
Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers
 Operations on integers

 Addition and subtraction
 Multiplication and division
 Dealing with overflow

 Floating-point real numbers
 Representation and operations

§3.1 Introduction

Chapter 3 — Arithmetic for Computers — 3

Integer Addition
 Example: 7 + 6

§3.2 A
ddition and S

ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow
 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction
 Add negation of second operand
 Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow
 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 5

Dealing with Overflow
 Some languages (e.g., C) ignore overflow

 Use MIPS addu, addui, subu instructions
 Other languages (e.g., Ada, Fortran)

require raising an exception
 Use MIPS add, addi, sub instructions
 On overflow, invoke exception handler

 Save PC in exception program counter (EPC)
register

 Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can

retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 6

Arithmetic for Multimedia
 Graphics and media processing operates

on vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable

value
 c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 7

Multiplication
 Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 9

Optimized Multiplier
 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 10

Faster Multiplier
 Uses multiple adders

 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 11

MIPS Multiplication
 Two 32-bit registers for product

 HI: most-significant 32 bits
 LO: least-significant 32-bits

 Instructions
 mult rs, rt / multu rs, rt

 64-bit product in HI/LO
 mfhi rd / mflo rd

 Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 12

Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next

dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back
 Signed division

 Divide using absolute values
 Adjust sign of quotient and remainder

as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Chapter 3 — Arithmetic for Computers — 13

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 14

Division Example
Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem - Div 0000 0010 0000 1110 0111

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem - Div 0000 0001 0000 1111 0111

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111

3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem - Div 0000 0000 1000 1111 1111

2b: Rem < 0 → +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111

3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem - Div 0000 0000 0100 0000 0011

2a: Rem ≥ 0 → sll Q, Q0 = 1 0001 0000 0100 0000 0011

3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem - Div 0001 0000 0010 0000 0001

2a: Rem ≥ 0 → sll Q, Q0 = 1 0011 0000 0010 0000 0001

3: Shift Div right 0011 0000 0001 0000 0001

 11
0010 0111
 - 10
 11
 -10
 1

n + 1 = 4 + 1
steps

Chapter 3 — Arithmetic for Computers — 15

Optimized Divider

 One cycle per partial-remainder subtraction
 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 16

Faster Division
 Can’t use parallel hardware as in multiplier

 Subtraction is conditional on sign of remainder
 Faster dividers (e.g. SRT devision)

generate multiple quotient bits per step
 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 17

MIPS Division
 Use HI/LO registers for result

 HI: 32-bit remainder
 LO: 32-bit quotient

 Instructions
 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 18

Floating Point
 Representation for non-integral numbers

 Including very small and very large numbers
 Like scientific notation

 –2.34 × 1056
 +0.002 × 10–4
 +987.02 × 109

 In binary
 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§3.5 Floating P
oint

Chapter 3 — Arithmetic for Computers — 19

Floating Point Standard
 Defined by IEEE Std 754-1985
 Developed in response to divergence of

representations
 Portability issues for scientific code

 Now almost universally adopted
 Two representations

 Single precision (32-bit)
 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 20

IEEE Floating-Point Format

 S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored
 Exponent: excess representation: actual exponent + Bias

 Ensures exponent is unsigned
 Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −×+×−=

Chapter 3 — Arithmetic for Computers — 21

Single-Precision Range
 Exponents 00000000 and 11111111 reserved
 Smallest value

 Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126

 Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value
 exponent: 11111110
⇒ actual exponent = 254 – 127 = +127

 Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 22

Double-Precision Range
 Exponents 0000…00 and 1111…11 reserved
 Smallest value

 Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value
 Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Precision
 Relative precision

 all fraction bits are significant
 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Example
 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1
 Fraction = 1000…002
 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102
 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00
 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 25

Floating-Point Example
 What number is represented by the single-

precision float
 11000000101000…00

 S = 1
 Fraction = 01000…002
 Exponent = 100000012 = 129

 x = (–1)1 × (1 + .012) × 2(129 – 127)
 = (–1) × 1.25 × 22
 = –5.0

Chapter 3 — Arithmetic for Computers — 26

Denormal Numbers
 Exponent = 000...0 ⇒ hidden bit is 0

 Smaller than normal numbers
 allow for gradual underflow, with

diminishing precision

 Denormal with fraction = 000...0

Two representations
of 0.0!

