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The Discrete Fourier Transform

Discrete Fourier transform (DFT)

DFT is a mathematical procedure used to
determine harmonic, or frequency, content of a
discrete signal sequence

DFT’s origin is continuous Fourier transform X(f)

+00

X(f) = j x(t) e 72 dt

—00

where x(f) is some continuous time-domain signal
DFT equation (exponential form)

N-1
X(m) — Zx(n) e—jzﬂnm/N
n=0

x(n) is sequence of time-domain sampled values 2



Understanding the DFT Equation

DFT equation (rectangular form)

From Euler’s relationship, €72 = cos(@) — jsin(o)

N-1
—j2rnm/ N

X(m)= ) x(n)e

il

= Y x(n)[cosQrnm/N)— jsin(2znm/ N)]

m = index of DFT output in frequency domain
m=0,1,2,3,... N-1

n = time-domain index of input samples
n=0,1,2,3,..., N-1

N = number of samples of input sequence and
number of frequency points in DFT output

-



Understanding the DFT Equation

X(m) DFT output

Each X(m) DFT output term is sum of point-for-
point product between an input sequence of
signal values and a complex sinusoid of the form
cos(@) — Jsin(@)

Exact frequencies of different sinusoids depend
on both sampling rate f_ at which the original
signal was sampled, and number of samples N

The N separate DFT analysis frequencies are

mfs

f analysis (m ) = N




Understanding the DFT Equation

A Imaginary axis (j)

Ximag (M) o

‘,
/ \ This point represents the

Xmag(M) complex number

o X(m) = Xsoal(m) + Ximag (m).

J
e
0 Xreal (m) Real axis

Figure 3-1 Trigonometric relationships of an individual DFT X(m) complex oufput
value.,



Understanding the DFT Equation

Magnitude and power contained in each X(m)
term

X(I’I’l) — Xreal (m) + inmag (I’}’Z) — Xmag (m) at an angle of X¢ (m)
X g (M) = | X ()] = 3 X (M) + X g (m)?

. -1 Ximag (Wl)
Tolm=an ( X e () )

power spectrum: X pg(m) = X, (m)* = X, oul (m)* + X, . (m)*

imag



Understanding the DFT Equation

Example

We want to sample and perform an 8-point DFT
on a continuous input signal containing
components at 1 kHz and 2 kHz, expressed as

X, (¢) = sin(27-1000- £) + 0.5sin(27 - 2000 - + 37/ 4)

The 2 kHz term is shifted in phase by 311/4
radians relative to the 1 kHz sinewave



Understanding the DFT Equation

Example (cont.)
N = 8 = we need 8 input sample values on which
to perform DFT
Sample rate = f, 2 sampling every 1/f, = t_ sec.
x(n) =x;,(nt,)=sm(27z-1000-nt,)+0.5sin(27-2000-nt, +37/4)
If we sample x;.(f) at f, = 8000 samples/second,
DFT results will indicate what signal amplitude

exists in x(n) at analysis frequencies of mf /N, or
O kHz, 1 kHz, 2 kHz, . . ., 7 kHz

We use DFT equation form =0, ..., 7
N-1
X(m) =" x(n)[cos2xnm/ N)— jsin2znm/N)]
n=0



Understanding the DFT Equation
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Figure 3-2 DFT Example 1: (a) the input signal; (b) the input signal and the m =1
sinusoids; (c) the input signal and the m = 2 sinusoids; (d) the input sig-
nal and the m = 3 sinusoids.



Understanding the DFT Equation

1.5 4

-1.5 2

Figure 3-3 DFT Example 1: (a) the input signal and the m = 4 sinusoids; (b) the
input and the m = 5 sinusoids; (c) the input and the m = 6 sinusoids; (d) 1 O
the input and the m = 7 sinusoids.



Understanding the DFT Equation

Example (cont.)

m]& ZIXSkszlkHZ; X(m=1)=0.0—;740=4 £-90°

m]{; _ 2><88kHZ —2kHz: X(m=2)=1414+ jl.414=2 /45°
mjés _ S 5y X(m=3)=0.0-;0.0=0£0"

mfs _ABKHZ _ ity X(m=4)=0.0- /0.0 =0 £0°

N 3

s ZSXSKHZ:SKHz: X(m=5)=0.0-,0.0=0 20"

N 3

m]{; =6X88kHZ=6kHz: X(m=6)=1414—/1.414=2 £ -45
mf, Tx8kHz

I, 2 =7kHz: X(m=7)=0.0+j4.0=4 £90°

11



Understanding the DFT Equation

Example (cont.)

