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Discrete Sequences and Their Notation

Signal processing
Science of analyzing time-varying physical
Processes
Continuous signal
Continuous in time
Continuous range of amplitude values
Analog (continuous) signal processing

Discrete-time signal
Time variable is quantized

Signal amplitude is quantized

Because we represent all digital quantities with binary
numbers, there’s a limit to the resolution

Digital signal processing



Discrete Sequences and Their Notation

Example
A continuous sinewave
Peak amplitude of 1
Frequency f,
x(t) =sm(27f t)
f, is measured in hertz (Hz) = cycles/second
t representing time in seconds

f.t has dimensions of cycles
211f t is an angle measured in radians



Discrete Sequences and Their Notation
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A time-domain sinewave: (a) continuous waveform represento-
tion; (b) discrete sample representation; (¢) discrete samples with

connecting lines.
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Discrete Sequences and Their Notation
Fig. 1-1

Continuous sinewave - sample it once every {,
seconds using an analog-to-digital converter
Variable t in (a) is continuous

Index variable n in (b) is discrete and can have
only integer values

x(n) is a discrete-time sequence of individual
values
There is nothing between dots of x(n)
x(t) =sm(27f t) > x(n) =sin(2xf nt,)
x(t) and x(n) are referred to as time-domain
signals



Discrete Sequences and Their Notation

Discrete system

A collection of hardware components, or software
routines, that operate on a discrete-time signal

sequence
X(O)’ X(1)! X(2)’ X(3)7 S I y(O), y(1)’ y(2)1 y(3), S
Discrete
(@) ! System
(b) x(n) Discrete )
System '

Figure 1-2 With an input applied, a discrete system provides an output: (a) the
input and output are sequences of individual values; (b) input and
output using the abbreviated notation of x(n) and y(n).

E.g., y(n) =2x(n)-1



Discrete Sequences and Their Notation

Given samples of a discrete-time sinewave
(e.g., Fig. 1-1(b)), find frequency of waveform
they represent

Possible to say sinewave repeats every 20
samples

Not possible to find exact sinewave frequency

We need sample period {, to determine absolute
frequency of discrete sinewave

If t, = 0.05 milliseconds/sample

20samples  0.05 milliseconds _ ... . .

sinewave period = .
period sample

Sinewave'’s frequency = 1/(1 ms) = 1 kHz



Discrete Sequences and Their Notation

Frequency domain

To represent frequency content of discrete time-
domain signals

Called spectrum



Discrete Sequences and Their Notation
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Figure 1-3 Time- and frequency-domain graphical representations: () sinewave
of frequency f; (b) reduced amplifude sinewave of frequency 2f_;
(c) sum of the two sinewaves.



Discrete Sequences and Their Notation
Fig. 1-3
X (M) =x1(n)+ x5 (n) =sm(27f nt )+ 0.4xsin(272 f nt,)

Xs,m(n) has a frequency component of f, Hz and a

reduced-amplitude frequency component of 2f,
Hz

Because x,(n) + x,(n) sinewaves have a phase
shift of zero degrees relative to each other, no
need to depict this phase relationship in X ,(m)

In general, phase relationships in frequency-domain
sequences are important
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Signal Amplitude, Magnitude, Power

Amplitude of a variable

Measure of how far, and in what direction, that
variable differs from zero

Can be either positive or negative

Magnitude of a variable

Measure of how far, regardless of direction, its
quantity differs from zero

Always positive

11



Signal Amplitude, Magnitude, Power
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Figure 1-4 Magnitude samples, | x,(n) |, of the time waveform in Figure 1-3(a).
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Signal Amplitude, Magnitude, Power

In frequency domain, we are often interested
iIn power level of signals

Power of a signal is proportional to its amplitude
(or magnitude) squared

Assuming proportionality constant is one, power
of a sequence in time or frequency domains are

X (M) = X() P, X, (m) =) X (m)
Often we want to know the difference in power

levels of two signals in frequency domain

Because of squared nature of power, two signals with
moderately different amplitudes will have a much
larger difference in their relative powers

13



Signal Amplitude, Magnitude, Power

A Xsum (M) amplitude in the A Xsum (M) power in the
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Figure 1-5 Frequency-domain amplitude and frequency-domain power of the

X, (M) fime waveform in Figure 1-3(C).

