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Arithmetic for Computers 
 Operations on integers 

 Addition and subtraction 
 Multiplication and division 
 Dealing with overflow 

 Floating-point real numbers 
 Representation and operations  

§3.1 Introduction 
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Integer Addition 
 Example: 7 + 6 

§3.2 A
ddition and S

ubtraction 

 Overflow if result out of range 
 Adding +ve and –ve operands, no overflow 
 Adding two +ve operands 

 Overflow if result sign is 1 

 Adding two –ve operands 
 Overflow if result sign is 0 
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Integer Subtraction 
 Add negation of second operand 
 Example: 7 – 6 = 7 + (–6) 

 +7: 0000 0000 … 0000 0111 
–6: 1111 1111 … 1111 1010 
+1: 0000 0000 … 0000 0001 

 Overflow if result out of range 
 Subtracting two +ve or two –ve operands, no overflow 
 Subtracting +ve from –ve operand 

 Overflow if result sign is 0 

 Subtracting –ve from +ve operand 
 Overflow if result sign is 1 



Chapter 3 — Arithmetic for Computers — 5 

Dealing with Overflow 
 Some languages (e.g., C) ignore overflow 

 Use MIPS addu, addui, subu instructions 
 Other languages (e.g., Ada, Fortran) 

require raising an exception 
 Use MIPS add, addi, sub instructions 
 On overflow, invoke exception handler 

 Save PC in exception program counter (EPC) 
register 

 Jump to predefined handler address 
 mfc0 (move from coprocessor reg) instruction can 

retrieve EPC value, to return after corrective action 
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Arithmetic for Multimedia 
 Graphics and media processing operates 

on vectors of 8-bit and 16-bit data 
 Use 64-bit adder, with partitioned carry chain 

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors 
 SIMD (single-instruction, multiple-data) 

 Saturating operations 
 On overflow, result is largest representable 

value 
 c.f. 2s-complement modulo arithmetic 

 E.g., clipping in audio, saturation in video 
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Multiplication 
 Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 
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Multiplication Hardware 

Initially 0 
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Optimized Multiplier 
 Perform steps in parallel: add/shift 

 One cycle per partial-product addition 
 That’s ok, if frequency of multiplications is low 
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Faster Multiplier 
 Uses multiple adders 

 Cost/performance tradeoff 

 Can be pipelined 
 Several multiplication performed in parallel 
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MIPS Multiplication 
 Two 32-bit registers for product 

 HI: most-significant 32 bits 
 LO: least-significant 32-bits 

 Instructions 
 mult rs, rt  /  multu rs, rt 

 64-bit product in HI/LO 
 mfhi rd  /  mflo rd 

 Move from HI/LO to rd 
 Can test HI value to see if product overflows 32 bits 

 mul rd, rs, rt 

 Least-significant 32 bits of product –> rd 
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Division 
 Check for 0 divisor 
 Long division approach 

 If divisor ≤ dividend bits 
 1 bit in quotient, subtract 

 Otherwise 
 0 bit in quotient, bring down next 

dividend bit 

 Restoring division 
 Do the subtract, and if remainder 

goes < 0, add divisor back 
 Signed division 

 Divide using absolute values 
 Adjust sign of quotient and remainder 

as required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 
quotient and remainder 

quotient 

dividend 

remainder 

divisor 

§3.4 D
ivision 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 
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Division Example 
Iteration Step Quotient Divisor Remainder 

0 Initial values 0000 0010 0000 0000 0111 

1 

1: Rem = Rem - Div 0000 0010 0000 1110 0111 

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111 

3: Shift Div right 0000 0001 0000 0000 0111 

2 

1: Rem = Rem - Div 0000 0001 0000 1111 0111 

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111 

3: Shift Div right 0000 0000 1000 0000 0111 

3 

1: Rem = Rem - Div 0000 0000 1000 1111 1111 

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111 

3: Shift Div right 0000 0000 0100 0000 0111 

4 

1: Rem = Rem - Div 0000 0000 0100 0000 0011 

2a: Rem ≥ 0 → sll Q, Q0 = 1 0001 0000 0100 0000 0011 

3: Shift Div right 0001 0000 0010 0000 0011 

5 

1: Rem = Rem - Div 0001 0000 0010 0000 0001 

2a: Rem ≥ 0 → sll Q, Q0 = 1 0011 0000 0010 0000 0001 

3: Shift Div right 0011 0000 0001 0000 0001 

        11 
0010 0111 
    - 10 
       11 
      -10  
        1 

n + 1 = 4 + 1 
steps 
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Optimized Divider 

 One cycle per partial-remainder subtraction 
 Looks a lot like a multiplier! 