When m=20
N-1 N-1
X(0) = Zx(n) [cos(0) — jsin(0)] = Zx(n)
n=0 n=0

X(0) is sum of x(n) samples
X(0) is proportional to average of x(n)
= N times x(n)’s average value
X(0) frequency term is the non-time-varying (DC)
component of x(n)

Our x(n) has no DC component

mf, 0x8kHz
N 8

=0kHz: X(m=0)=0.0—j0.0=0£0°

12



Understanding the DFT Equation

A Magnitude of X(m) A Real part of X(m)
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¥~ Indicates that the 1 kHz —4- =

input tone was a cosine
wave having an initial
phase of —90°.

Figure 3-4 DFT results from Example 1: () magnitude of X(m); (b) phase of X(m),
() real part of X(m); (d) imaginary part of X(m).
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Understanding the DFT Equation
Fig. 3-4

Indicates that x,.(t) has signal components at 1
kHz (m=1)and 2 kHz (m = 2)

1 kHz tone has a magnitude twice that of 2 kHz
tone

DFT phase at frequency mfJ/N is relative to a
cosine wave at that same frequency of mf /N Hz
where m=1, 2, 3, ..., N-1

E.g., phase of X(1) is —90 degrees, so input sinusoid
whose frequency is 1 - f/N = 1000 Hz was a cosine
wave having an initial phase shift of —90 degrees (or a
sinewave having an initial phase of zero)

14



Understanding the DFT Equation

Fig. 3-4
When DFT input signals are real-valued, DFT

phase at 0 Hz (m = 0, DC) is always zero
because X(0) is always real-only

N-1
X(0)= Zx(n)
n=0

15



DFT Symmetry
Fig. 3-4

There is a symmetry in DFT results

When input sequence x(n) is real, complex DFT
outputs for m=1to m = (N/2) — 1 are redundant
with frequency output values for m > (N/2)

X(m) = X(m)‘ at X ;(m) degrees
=X (N - m)‘ at — X 4, (N —m) degrees

X(m)=X"(N-m)
form=1,2,3,..., N-1
To obtain DFT of x(n), we need only compute the first
N/2+1 values of X(m) where 0 = m < (N/2); X(N/2+1) to
X(N-1) DFT output terms provide no additional
information about spectrum of real sequence x(n) 16



DFT Symmetry

Proving symmetry of DFT of real input

sequences
—j2rnm/ N

e /27" =cos(27rn)—jsin(27 n)=1

X(N-m) is merely X(m) with the sign reversed on
X(m)'s exponent

17



DFT Symmetry

An additional symmetry property of DFT

Determine DFT of real input functions where
input index n is defined over both positive and
negative values

If real input function is even, x(n) = x(-n), then
X(m) is always real and even

XieallM) is in general nonzero and X,

If real input function is odd, x(n) = —x(—n), then
Xiea(m) is always zero and X, ,,(m) is, in general,
nonzero

(m) is zero

18



DFT Linearity
DFT has linearity property

x; () —2 X, (m)
X5 (1) —2 X, (m)

X gum (1) = X1 (1) + X, () —>——> X, (m) = X, (m) + X, (m)

Proof o
X(m) _ Z X(l’l) e—j27znm/N
n=0

N-1
Xsum (m) — Z [Xl (n) + X, (n)]e—j27fnm/N
n=0

N-1 . N-1 -
_ le(n)e—]Zﬂnm/N +Zx2 (n)e—]Zﬂnm/N
n=0 n=0

= X,(m)+ X, (m)

19



DFT Magnitudes

Output magnitude of DFT

When a real input signal contains a sinewave
component of peak amplitude A, with an integral
number of cycles over N input samples, output
magnitude of DFT for that sinewave is