BiasS 2Fraction)(01)(x −×+×−=

0.0±=×+×−= −BiasS 20)(01)(x

Chapter 3 — Arithmetic for Computers — 27

Infinities and NaNs
 Exponent = 111...1, Fraction = 000...0

 ±Infinity
 Can be used in subsequent calculations,

avoiding need for overflow check
 Exponent = 111...1, Fraction ≠ 000...0

 Not-a-Number (NaN)
 Indicates illegal or undefined result

 e.g., 0.0 / 0.0
 Can be used in subsequent calculations

Chapter 3 — Arithmetic for Computers — 28

Floating-Point Addition
 Consider a 4-digit decimal example

 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent
 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 29

Floating-Point Addition
 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
 1. Align binary points

 Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 30

FP Adder Hardware
 Much more complex than integer adder
 Doing it in one clock cycle would take too

long
 Much longer than integer operations
 Slower clock would penalize all instructions

 FP adder usually takes several cycles
 Can be pipelined

Chapter 3 — Arithmetic for Computers — 31

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 32

Floating-Point Multiplication
 Consider a 4-digit decimal example

 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
 For biased exponents, subtract bias from sum
 New exponent = 10 + –5 = 5

 2. Multiply significands
 1.110 × 9.200 = 10.212 ⇒ 10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

 5. Determine sign of result from signs of operands
 +1.021 × 106

Chapter 3 — Arithmetic for Computers — 33

Floating-Point Multiplication
 Now consider a 4-digit binary example

 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)
 1. Add exponents

 Unbiased: –1 + –2 = –3
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 ⇒ 1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve ⇒ –ve
 –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 34

FP Arithmetic Hardware
 FP multiplier is of similar complexity to FP

adder
 But uses a multiplier for significands instead of

an adder
 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division,
reciprocal, square-root

 FP ↔ integer conversion
 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 35

FP Instructions in MIPS
 FP hardware is coprocessor 1

 Adjunct processor that extends the ISA
 Separate FP registers

 32 single-precision: $f0, $f1, … $f31
 Paired for double-precision: $f0/$f1, $f2/$f3, …

 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s
 FP instructions operate only on FP registers

 Programs generally don’t do integer ops on FP data,
or vice versa

 More registers with minimal code-size impact
 FP load and store instructions

 lwc1, ldc1, swc1, sdc1
 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 36

FP Instructions in MIPS
 Single-precision arithmetic

 add.s, sub.s, mul.s, div.s
 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6
 Single- and double-precision comparison

 c.xx.s, c.xx.d (xx is eq, lt, le, …)
 Sets or clears FP condition-code bit

 e.g. c.lt.s $f3, $f4
 Branch on FP condition code true or false

 bc1t, bc1f
 e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 37

FP Example: °F to °C
 C code:
 float f2c (float fahr) {
 return ((5.0/9.0)*(fahr - 32.0));
}

 fahr in $f12, result in $f0, literals in global memory
space

 Compiled MIPS code:
 f2c: lwc1 $f16, const5($gp)
 lwc2 $f18, const9($gp)
 div.s $f16, $f16, $f18
 lwc1 $f18, const32($gp)
 sub.s $f18, $f12, $f18
 mul.s $f0, $f16, $f18
 jr $ra

Chapter 3 — Arithmetic for Computers — 38

FP Example: Array Multiplication
 X = X + Y × Z

 All 32 × 32 matrices, 64-bit double-precision elements
 C code:
 void mm (double x[][],
 double y[][], double z[][]) {
 int i, j, k;
 for (i = 0; i! = 32; i = i + 1)
 for (j = 0; j! = 32; j = j + 1)
 for (k = 0; k! = 32; k = k + 1)
 x[i][j] = x[i][j]
 + y[i][k] * z[k][j];
}

 Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 39

FP Example: Array Multiplication
 MIPS code:
 li $t1, 32 # $t1 = 32 (row size/loop end)

 li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

 sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

 addu $t2, $t2, $s1 # $t2 = i * size(row) + j

 sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

 addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

 l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)

 addu $t0, $t0, $s1 # $t0 = k * size(row) + j

 sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

 addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

 l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

 …

Chapter 3 — Arithmetic for Computers — 40

FP Example: Array Multiplication
 …

 sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)

 addu $t0, $t0, $s2 # $t0 = i*size(row) + k

 sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

 addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

 l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

 mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

 add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

 addiu $s2, $s2, 1 # $k k + 1

 bne $s2, $t1, L3 # if (k != 32) go to L3

 s.d $f4, 0($t2) # x[i][j] = $f4

 addiu $s1, $s1, 1 # $j = j + 1

 bne $s1, $t1, L2 # if (j != 32) go to L2

 addiu $s0, $s0, 1 # $i = i + 1

 bne $s0, $t1, L1 # if (i != 32) go to L1

Chapter 3 — Arithmetic for Computers — 41

Accurate Arithmetic
 IEEE Std 754 specifies additional rounding

control
 Extra bits of precision (guard, round, sticky)
 Choice of rounding modes
 Allows programmer to fine-tune numerical behavior of

a computation
 Not all FP units implement all options

 Most programming languages and FP libraries just
use defaults

 Trade-off between hardware complexity,
performance, and market requirements

Chapter 3 — Arithmetic for Computers — 42

Interpretation of Data

 Bits have no inherent meaning
 Interpretation depends on the instructions

applied
 Computer representations of numbers

 Finite range and precision
 Need to account for this in programs

The BIG Picture

Chapter 3 — Arithmetic for Computers — 43

Associativity
 Parallel programs may interleave

operations in unexpected orders
 Assumptions of associativity may fail

§3.6 P
arallelism

 and C
om

puter A
rithm

etic: A
ssociativity

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

 Need to validate parallel programs under
varying degrees of parallelism

Chapter 3 — Arithmetic for Computers — 44

x86 FP Architecture
 Originally based on 8087 FP coprocessor

 8 × 80-bit extended-precision registers
 Used as a push-down stack
 Registers indexed from TOS: ST(0), ST(1), …

