 

 Fraction: 000…00 ⇒ significand = 1.0 
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

 Largest value 
 Exponent: 11111111110 
⇒ actual exponent = 2046 – 1023 = +1023 

 Fraction: 111…11 ⇒ significand ≈ 2.0 
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 
 Relative precision 

 all fraction bits are significant 
 Single: approx 2–23 

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 
digits of precision 

 Double: approx 2–52 

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 
digits of precision 
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Floating-Point Example 
 Represent –0.75 

 –0.75 = (–1)1 × 1.12 × 2–1 

 S = 1 
 Fraction = 1000…002 
 Exponent = –1 + Bias 

 Single: –1 + 127 = 126 = 011111102 
 Double: –1 + 1023 = 1022 = 011111111102 

 Single: 1011111101000…00 
 Double: 1011111111101000…00 
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Floating-Point Example 
 What number is represented by the single-

precision float 
 11000000101000…00 

 S = 1 
 Fraction = 01000…002 
 Exponent = 100000012 = 129 

 x = (–1)1 × (1 + .012) × 2(129 – 127) 
 = (–1) × 1.25 × 22 
 = –5.0 
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Denormal Numbers 
 Exponent = 000...0 ⇒ hidden bit is 0 

 Smaller than normal numbers 
 allow for gradual underflow, with 

diminishing precision 

 Denormal with fraction = 000...0 

Two representations 
of 0.0! 

BiasS 2Fraction)(01)(x −×+×−=

0.0±=×+×−= −BiasS 20)(01)(x
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Infinities and NaNs 
 Exponent = 111...1, Fraction = 000...0 

 ±Infinity 
 Can be used in subsequent calculations, 

avoiding need for overflow check 
 Exponent = 111...1, Fraction ≠ 000...0 

 Not-a-Number (NaN) 
 Indicates illegal or undefined result 

 e.g., 0.0 / 0.0 
 Can be used in subsequent calculations 
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Floating-Point Addition 
 Consider a 4-digit decimal example 

 9.999 × 101 + 1.610 × 10–1 

 1. Align decimal points 
 Shift number with smaller exponent 
 9.999 × 101 + 0.016 × 101 

 2. Add significands 
 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

 3. Normalize result & check for over/underflow 
 1.0015 × 102 

 4. Round and renormalize if necessary 
 1.002 × 102 
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Floating-Point Addition 
 Now consider a 4-digit binary example 

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 
 1. Align binary points 

 Shift number with smaller exponent 
 1.0002 × 2–1 + –0.1112 × 2–1 

 2. Add significands 
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

 3. Normalize result & check for over/underflow 
 1.0002 × 2–4, with no over/underflow 

 4. Round and renormalize if necessary 
 1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 
 Much more complex than integer adder 
 Doing it in one clock cycle would take too 

long 
 Much longer than integer operations 
 Slower clock would penalize all instructions 

 FP adder usually takes several cycles 
 Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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Floating-Point Multiplication 
 Consider a 4-digit decimal example 

 1.110 × 1010 × 9.200 × 10–5 

 1. Add exponents 
 For biased exponents, subtract bias from sum 
 New exponent = 10 + –5 = 5 

 2. Multiply significands 
 1.110 × 9.200 = 10.212  ⇒  10.212 × 105 

 3. Normalize result & check for over/underflow 
 1.0212 × 106 

 4. Round and renormalize if necessary 
 1.021 × 106 

 5. Determine sign of result from signs of operands 
 +1.021 × 106 
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Floating-Point Multiplication 
 Now consider a 4-digit binary example 

 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375) 
 1. Add exponents 

 Unbiased: –1 + –2 = –3 
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127 

 2. Multiply significands 
 1.0002 × 1.1102 = 1.1102  ⇒  1.1102 × 2–3 

 3. Normalize result & check for over/underflow 
 1.1102 × 2–3 (no change) with no over/underflow 

 4. Round and renormalize if necessary 
 1.1102 × 2–3 (no change) 

 5. Determine sign: +ve × –ve ⇒ –ve 
 –1.1102 × 2–3  = –0.21875 
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FP Arithmetic Hardware 
 FP multiplier is of similar complexity to FP 

adder 
 But uses a multiplier for significands instead of 

an adder 
 FP arithmetic hardware usually does 

 Addition, subtraction, multiplication, division, 
reciprocal, square-root 

 FP ↔ integer conversion 
 Operations usually takes several cycles 

 Can be pipelined 
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FP Instructions in MIPS 
 FP hardware is coprocessor 1 

 Adjunct processor that extends the ISA 
 Separate FP registers 

 32 single-precision: $f0, $f1, … $f31 
 Paired for double-precision: $f0/$f1, $f2/$f3, … 

 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s 
 FP instructions operate only on FP registers 