 Same hardware can be used for both 
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Faster Division 
 Can’t use parallel hardware as in multiplier 

 Subtraction is conditional on sign of remainder 
 Faster dividers (e.g. SRT devision) 

generate multiple quotient bits per step 
 Still require multiple steps 
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MIPS Division 
 Use HI/LO registers for result 

 HI: 32-bit remainder 
 LO: 32-bit quotient 

 Instructions 
 div rs, rt  /  divu rs, rt 

 No overflow or divide-by-0 checking 
 Software must perform checks if required 

 Use mfhi, mflo to access result 
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Floating Point 
 Representation for non-integral numbers 

 Including very small and very large numbers 
 Like scientific notation 

 –2.34 × 1056 
 +0.002 × 10–4 
 +987.02 × 109 

 In binary 
 ±1.xxxxxxx2 × 2yyyy 

 Types float and double in C 

normalized 

not normalized 

§3.5 Floating P
oint 
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Floating Point Standard 
 Defined by IEEE Std 754-1985 
 Developed in response to divergence of 

representations 
 Portability issues for scientific code 

 Now almost universally adopted 
 Two representations 

 Single precision (32-bit) 
 Double precision (64-bit)  



Chapter 3 — Arithmetic for Computers — 20 

IEEE Floating-Point Format 

 S: sign bit (0 ⇒ non-negative, 1 ⇒ negative) 
 Normalize significand: 1.0 ≤ |significand| < 2.0 

 Always has a leading pre-binary-point 1 bit, so no need to 
represent it explicitly (hidden bit) 

 Significand is Fraction with the “1.” restored 
 Exponent: excess representation: actual exponent + Bias 

 Ensures exponent is unsigned 
 Single: Bias = 127; Double: Bias = 1023 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x −×+×−=
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Single-Precision Range 
 Exponents 00000000 and 11111111 reserved 
 Smallest value 

 Exponent: 00000001 
⇒ actual exponent = 1 – 127 = –126 

 Fraction: 000…00 ⇒ significand = 1.0 
 ±1.0 × 2–126 ≈ ±1.2 × 10–38 

 Largest value 
 exponent: 11111110 
⇒ actual exponent = 254 – 127 = +127 

 Fraction: 111…11 ⇒ significand ≈ 2.0 
 ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 
 Exponents 0000…00 and 1111…11 reserved 
 Smallest value 

 Exponent: 00000000001 
⇒ actual exponent = 1 – 1023 = –1022 

 Fraction: 000…00 ⇒ significand = 1.0 
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

 Largest value 
 Exponent: 11111111110 
⇒ actual exponent = 2046 – 1023 = +1023 

 Fraction: 111…11 ⇒ significand ≈ 2.0 
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 
 Relative precision 

 all fraction bits are significant 
 Single: approx 2–23 

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 
digits of precision 

 Double: approx 2–52 

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 
digits of precision 
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Floating-Point Example 
 Represent –0.75 

 –0.75 = (–1)1 × 1.12 × 2–1 

 S = 1 
 Fraction = 1000…002 
 Exponent = –1 + Bias 

 Single: –1 + 127 = 126 = 011111102 
 Double: –1 + 1023 = 1022 = 011111111102 

 Single: 1011111101000…00 
 Double: 1011111111101000…00 
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Floating-Point Example 
 What number is represented by the single-

precision float 
 11000000101000…00 

 S = 1 
 Fraction = 01000…002 
 Exponent = 100000012 = 129 

 x = (–1)1 × (1 + .012) × 2(129 – 127) 
 = (–1) × 1.25 × 22 
 = –5.0 
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Denormal Numbers 
 Exponent = 000...0 ⇒ hidden bit is 0 

 Smaller than normal numbers 
 allow for gradual underflow, with 

diminishing precision 

 Denormal with fraction = 000...0 

Two representations 
of 0.0! 