M, =AN/2

For real inputs, hardware memory registers must be
able to hold values as large as N/2 times the maximum

amplitude of input sample values
If DFT input is a complex sinusoid of magnitude
A, (i.e., A,e2™t) with an integer number of cycles

over N samples, output magnitude of DFT for that

sinewave is M,=AN 20



DFT Magnitudes

DFT is occasionally defined as

N-1

Xv(m) _ %Zx(n) e—j272'nm/N
n=0

Some commercial software packages use

N —j2xnm/N
X" (m) = Zx(n)e e
\/NH—O

1 N—-1 .
x(n) = ——= > X""(m)e/> """
=0

VN 1

Forward and inverse DFTs

Scale factors are used so that there’s no scale
change when transforming in either direction

21



Summary

To recap what we've learned so far

Each DFT output term is sum of term-by-term
products of an input time-domain sequence with
a sine and a cosine wave sequences

For real inputs, an N-point DFT’s output provides
only N/2+1 independent terms

DFT is a linear operation

Magnitude of DFT results is directly proportional
toN

DFT’s frequency resolution (spacing) is f/N

X(m = N/2) corresponds to mf /N = /2 = folding
(Nyquist) frequency

22



DFT Shifting Theorem

Shifting theorem property of DFT

A shift in time of a periodic x(n) input sequence
manifests itself as a constant phase shift in
angles associated with DFT results

If we sample x(n) starting at n = k (integer), DFT
of those time-shifted sample values is X xoq(mM)
where

X shifiea (M) = e/ * MmN X (m)

If the point where we start sampling x(n) is shifted
to right by k samples, DFT output spectrum of
Xhiteq(M) 18 X(m) with each of X(m)'s complex
terms multiplied by linear phase shift e/2m«m/N,
which is merely a phase shift of 2mkm/N radians 23



DFT Shifting Theorem

Example

Suppose we sampled preceding DFT example
iInput sequence later in time by k = 3 samples

x..() = sin(2111000¢) + 0.5sin(212000¢+311/4)

24



DFT Shifting Theorem

The DFT in Example 1 was taken
over these eight sample values.

| l |
1.5 -
pu Xin(t)

1 + //, \/ /-

05 --—___- ._—',' S .A./I
. \ //
-1+ n /
15 1 \-"
-3 -2 -1 0 1 2 3 4 9 6 7 n —§
| |
[

The DFT in Example 2 is taken
over these eight sample values.

Figure 3-5 Comparison of sampling times between DFT Example 1 and DFT

Example 2.

25



DFT Shifting Theorem

A Example 2: Magnitude of X g 404 (M) A Example 2: Real part of Xghitteq (M)
47T o - 3T ] ]
-] (c) -
21 u u (¢ m n
(a) N 1
Onm ] ] ] 4 [ Om ] ] ] -
m m
0 1 2 3 6 7 (kHz) 1 2 6 7 (kHz)
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45 <+ m n 4T
|
2 7 T 2 . 7
(b) om } } —n n } - (d) o= } } . . u } —
m . m
L € (kHz) 21 8 a (kHZ)
—45 L m n 4l

Figure 3-6 DFI results from Example 2: (a) magnitude of X «.4(m). (o) phase of
XinittagCM): () real part of X .. (m); (d) imaginary part of X «.4(m).
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DFT Shifting Theorem
Fig. 3-6

Magnitude of X «.q(m) should be unchanged
from that of X(m)

Fig. 3-6(a) is identical to Fig. 3-4(a)
Phase of DFT result does change depending on
the instant at which we started to sample x,({)

E.g., X(1) from preceding DFT Example had a
magnitude of 4 at a phase angle of —11/2

k=3and N=8

Xshiﬁed (1) _ ej27zkm/NX(1) _ ej27r3><1/8 ><4e_j7z/2

_ Qo) (6n/8=4TI8) _ 474

Xqhieq(1): magnitude of 4, phase angle of /4 57



Inverse DFT

Inverse discrete Fourier transform (IDFT)

We can obtain the original time-domain signal by
performing IDFT on X(m) frequency-domain
values

N-1
] .
x(n) — E X(m)e]272'mn/N
N m=0

N-1
_ 1 > X(m)[cos2zmn/N)+ jsin2zmn/N)]
N m=0

A discrete time-domain signal can be considered the
sum of various sinusoidal analytical frequencies and
that the X(m) outputs of the DFT are a set of N
complex values indicating the magnitude and phase

of each analysis frequency comprising that sum 28



DFT Leakage

Leakage

Causes DFT results to be only an approximation
of the true spectra of the original input signals
prior to digital sampling