 FP values are 32-bit or 64 in memory
 Converted on load/store of memory operand
 Integer operands can also be converted

on load/store
 Very difficult to generate and optimize code

 Result: poor FP performance

§3.7 R
eal S

tuff: Floating P
oint in the x86

Chapter 3 — Arithmetic for Computers — 45

x86 FP Instructions

 Optional variations
 I: integer operand
 P: pop operand from stack
 R: reverse operand order
 But not all combinations allowed

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Arithmetic for Computers — 46

Streaming SIMD Extension 2 (SSE2)

 Adds 4 × 128-bit registers
 Extended to 8 registers in AMD64/EM64T

 Can be used for multiple FP operands
 2 × 64-bit double precision
 4 × 32-bit single precision
 Instructions operate on them simultaneously

 Single-Instruction Multiple-Data

Chapter 3 — Arithmetic for Computers — 47

Right Shift and Division
 Left shift by i places multiplies an integer

by 2i
 Right shift divides by 2i?

 Only for unsigned integers
 For signed integers

 Arithmetic right shift: replicate the sign bit
 e.g., –5 / 4

 111110112 >> 2 = 111111102 = –2
 Rounds toward –∞

 c.f. 111110112 >>> 2 = 001111102 = +62

§3.8 Fallacies and P
itfalls

Chapter 3 — Arithmetic for Computers — 48

Who Cares About FP Accuracy?
 Important for scientific code

 But for everyday consumer use?
 “My bank balance is out by 0.0002¢!” 

 The Intel Pentium FDIV bug
 The market expects accuracy
 See Colwell, The Pentium Chronicles

Chapter 3 — Arithmetic for Computers — 49

Concluding Remarks
 ISAs support arithmetic

 Signed and unsigned integers
 Floating-point approximation to reals

 Bounded range and precision
 Operations can overflow and underflow

 MIPS ISA
 Core instructions: 54 most frequently used

 100% of SPECINT, 97% of SPECFP
 Other instructions: less frequent

§3.9 C
oncluding R

em
arks

Chapter 1 — Computer Abstractions and Technology — 50

Exercises
 Answer the following exercises, and send your

answers as a PDF attachment to the email address
listed below

xamiri@fi.muni.cz
 Leave body of the email blank
 Deadline is April 8th

Chapter 1 — Computer Abstractions and Technology — 51

Exercise 1
 Calculate the product of the octal unsigned 6-bit integers A = 50 and

B = 23 using the hardware described below (adjust the register
sizes). You should show the contents of each register on each step.

Chapter 1 — Computer Abstractions and Technology — 52

Exercise 2
 Calculate the product of the hexadecimal unsigned 8-bit integers A =

66 and B = 04 using the hardware described below (adjust the
register sizes). You should show the contents of each register on
each step.

Chapter 1 — Computer Abstractions and Technology — 53

Exercise 3
 Calculate A = 50 divided by B = 23 using the hardware described

below. You should show the contents of each register on each step.
Assume A and B are octal unsigned 6-bit integers (adjust the register
sizes in the hardware).

Chapter 1 — Computer Abstractions and Technology — 54

Exercise 4
 Calculate A = 50 divided by B = 23 using the hardware described

below. You should show the contents of each register on each step.
Assume A and B are octal unsigned 6-bit integers (adjust the register
sizes in the hardware).

Chapter 1 — Computer Abstractions and Technology — 55

Exercise 5
 What decimal number does the following bit pattern represent if it is

a floating-point number? Use the IEEE 754 standard.

 0xAFBF0000

Chapter 1 — Computer Abstractions and Technology — 56

Exercise 6
 Write down the binary representation of the following decimal

number:

- - 938.8125

 a) assuming the IEEE 754 single precision format.
 b) assuming the IEEE 754 double precision format.

Chapter 1 — Computer Abstractions and Technology — 57

Exercise 7
 NVIDIA has a “half” format, which is similar to IEEE 754 except that

it is only 16 bits wide. The leftmost bit is still the sign bit, the
exponent is 5 bits wide (exponent bias = 011112 = 15), and the
mantissa is 10 bits long. A hidden 1 is assumed.

 a) Calculate the sum of the following decimal numbers A and B by
hand, assuming A and B are stored in the 16-bit NVIDIA format.
Assume one guard bit, one round bit and one sticky bit, and round to
the nearest even. Show all the steps.

 A = 2.3109375 × 101 B = 6.391601562 × 10-1

 b) Calculate the product of the following decimal numbers A and B
by hand, assuming A and B are stored in the 16-bit NVIDIA format.
Assume one guard bit, one round bit and one sticky bit, and round to
the nearest even. Show all the steps; however, do the multiplication
in human-readable format instead of using any techniques. Write
your answer as a 16-bit pattern. How accurate is your result?

 A = 6.18 × 102 B = 5.796875 × 101