 Programs generally don’t do integer ops on FP data, 
or vice versa 

 More registers with minimal code-size impact 
 FP load and store instructions 

 lwc1, ldc1, swc1, sdc1 
 e.g., ldc1 $f8, 32($sp) 
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FP Instructions in MIPS 
 Single-precision arithmetic 

 add.s, sub.s, mul.s, div.s 
 e.g., add.s $f0, $f1, $f6 

 Double-precision arithmetic 
 add.d, sub.d, mul.d, div.d 

 e.g., mul.d $f4, $f4, $f6 
 Single- and double-precision comparison 

 c.xx.s, c.xx.d (xx is eq, lt, le, …) 
 Sets or clears FP condition-code bit 

 e.g. c.lt.s $f3, $f4 
 Branch on FP condition code true or false 

 bc1t, bc1f 
 e.g., bc1t TargetLabel 



Chapter 3 — Arithmetic for Computers — 37 

FP Example: °F to °C 
 C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 

 fahr in $f12, result in $f0, literals in global memory 
space 

 Compiled MIPS code: 
 f2c: lwc1  $f16, const5($gp) 
     lwc2  $f18, const9($gp) 
     div.s $f16, $f16, $f18 
     lwc1  $f18, const32($gp) 
     sub.s $f18, $f12, $f18 
     mul.s $f0,  $f16, $f18 
     jr    $ra 
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FP Example: Array Multiplication 
 X = X + Y × Z 

 All 32 × 32 matrices, 64-bit double-precision elements 
 C code: 
 void mm (double x[][], 
         double y[][], double z[][]) { 
  int i, j, k; 
  for (i = 0; i! = 32; i = i + 1) 
    for (j = 0; j! = 32; j = j + 1) 
      for (k = 0; k! = 32; k = k + 1) 
        x[i][j] = x[i][j] 
                  + y[i][k] * z[k][j]; 
} 

 Addresses of x, y, z in $a0, $a1, $a2, and 
i, j, k in $s0, $s1, $s2 
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FP Example: Array Multiplication 
  MIPS code: 
    li   $t1, 32       # $t1 = 32 (row size/loop end) 

    li   $s0, 0        # i = 0; initialize 1st for loop 

L1: li   $s1, 0        # j = 0; restart 2nd for loop 

L2: li   $s2, 0        # k = 0; restart 3rd for loop 

    sll  $t2, $s0, 5   # $t2 = i * 32 (size of row of x) 

    addu $t2, $t2, $s1 # $t2 = i * size(row) + j 

    sll  $t2, $t2, 3   # $t2 = byte offset of [i][j] 

    addu $t2, $a0, $t2 # $t2 = byte address of x[i][j] 

    l.d  $f4, 0($t2)   # $f4 = 8 bytes of x[i][j] 

L3: sll  $t0, $s2, 5   # $t0 = k * 32 (size of row of z) 

    addu $t0, $t0, $s1 # $t0 = k * size(row) + j 

    sll  $t0, $t0, 3   # $t0 = byte offset of [k][j] 

    addu $t0, $a2, $t0 # $t0 = byte address of z[k][j] 

    l.d  $f16, 0($t0)  # $f16 = 8 bytes of z[k][j] 

    … 
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FP Example: Array Multiplication 
    … 

    sll  $t0, $s0, 5       # $t0 = i*32 (size of row of y) 

    addu  $t0, $t0, $s2    # $t0 = i*size(row) + k 

    sll   $t0, $t0, 3      # $t0 = byte offset of [i][k] 

    addu  $t0, $a1, $t0    # $t0 = byte address of y[i][k] 

    l.d   $f18, 0($t0)     # $f18 = 8 bytes of y[i][k] 

    mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j] 

    add.d $f4, $f4, $f16   # f4=x[i][j] + y[i][k]*z[k][j] 

    addiu $s2, $s2, 1      # $k k + 1 

    bne   $s2, $t1, L3     # if (k != 32) go to L3 

    s.d   $f4, 0($t2)      # x[i][j] = $f4 

    addiu $s1, $s1, 1      # $j = j + 1 

    bne   $s1, $t1, L2     # if (j != 32) go to L2 

    addiu $s0, $s0, 1      # $i = i + 1 

    bne   $s0, $t1, L1     # if (i != 32) go to L1 
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Accurate Arithmetic 
 IEEE Std 754 specifies additional rounding 

control 
 Extra bits of precision (guard, round, sticky) 
 Choice of rounding modes 
 Allows programmer to fine-tune numerical behavior of 

a computation 
 Not all FP units implement all options 

 Most programming languages and FP libraries just 
use defaults 

 Trade-off between hardware complexity, 
performance, and market requirements 
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Interpretation of Data 

 Bits have no inherent meaning 
 Interpretation depends on the instructions 

applied 
 Computer representations of numbers 

 Finite range and precision 
 Need to account for this in programs 

The BIG Picture 
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Associativity 
 Parallel programs may interleave 

operations in unexpected orders 
 Assumptions of associativity may fail 

§3.6 P
arallelism

 and C
om

puter A
rithm

etic: A
ssociativity 

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

 Need to validate parallel programs under 
varying degrees of parallelism 



Chapter 3 — Arithmetic for Computers — 44 

x86 FP Architecture 
 Originally based on 8087 FP coprocessor 

 8 × 80-bit extended-precision registers 
 Used as a push-down stack 
 Registers indexed from TOS: ST(0), ST(1), … 