Although there are ways to minimize leakage, we
can't eliminate it entirely

29



DFT Leakage

Leakage

DFT produces correct results only when input
data sequence contains energy precisely at
integral multiples of fundamental frequency /N

S anatysis (M) = s wherem =0,12,..., N —1

If input has a signal component at some
intermediate frequency between analytical
frequencies of mf /N, say 1.5f/N, this input signal
will show up to some degree in all of N output
analysis frequencies of DFT

We say that input signal energy shows up in all of
DFT’s output bins

DFT samples = “bins” 30




DFT Leakage

A Input frequency = 3.0 cycles m = 4 analysis frequency

35 + DFT output magnitude

30 +
25 1
20
15 +
101

5 +

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(Freq)

Figure 3-7 Sixty-four-point DFT: (a) input sequence of three cycles and the m=4
analysis frequency sinusoid; (b) DFT ouftput magnitude.



DFT Leakage

A Input frequency = 3.4 cycles m = 4 analysis frequency

O; T .I... / .ll- .l-. / .r..
0.6 4=
04 = " ™ n u

0.2 + -

@ o s - >
-0.2 4 u L] . Time
-04 4
—-0.6 4 u u m

_08 - u [ ] n | u

-1 " " .

30 + DFT output magnitude
251 =

20 +

15 + u

(0) 107

5.,. u

0 HA s e s

0 2 4 6 8 1012141618202224262830(;2{})

Figure 3-8 Sixty-four-point DFT: (a) 3.4 cycles input sequence and the m = 4
analysis frequency sinusoid; (b) DFT output magnitude.
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DFT Leakage
Fig. 3-8

An input sequence having 3.4 cycles over N = 64
samples

Because input sequence does not have an
integral number of cycles over 64-sample
interval, input energy has leaked into all the other
DFT output bins

m = 4 bin, for example, is not zero because sum
of products of input sequence and m = 4 analysis
frequency is no longer zero

33



DFT Leakage

Cause of leakage
For a real cosine input having k cycles (k need
not be an integer) in N-point input time sequence,
amplitude response of an N-point DFT bin in
terms of bin index m is approximated by sinc
function

AN sin[z(k —m)]

2 7(k —m)

X(m) =

A, is peak value of DFT’s input sinusoid
For our examples here, A, is unity

34



DFT Leakage

l“k\\\\\\\

. - 1 Discrete DFT sequence defined by

o e " etden

q Yy sp 1 X(m) = 2 (k-
l I

=

a discrete cosine

seguence
@ ’ \

ps

/'\.\/ -

N Freq
\/ m= (m)

k=3 k—1 k+1 k+3 k+5
v A
2
(b)
/\_/\_/\_/\_ _/\_/\_/'\_/‘\_ -
Kfs/N '(:lflezc)‘

(k-3)fg/N  (k=1)fs/N (k+)E/N  (k+3)fs/N  (k+5)fs/N

Figure 3-9 DFT positive-frequency response due to an N-point input sequence
containing k cycles of a real cosine: () amplitude response as a
function of bin index m; (b) magnitude response as a function of fre-

quency in Hz.



DFT Leakage
Fig. 3-9

The curve comprises a main lobe and periodic
peaks and valleys known as sidelobes

DFT output will be a sampled version of the
continuous spectrum

When DFT’s input sequence has exactly an
integral k number of cycles (centered exactly in
the m = k bin), no leakage occurs

36



DFT Leakage
Example (Fig. 3-10(a))

A real 8 kHz sinusoid, having unity amplitude, is
sampled at a rate of f, = 32000 samples/second

If we take a 32-point DFT of samples, DFT's
frequency resolution, or bin spacing, is f/N =
32000/32 Hz = 1.0 kHz

We can predict DFT's magnitude response by
centering input sinusoid’s spectral curve at positive
frequency of 8 kHz

DFT output is a sampled version of continuous
spectral curve

DFT outputs reside on continuous spectrum at its
peak and exactly at curve’s zero crossing points 37