Because of their squared nature, plots of
power values often involve showing both very
large and very small values on same graph

To make these plots easier to generate and
evaluate, decibel scale is usually employed
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Signal Processing Operational Symbols

Block diagrams

Are used to graphically depict the way digital
signal processing operations are implemented

Comprise an assortment of fundamental
processing symbols

15



Signal Processing Operational Symbols

Addition:
b(n) a(n) a(n) = b(n) + c(n)
(@)
o(n)

Subtraction:

b(n) . a(n) a(n) = b(n) — c(n)
(b) =
c(n)
Summation: n+3
k)

b(n+1)
(©)

b(n+2)

b(n+3) = b(n n+1) + b(n+2) + b(n+3)

Multiplication:

bn) ' @ > &) an) = b(n)c(n) = b(n)- c{n)

(d) [Sometimes we use a " +"
c(n) to signify multiplication.]
Unit delay:

b0 ———»{ Delay }——» a0
) a(n) = b(n-1)

b a0

Figure 1-6 Terminology and symbols used in digital signal processing block
diagrams.
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Discrete Linear Time-Invariant Systems

Linear time-invariant (LTI) systems

Vast majority of discrete systems used in practice
are LTI systems

LTI systems are very accommodating when it
comes to their analysis

We can use straightforward methods to predict
performance of any digital signal processing scheme
as long as it's linear and time invariant

17



Discrete Linear Systems

Linear

A linear system’s output resulting from a sum of
individual inputs is superposition (sum) of
individual outputs

results in

x;(n) > y1(n)
results in
X, (n) s Vo (n)
results in
x (1) + x,(n) t >y (n)+ y,(n)

Also, if inputs are scaled by constant factors c,
and c,, output sequence parts are scaled by
those factors too

¢\x, (n) n ¢y, (I’Z) results in

>Cry1(n)+cyy,(n) "



Discrete Linear Systems

Linear
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Linear system input-to-output relationships: (a) system block diagram
where y(n) = -x(n)/2; (b) system input and oufput with a 1 Hz
sinewave applied; (¢) with a 3 Hz sinewave applied; (d) with the sum
of 1 Hz and 3 Hz sinewaves applied.

Figure 1-7
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Discrete Linear Systems
Linearity in Fig. 1-7(d)

X5(n) input sequence is sum of a 1 Hz sinewave
and a 3 Hz sinewave
Thus y,(n) is sample-for-sample sum of y,(n) and

Yo(N)
Also output spectrum Y;(m) is sum of Y,(m) and
Yo(m)

20



Discrete Linear Systems

Nonlinear 2
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Figure 1-8 Nonlinear system input-to-output relationships: (a) system block dia-
gram where y(n) = (x(N)2 (o) system input and output with a 1 Hz
sinewave applied; (¢) with a 3 Hz sinewave applied; (d) with the sum
of 1 Hz and 3 Hz sinewaves applied.

21



Discrete Linear Systems
Fig. 1-8(b)

x;(n) =sin(2xf nt,) =sin(2z x1xnt,)
yi(n) =[x (n)]* =sin(27 x1x nt )xsin(2zx x1xnt,)

sin(a) x sin( ) = COS(O;_ﬁ )_ COS(‘? p)
cos(2r xIxnt; —2xx1xnt ) cos(2z x1xnt; + 2z x1xnt)

2 2
_cos(0) cos(Azmxlxmt) 1 cos(Zmx2xnt,)

2 2 2 2
y1(n) is a cosine wave of 2 Hz and a peak
amplitude of —0.5, added to a constant value
(zero Hz) of 1/2

Fig. 1-8(c)

¥»(n) contains a zero Hz and a 6 Hz component o

n(n)=




Discrete Linear Systems
Fig. 1-8(d)