BiasS 2Fraction)(01)(x −×+×−=

0.0±=×+×−= −BiasS 20)(01)(x
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Infinities and NaNs 
 Exponent = 111...1, Fraction = 000...0 

 ±Infinity 
 Can be used in subsequent calculations, 

avoiding need for overflow check 
 Exponent = 111...1, Fraction ≠ 000...0 

 Not-a-Number (NaN) 
 Indicates illegal or undefined result 

 e.g., 0.0 / 0.0 
 Can be used in subsequent calculations 
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Floating-Point Addition 
 Consider a 4-digit decimal example 

 9.999 × 101 + 1.610 × 10–1 

 1. Align decimal points 
 Shift number with smaller exponent 
 9.999 × 101 + 0.016 × 101 

 2. Add significands 
 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

 3. Normalize result & check for over/underflow 
 1.0015 × 102 

 4. Round and renormalize if necessary 
 1.002 × 102 
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Floating-Point Addition 
 Now consider a 4-digit binary example 

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 
 1. Align binary points 

 Shift number with smaller exponent 
 1.0002 × 2–1 + –0.1112 × 2–1 

 2. Add significands 
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

 3. Normalize result & check for over/underflow 
 1.0002 × 2–4, with no over/underflow 

 4. Round and renormalize if necessary 
 1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 
 Much more complex than integer adder 
 Doing it in one clock cycle would take too 

long 
 Much longer than integer operations 
 Slower clock would penalize all instructions 

 FP adder usually takes several cycles 
 Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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Floating-Point Multiplication 
 Consider a 4-digit decimal example 

 1.110 × 1010 × 9.200 × 10–5 

 1. Add exponents 
 For biased exponents, subtract bias from sum 
 New exponent = 10 + –5 = 5 

 2. Multiply significands 
 1.110 × 9.200 = 10.212  ⇒  10.212 × 105 

 3. Normalize result & check for over/underflow 
 1.0212 × 106 

 4. Round and renormalize if necessary 
 1.021 × 106 

 5. Determine sign of result from signs of operands 
 +1.021 × 106 
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Floating-Point Multiplication 
 Now consider a 4-digit binary example 

 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375) 
 1. Add exponents 

 Unbiased: –1 + –2 = –3 
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127 

 2. Multiply significands 
 1.0002 × 1.1102 = 1.1102  ⇒  1.1102 × 2–3 

 3. Normalize result & check for over/underflow 
 1.1102 × 2–3 (no change) with no over/underflow 

 4. Round and renormalize if necessary 
 1.1102 × 2–3 (no change) 

 5. Determine sign: +ve × –ve ⇒ –ve 
 –1.1102 × 2–3  = –0.21875 
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FP Arithmetic Hardware 
 FP multiplier is of similar complexity to FP 

adder 
 But uses a multiplier for significands instead of 

an adder 
 FP arithmetic hardware usually does 

 Addition, subtraction, multiplication, division, 
reciprocal, square-root 

 FP ↔ integer conversion 
 Operations usually takes several cycles 

 Can be pipelined 
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FP Instructions in MIPS 
 FP hardware is coprocessor 1 

 Adjunct processor that extends the ISA 
 Separate FP registers 

 32 single-precision: $f0, $f1, … $f31 
 Paired for double-precision: $f0/$f1, $f2/$f3, … 

 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s 
 FP instructions operate only on FP registers 

 Programs generally don’t do integer ops on FP data, 
or vice versa 

 More registers with minimal code-size impact 
 FP load and store instructions 

 lwc1, ldc1, swc1, sdc1 
 e.g., ldc1 $f8, 32($sp) 
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FP Instructions in MIPS 
 Single-precision arithmetic 

 add.s, sub.s, mul.s, div.s 
 e.g., add.s $f0, $f1, $f6 

 Double-precision arithmetic 
 add.d, sub.d, mul.d, div.d 

 e.g., mul.d $f4, $f4, $f6 
 Single- and double-precision comparison 

 c.xx.s, c.xx.d (xx is eq, lt, le, …) 
 Sets or clears FP condition-code bit 

 e.g. c.lt.s $f3, $f4 
 Branch on FP condition code true or false 

 bc1t, bc1f 
 e.g., bc1t TargetLabel 
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FP Example: °F to °C 
 C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 

 fahr in $f12, result in $f0, literals in global memory 
space 

 Compiled MIPS code: 
 f2c: lwc1  $f16, const5($gp) 
     lwc2  $f18, const9($gp) 
     div.s $f16, $f16, $f18 
     lwc1  $f18, const32($gp) 
     sub.s $f18, $f12, $f18 
     mul.s $f0,  $f16, $f18 
     jr    $ra 
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FP Example: Array Multiplication 
 X = X + Y × Z 