 FP values are 32-bit or 64 in memory 
 Converted on load/store of memory operand 
 Integer operands can also be converted 

on load/store 
 Very difficult to generate and optimize code 

 Result: poor FP performance 

§3.7 R
eal S

tuff: Floating P
oint in the x86 
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x86 FP Instructions 

 Optional variations 
 I: integer operand 
 P: pop operand from stack 
 R: reverse operand order 
 But not all combinations allowed 

Data transfer Arithmetic Compare Transcendental 
FILD  mem/ST(i) 

FISTP mem/ST(i) 

FLDPI 

FLD1 

FLDZ 

FIADDP  mem/ST(i) 

FISUBRP mem/ST(i) 
FIMULP  mem/ST(i) 
FIDIVRP mem/ST(i) 

FSQRT 

FABS 

FRNDINT 

FICOMP 

FIUCOMP 

FSTSW AX/mem 

FPATAN 

F2XMI 

FCOS 

FPTAN 

FPREM 

FPSIN 

FYL2X 
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Streaming SIMD Extension 2 (SSE2) 

 Adds 4 × 128-bit registers 
 Extended to 8 registers in AMD64/EM64T 

 Can be used for multiple FP operands 
 2 × 64-bit double precision 
 4 × 32-bit single precision 
 Instructions operate on them simultaneously 

 Single-Instruction Multiple-Data 
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Right Shift and Division 
 Left shift by i places multiplies an integer 

by 2i 
 Right shift divides by 2i? 

 Only for unsigned integers 
 For signed integers 

 Arithmetic right shift: replicate the sign bit 
 e.g., –5 / 4 

 111110112 >> 2 = 111111102 = –2 
 Rounds toward –∞ 

 c.f. 111110112 >>> 2 = 001111102 = +62 

§3.8 Fallacies and P
itfalls 
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Who Cares About FP Accuracy? 
 Important for scientific code 

 But for everyday consumer use? 
 “My bank balance is out by 0.0002¢!”  

 The Intel Pentium FDIV bug 
 The market expects accuracy 
 See Colwell, The Pentium Chronicles 
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Concluding Remarks 
 ISAs support arithmetic 

 Signed and unsigned integers 
 Floating-point approximation to reals 

 Bounded range and precision 
 Operations can overflow and underflow 

 MIPS ISA 
 Core instructions: 54 most frequently used 

 100% of SPECINT, 97% of SPECFP 
 Other instructions: less frequent 

§3.9 C
oncluding R

em
arks 
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Exercises 
 Answer the following exercises, and send your 

answers as a PDF attachment to the email address 
listed below 

xamiri@fi.muni.cz   
 Leave body of the email blank 
 Deadline is April 8th 
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Exercise 1 
 Calculate the product of the octal unsigned 6-bit integers A = 50 and 

B = 23 using the hardware described below (adjust the register 
sizes). You should show the contents of each register on each step.  
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Exercise 2 
 Calculate the product of the hexadecimal unsigned 8-bit integers A = 

66 and B = 04 using the hardware described below (adjust the 
register sizes). You should show the contents of each register on 
each step. 
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Exercise 3 
 Calculate A = 50 divided by B = 23 using the hardware described 

below. You should show the contents of each register on each step. 
Assume A and B are octal unsigned 6-bit integers (adjust the register 
sizes in the hardware). 
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Exercise 4 
 Calculate A = 50 divided by B = 23 using the hardware described 

below. You should show the contents of each register on each step. 
Assume A and B are octal unsigned 6-bit integers (adjust the register 
sizes in the hardware). 
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Exercise 5 
 What decimal number does the following bit pattern represent if it is 

a floating-point number? Use the IEEE 754 standard. 
 

 0xAFBF0000 
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Exercise 6 
 Write down the binary representation of the following decimal 

number: 
 

- - 938.8125 
 
 a) assuming the IEEE 754 single precision format. 
 b) assuming the IEEE 754 double precision format. 
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Exercise 7 
 NVIDIA has a “half” format, which is similar to IEEE 754 except that 

it is only 16 bits wide. The leftmost bit is still the sign bit, the 
exponent is 5 bits wide (exponent bias = 011112 = 15), and the 
mantissa is 10 bits long. A hidden 1 is assumed. 

 a) Calculate the sum of the following decimal numbers A and B by 
hand, assuming A and B are stored in the 16-bit NVIDIA format. 
Assume one guard bit, one round bit and one sticky bit, and round to 
the nearest even. Show all the steps. 

  A = 2.3109375 × 101  B = 6.391601562 × 10-1 

 b) Calculate the product of the following decimal numbers A and B 
by hand, assuming A and B are stored in the 16-bit NVIDIA format. 
Assume one guard bit, one round bit and one sticky bit, and round to 
the nearest even. Show all the steps; however, do the multiplication 
in human-readable format instead of using any techniques. Write 
your answer as a 16-bit pattern. How accurate is your result? 

  A = 6.18 × 102   B = 5.796875 × 101 

 