X5(n) comprises sum of a1 Hz and a 3 Hz
sinewave

a =1 Hz sinewave, b = 3 Hz sinewave — (a +b)2 = a” +2ab +b*

a’ — zero Hz and 2 Hz

b> — zero Hz and 6 Hz

2ab =2sin(2zr x1xnt ) xsin(27z x3xnt,)

_ 2cos(2rx1xnt, =2 x3xnt;) 2cos8(2zx1xnt; +2xx3xnt,)

2 2
=cos(2r x2xnt,)—cos(2r x4 xnt,)

2ab — 2 Hz and 4 Hz
Two additional sinusoids are present in y;(n)

because of system’s nonlinearity, a 2 Hz cosine
wave (amp=+1), a 4 Hz cosine wave (amp=-1) 53



Time-Invariant Systems

Time-invariant system

A time delay (or shift) in input sequence causes
an equivalent time delay in system’s output
sequence

x(n) results in N y(n)

x (n) = x(n+k)—2E450 s 3 (n) = y(n+k)

k is some integer representing k sample period time
delays
For a system to be time invariant, above equation
must hold true for any integer value of kK and any

iInput sequence
24



Time-Invariant Systems

Linear
Time-Invariant
a e
(a) Input x(n) —— . 0 [ Output y(n) = —x(n)/2
System
x(n) y(n
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Figure 1-9 Time-invariant system input/output relationships: (a) system block dia-
gram, y(n) = -x(n)/2; (b) system input/output with a sinewave input;
(o) input/output when a sinewave, delayed by four samples, is the input.
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Time-Invariant Systems
Fig. 1-9

Input sequence x'(n) is equal to sequence x(n)
shifted to right by k = —4 samples

x'(n) =x(n—4)
System is time invariant because y'(n) output

sequence is equal to y(n) sequence shifted to
right by four samples

y (n)=y(n-4)

26



Commutative Property of LTI Systems
LTIl systems have a useful commutative

property

Their sequential order can be rearranged with no
change in their final output

Input x(n)

LTI

LTI

(a) - System #1 - System #2
Input x(n) LTI ag(n) LTI
(b) 1 System #2 1 System #1

Output y(n)

Output y(n)

Figure 1-10 Linear time-invariant (LTl) systems in series: (a) block diagram of two
LTI systems; (b) swapping the order of the two systems does not
change the resultant output y(n).



Analyzing LTIl Systems

Unit impulse response of an LTI system

System’s time-domain output sequence when
input is a single unity-valued sample (unit
impulse) preceded and followed by zero-valued
samples

System’s unit impulse response completely
characterizes the system

28



Analyzing LTIl Systems

Linear
Time-Invariant
(a) Input x(n) ———P» Discrete —» Output y(n)
System
A x(n) impulse input A y(n) impulse response
1+ = u
(b) \unity-valued sample |
: n m¥y
EEE|EEEEEEEEEEEEEE—D EEE———E— By yuEE—P
0 Time 0 m,m Time

Figure 1-11 LIl system unit impulse response sequences: (Q) system block dio-
gram; (b) impulse input sequence x(n) and impulse response output
sequence y(n).
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Analyzing LTIl Systems

Knowing impulse response, we can
determine system’s output for any input

Output is equal to convolution of input sequence
and system’s impulse response

Moreover, we can find system’s frequency
response by taking discrete Fourier transform of
that impulse response

30



Analyzing LTI Systems
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Figure 1-12 Analyzing a moving averager: (a) averager block diagram; (b)
impulse input and impulse response; (C) averager frequency mag-
nitude response.
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Analyzing LTIl Systems
Fig. 1-12

A 4-point moving averager

1 1
y(n) = Z[x(n) +x(n—-1)+x(n-2)+x(n—-3)]= 7 k;_ 3x(k)

Frequency magnitude response plot shows that
moving averager has characteristic of a lowpass
filter

Averager attenuates (reduces amplitude of) high-
frequency signal content applied to its input
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