 All 32 × 32 matrices, 64-bit double-precision elements 
 C code: 
 void mm (double x[][], 
         double y[][], double z[][]) { 
  int i, j, k; 
  for (i = 0; i! = 32; i = i + 1) 
    for (j = 0; j! = 32; j = j + 1) 
      for (k = 0; k! = 32; k = k + 1) 
        x[i][j] = x[i][j] 
                  + y[i][k] * z[k][j]; 
} 

 Addresses of x, y, z in $a0, $a1, $a2, and 
i, j, k in $s0, $s1, $s2 
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FP Example: Array Multiplication 
  MIPS code: 
    li   $t1, 32       # $t1 = 32 (row size/loop end) 

    li   $s0, 0        # i = 0; initialize 1st for loop 

L1: li   $s1, 0        # j = 0; restart 2nd for loop 

L2: li   $s2, 0        # k = 0; restart 3rd for loop 

    sll  $t2, $s0, 5   # $t2 = i * 32 (size of row of x) 

    addu $t2, $t2, $s1 # $t2 = i * size(row) + j 

    sll  $t2, $t2, 3   # $t2 = byte offset of [i][j] 

    addu $t2, $a0, $t2 # $t2 = byte address of x[i][j] 

    l.d  $f4, 0($t2)   # $f4 = 8 bytes of x[i][j] 

L3: sll  $t0, $s2, 5   # $t0 = k * 32 (size of row of z) 

    addu $t0, $t0, $s1 # $t0 = k * size(row) + j 

    sll  $t0, $t0, 3   # $t0 = byte offset of [k][j] 

    addu $t0, $a2, $t0 # $t0 = byte address of z[k][j] 

    l.d  $f16, 0($t0)  # $f16 = 8 bytes of z[k][j] 

    … 
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FP Example: Array Multiplication 
    … 

    sll  $t0, $s0, 5       # $t0 = i*32 (size of row of y) 

    addu  $t0, $t0, $s2    # $t0 = i*size(row) + k 

    sll   $t0, $t0, 3      # $t0 = byte offset of [i][k] 

    addu  $t0, $a1, $t0    # $t0 = byte address of y[i][k] 

    l.d   $f18, 0($t0)     # $f18 = 8 bytes of y[i][k] 

    mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j] 

    add.d $f4, $f4, $f16   # f4=x[i][j] + y[i][k]*z[k][j] 

    addiu $s2, $s2, 1      # $k k + 1 

    bne   $s2, $t1, L3     # if (k != 32) go to L3 

    s.d   $f4, 0($t2)      # x[i][j] = $f4 

    addiu $s1, $s1, 1      # $j = j + 1 

    bne   $s1, $t1, L2     # if (j != 32) go to L2 

    addiu $s0, $s0, 1      # $i = i + 1 

    bne   $s0, $t1, L1     # if (i != 32) go to L1 
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Accurate Arithmetic 
 IEEE Std 754 specifies additional rounding 

control 
 Extra bits of precision (guard, round, sticky) 
 Choice of rounding modes 
 Allows programmer to fine-tune numerical behavior of 

a computation 
 Not all FP units implement all options 

 Most programming languages and FP libraries just 
use defaults 

 Trade-off between hardware complexity, 
performance, and market requirements 
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Interpretation of Data 

 Bits have no inherent meaning 
 Interpretation depends on the instructions 

applied 
 Computer representations of numbers 

 Finite range and precision 
 Need to account for this in programs 

The BIG Picture 
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Associativity 
 Parallel programs may interleave 

operations in unexpected orders 
 Assumptions of associativity may fail 

§3.6 P
arallelism

 and C
om

puter A
rithm

etic: A
ssociativity 

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

 Need to validate parallel programs under 
varying degrees of parallelism 
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x86 FP Architecture 
 Originally based on 8087 FP coprocessor 

 8 × 80-bit extended-precision registers 
 Used as a push-down stack 
 Registers indexed from TOS: ST(0), ST(1), … 

 FP values are 32-bit or 64 in memory 
 Converted on load/store of memory operand 
 Integer operands can also be converted 

on load/store 
 Very difficult to generate and optimize code 

 Result: poor FP performance 

§3.7 R
eal S

tuff: Floating P
oint in the x86 
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x86 FP Instructions 

 Optional variations 
 I: integer operand 
 P: pop operand from stack 
 R: reverse operand order 
 But not all combinations allowed 

Data transfer Arithmetic Compare Transcendental 
FILD  mem/ST(i) 

FISTP mem/ST(i) 