DFT Leakage

(b)

()

Figure 3-10

16
Input frequency = 8.0 kHz
—n " " " L] n n " " T
3 4 6 7 9 10 11 12 13 Freq
(kHz)
Input frequency = 8.5 kHz = —10.17
n | |
—— ' : — et
3 4 5 6 7 9 10 11 12 13 Freq
(kHz)
" 14.05
Input frequency = 8.75 kHz
5.15
. m m . n . i .. - ] -
3 4 5 6 7 9 10 11 12 13 Freq
(kHz)

DFT bin positive-frequency responses: (a) DFT input frequency =
8.0 kHz, (b) DFT input frequency = 85 kHz; (c) DFT input fre-

quency = 8.75 kHz.

38



DFT Leakage

Fig. 3-10(b)
Input frequency is 8.5 kHz

Frequency-domain sampling results in nonzero
magnitudes for all DFT output bins

Fig. 3-10(c)
An 8.75 kHz input sinusoid
Results in the leaky DFT output shown

39



DFT Leakage

Fig. 3-8(b): two questions
1) If the continuous spectra that we're sampling
are symmetrical, why does DFT output in this
Figure look so asymmetrical?

Bins to the right of third bin are decreasing in
amplitude faster than bins to the left of third bin

2) With k= 3.4 and m = 3, from sinc function the
X(3) bin’s magnitude should be 24.2—but Fig. 3-
8(b) shows X(3) bin magnitude to be greater than
25. Why?

40



DFT Leakage

(Freq)

Figure 3-11 Cyclic representation of the DFT’s spectral replication when the DFT

input is 3.4 cycles per sample interval.

41



DFT Leakage
Fig. 3-11

When examining a DFT output, we're normally
interested only in m =0 to m = (N/2-1) bins
Thus, only the first 32 bins are shown in Fig. 3-8(b)

DFT is periodic in frequency domain

Upon examining DFT’s output for higher frequencies,
we end up going in circles, and spectrum repeats itself
forever

Fig. 3-11 shows cyclic representation of 64-point DFT
shown in Fig. 3-8(b)
The more conventional way to view a DF T output
IS to unwrap the spectrum in Fig. 3-11 to get the
spectrum in Fig. 3-12

42



DFT Leakage

Input signal also shows up at Input signal also shows up at 64 — 3.4 = 60.6,
0 — 3.4 = -3.4 cycles/interval and 64 + 3.4 = 67.4 cycles/interval
Input signal is at 3.4 ( \Y
. . ( cycles/interval . .
| | | | | |
Spectra repeat in Spectra repeat in
this direction - = = = this direction
<- | | | | | | | | u | ‘
u - 1 . u u - | . u
.ll.. ..II. .Il.. ..II.

12 10 -8 -6 -4 -2 0 2 4 6 8 10 12 52 54 56 58 60 62 64 66 68 70 72 74 76 M
(Freq)

Figure 3-12 Spectral replication when the DFT input is 3.4 cycles per sample

interval.
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DFT Leakage

Fig. 3-12
As some of the input 3.4-cycle signal amplitude
leaks into 2nd bin, 1st bin, and 0Oth bin, leakage
continues into —1st bin, —2nd bin, —3rd bin, etc

63rd bin = —1st bin, 62nd bin = -2nd bin, and so on

These bin equivalencies allow us to view DFT output
bins as if they extend into negative-frequency range,
as shown in Fig. 3-13(a)

Result is that the leakage wraps around m = 0, as
well as around m= N

m = 0 frequency is m = N frequency
Leakage wraparound at m = 0 accounts for the
asymmetry around DFT's m = 3 bin in Fig. 3-8(b) ,,



DFT Leakage

' - DFT output magnitude
(with input = 3.4 cycles/interval)

[ | m=20 o
@ [ .lil. [
- ......|.|.||||||||||||||.|.|.|....- -

50 52 54 56 58 60 62 0 2 4 6 8 10 12 14 M
(-14)(=12)(-10)(-8) (-6) (-4) (-2) (Freq)

DFT output magnitude
(with input = 28.6 cycles/interval)

m = N/2
m =32 o
m J =
(b) n EgH =
n" "
- .....-|.||||||||||||||||.|.|..... =
18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 M