FLDPI 

FLD1 

FLDZ 

FIADDP  mem/ST(i) 

FISUBRP mem/ST(i) 
FIMULP  mem/ST(i) 
FIDIVRP mem/ST(i) 

FSQRT 

FABS 

FRNDINT 

FICOMP 

FIUCOMP 

FSTSW AX/mem 

FPATAN 

F2XMI 

FCOS 

FPTAN 

FPREM 

FPSIN 

FYL2X 
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Streaming SIMD Extension 2 (SSE2) 

 Adds 4 × 128-bit registers 
 Extended to 8 registers in AMD64/EM64T 

 Can be used for multiple FP operands 
 2 × 64-bit double precision 
 4 × 32-bit single precision 
 Instructions operate on them simultaneously 

 Single-Instruction Multiple-Data 
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Right Shift and Division 
 Left shift by i places multiplies an integer 

by 2i 
 Right shift divides by 2i? 

 Only for unsigned integers 
 For signed integers 

 Arithmetic right shift: replicate the sign bit 
 e.g., –5 / 4 

 111110112 >> 2 = 111111102 = –2 
 Rounds toward –∞ 

 c.f. 111110112 >>> 2 = 001111102 = +62 

§3.8 Fallacies and P
itfalls 
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Who Cares About FP Accuracy? 
 Important for scientific code 

 But for everyday consumer use? 
 “My bank balance is out by 0.0002¢!”  

 The Intel Pentium FDIV bug 
 The market expects accuracy 
 See Colwell, The Pentium Chronicles 
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Concluding Remarks 
 ISAs support arithmetic 

 Signed and unsigned integers 
 Floating-point approximation to reals 

 Bounded range and precision 
 Operations can overflow and underflow 

 MIPS ISA 
 Core instructions: 54 most frequently used 

 100% of SPECINT, 97% of SPECFP 
 Other instructions: less frequent 

§3.9 C
oncluding R

em
arks 
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Exercises 
 Answer the following exercises, and send your 

answers as a PDF attachment to the email address 
listed below 

xamiri@fi.muni.cz   
 Leave body of the email blank 
 Deadline is April 8th 
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Exercise 1 
 Calculate the product of the octal unsigned 6-bit integers A = 50 and 

B = 23 using the hardware described below (adjust the register 
sizes). You should show the contents of each register on each step.  
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Exercise 2 
 Calculate the product of the hexadecimal unsigned 8-bit integers A = 

66 and B = 04 using the hardware described below (adjust the 
register sizes). You should show the contents of each register on 
each step. 
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Exercise 3 
 Calculate A = 50 divided by B = 23 using the hardware described 

below. You should show the contents of each register on each step. 
Assume A and B are octal unsigned 6-bit integers (adjust the register 
sizes in the hardware). 
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Exercise 4 
 Calculate A = 50 divided by B = 23 using the hardware described 

below. You should show the contents of each register on each step. 
Assume A and B are octal unsigned 6-bit integers (adjust the register 
sizes in the hardware). 
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Exercise 5 
 What decimal number does the following bit pattern represent if it is 

a floating-point number? Use the IEEE 754 standard. 
 

 0xAFBF0000 
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Exercise 6 
 Write down the binary representation of the following decimal 

number: 
 

- - 938.8125 
 
 a) assuming the IEEE 754 single precision format. 
 b) assuming the IEEE 754 double precision format. 
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Exercise 7 
 NVIDIA has a “half” format, which is similar to IEEE 754 except that 

it is only 16 bits wide. The leftmost bit is still the sign bit, the 
exponent is 5 bits wide (exponent bias = 011112 = 15), and the 
mantissa is 10 bits long. A hidden 1 is assumed. 

 a) Calculate the sum of the following decimal numbers A and B by 
hand, assuming A and B are stored in the 16-bit NVIDIA format. 
Assume one guard bit, one round bit and one sticky bit, and round to 
the nearest even. Show all the steps. 

  A = 2.3109375 × 101  B = 6.391601562 × 10-1 

 b) Calculate the product of the following decimal numbers A and B 
by hand, assuming A and B are stored in the 16-bit NVIDIA format. 
Assume one guard bit, one round bit and one sticky bit, and round to 
the nearest even. Show all the steps; however, do the multiplication 
in human-readable format instead of using any techniques. Write 
your answer as a 16-bit pattern. How accurate is your result? 

  A = 6.18 × 102   B = 5.796875 × 101 

 