(Freq)

Figure 3-13 DFT output magnitude: (a) when the DFT input is 3.4 cycles per sam-
ple interval; (b) when the DFT input is 28.6 cycles per sample interval. 45



DFT Leakage
Fig. 3-13(b)

when a DFT input sequence x(n) is real, DFT
outputs from m = 0 to m = (N/2-1) are redundant
with frequency bin values for m > (N/2)

[X(m)| = [X(N-m)|

This means that leakage wraparound also occurs

around m = N/2 bin

This can be illustrated using an input of 28.6 cycles per
sample interval (32 — 3.4) whose spectrum is shown in

Fig. 3-13(b)
Figs. 3-13(a) and (b) are similar

46



DFT Leakage

DFT output magnitude
(with input = 16.4 cycles/interval)
25 4+

u u
20 +
; = u
5 4+
(@) 10 4
H m [ AL
°1 = il
ot ll“nlll". BRLL LTI L L L LLLLatl "..lllllll

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 (Fm)
req

5 A DFT output magnitude

25+ (with input = 16.4 .
cycles/interval)
20 +
|

15 +

(b) 10 4
u [ ]
54 - .
I LA L

R L L

0 2 4 6 8 1012141618202224262830(':”7)
req

m=N/4=16
Figure 3-14 DFT output magnitude when the DFT input is 16.4 cycles per sample

interval: (o) full output spectrum view; (b) close-up view showing
minimized leakage asymmetry at frequency m = N/4.
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DFT Leakage

Fig. 3-14
DFT exhibits leakage wraparound about m =0
and m = N/2 bins

Minimum leakage asymmetry will occur near
N/4th bin

48



Windows

Windowing

Windowing reduces DFT leakage by minimizing
magnitude of sinc function’s sidelobes
Done by forcing amplitude of input time sequence at

both beginning and end of sample interval to go
smoothly toward a single common amplitude value

49



Windows

(a) d

(b)

(©

(d)

Figure 3-15

Triangular
window
-

\

Time

Minimizing sample interval end-point discontinuities: () infinite-
duration input sinusoid; (b) rectangular window due tfo finite-time
sample interval; (c) product of rectangular window and infinite-
duration input sinusoid; (d) triangular window function; (e) product
of friangular window and infinite-duration input sinusoid; (f) Hanning
window function; (Q) product of Hanning window and infinite-

Time
Sample
<— interval —>
1.0
Rectangular
window
—_— L
Time
=
Time
Sample
< interval —>
1.0

Sample
<— interval —>

Time

Sample
<— interval —>

1.0
f
() Hanning
window
»
Time
Sample
<— interval ——>
(9)
Time
Sample
< \ntereal
1.0

Hamming
window

-

Time

duration input sinusoid; (h) Hamming window function.
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Windows
Fig. 3-15

Considering infinite-duration time signal shown in

(a), a DFT can only be performed over a finite-
time sample interval like that shown in (c)

We can think of DFT input signal in (c) as product
of (a), and rectangular window whose magnitude
is 1 over sample interval shown in (b)

Anytime we take DFT of a finite-extent input
sequence, we are, by default, multiplying that
sequence by a window of all ones

Sinc function’s sin(x)/x shape is caused by this
rectangular window because CFT of rectangular
window in (b) is sinc function 51




Windows
Fig. 3-15

Rectangular window’s abrupt changes between
one and zero cause sidelobes in sinc function

To minimize spectral leakage caused by those

sidelobes, we have to reduce sidelobe amplitudes by

using window functions other than rectangular window
If we multiply DFT input, (c), by triangular window
function, (d), to obtain windowed input signal, (e),
values of final input signal appear to be the same
at beginning and end of sample interval in (e)

Reduced discontinuity decreases level of relatively
high-frequency components in overall DFT output; that
IS, DFT bin sidelobe levels are reduced in magnitude
using a triangular window 52




Windows
Fig. 3-15

There are window functions that reduce leakage
even more than triangular window
Hanning window in (f)

Product of window in (f) and input sequence provides
signal shown in (g) as input to DFT

Hamming window in (h)

It's much like Hanning window, but it's raised on a
pedestal
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Windows

N-1 |
X, (m)= Y win)-x(mye 27"

n=0
Rectangular window : w(n) =1, forn=0,1,2,..., N —1

k forn=0,1,2,..,N/2

Triangular window : w(n) = N r{ 2
2 — forn=N/2+1,N/2+2,.,N-1

. N/2

27wn
N

Hanning window : w(n) =0.5-0.5 cos( j forn=0,1,2,.... N —1

2wn

Hamming window : w(n)=0.54-0.46 cos( j forn=0,1,2,.... N —1

o4



Windows
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Figure 3-16 Window magnitude responses: (a) | W(m)| on a linear scale; (b)
| Wg(m) | on anormalized logarithmic scale.



Windows
Fig. 3-16

Hamming, Hanning, and triangular give reduced
sidelobe levels relative to rectangular

Because Hamming, Hanning, and triangular
reduce time-domain signal levels, their main lobe
peak values are reduced relative to rectangular

Log magnitude response (normalized)

W(m))
w(0)

‘WdB (””)‘ =20- logloE

56



Windows
Fig. 3-16(b)

Main lobe of rectangular window’s magnitude

response is the most narrow, fJ/N

However, its first sidelobe level is only =13 dB below
main lobe peak, which is not good

Various nonrectangular windows’ wide main
lobes degrade the windowed DFT’s frequency
resolution by almost a factor of two

However, important benefits of leakage reduction
usually outweigh the loss in DFT frequency resolution

Hanning has rapid sidelobe roll-off

Hamming has lower first sidelobe levels, but its
sidelobes roll off slowly relative to Hanning
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Windows
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Figure 3-17

A Windowed input signal
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Hanning window: (a) 64-sample product of a Hanning window and
a 3.4 cycles per sample interval input sinewave; (b) Hanning DFT out-
put response versus rectangular window DFT output response.
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Windows
Fig. 3-17

Shape of Hanning window’s response looks
broader and has a lower peak amplitude, but its

sidelobe leakage is noticeably reduced from that
of rectangular window
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Windows

(a)

Figure 3-18

A Windowed input signal Window function 3.4- and 7-cycle sinewaves
: s
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Increased signal detection sensitivity afforded using windowing: (a) 64-
sample product of a Hanning window and the sum of a 3.4 cycles and
a 7 cycles per sample interval sinewaves; (b) reduced leakage Han-
ning DFT output response versus rectangular window DFT output

response.
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Windows

Windows

Overall frequency resolution and signal sensitivity
are affected much more by size and shape of
window function than mere size of DFTs

There are many different window functions
described in literature of DSP

Window selection is a trade-off between main
lobe widening, first sidelobe levels, and how fast
the sidelobes decrease with increased frequency

Use of any particular window depends on application
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DFT Scalloping Loss
Scalloping

Fluctuations in overall magnitude response of an
N-point DFT

When no input windowing function is used,
sin(x)/x shape of sinc function’s magnitude
response applies to each DF T output bin
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DFT Scalloping Loss
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Figure 3-19 DFT bin magnitude response curves: (a) individual sin(x)/x responses
for each DFT bin; (b) equivalent overall DFT magnitude response. 63



DFT Scalloping Loss
Fig. 3-19

(a) shows a DFT's aggregate magnitude
response by superimposing several sin(x)/x bin
magnitude responses

Sinc function’s sidelobes are not key here

In (b), overall DFT frequency-domain response is
indicated by bold envelope curve
This rippled curve, also called picket fence effect,

illustrates processing loss for input frequencies
between bin centers

Magnitude of DFT response fluctuates from 1.0, at bin
center, to 0.637 halfway between bin centers

This envelope ripple exhibits a scalloping loss of -4 dB
halfway between bin centers 64




DFT Scalloping Loss
Fig. 3-19

lllustrates a DFT output when no window (i.e., a
rectangular window) is used

Because nonrectangular window functions
broaden DFT’s main lobe, their use results in a
scalloping loss that will not be as severe as with
rectangular window
Their wider main lobes overlap more and fill in valleys
of envelope curve in (b)
Scalloping loss isn't a severe problem in practice

Real-world signals normally have bandwidths that span
many frequency bins so that DFT magnitude response
ripples can go almost unnoticed
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