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The Discrete Fourier Transform (1) 
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The Discrete Fourier Transform 
 Discrete Fourier transform (DFT) 

 DFT is a mathematical procedure used to 
determine harmonic, or frequency, content of a 
discrete signal sequence 

 DFT’s origin is continuous Fourier transform X(f) 
 
 

 where x(t) is some continuous time-domain signal 
 DFT equation (exponential form) 

 
 

 x(n) is sequence of time-domain sampled values 

dtetxfX ftj π2)()( −
+∞

∞−
∫=

Nmnj
N

n

enxmX /2
1

0

)()( π−
−

=
∑=



3 

Understanding the DFT Equation 
 DFT equation (rectangular form) 

 From Euler’s relationship, e−jø = cos(ø) − jsin(ø) 
 
 
 
 

 m = index of DFT output in frequency domain  
 m = 0, 1, 2, 3, . . ., N−1 
 n = time-domain index of input samples  
 n = 0, 1, 2, 3, . . ., N−1 
 N = number of samples of input sequence and 

number of frequency points in DFT output 
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Understanding the DFT Equation 
 X(m) DFT output 

 Each X(m) DFT output term is sum of point-for-
point product between an input sequence of 
signal values and a complex sinusoid of the form 
cos(ø) − jsin(ø) 

 Exact frequencies of different sinusoids depend 
on both sampling rate fs at which the original 
signal was sampled, and number of samples N 

 The N separate DFT analysis frequencies are 
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Understanding the DFT Equation 
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Understanding the DFT Equation 
 Magnitude and power contained in each X(m) 

term 
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Understanding the DFT Equation 
 Example 

 We want to sample and perform an 8-point DFT 
on a continuous input signal containing 
components at 1 kHz and 2 kHz, expressed as 
 

 The 2 kHz term is shifted in phase by 3π/4 
radians relative to the 1 kHz sinewave 

)4/320002sin(5.0)10002sin()( πππ +⋅⋅+⋅⋅= tttxin
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Understanding the DFT Equation 
 Example (cont.) 

 N = 8  we need 8 input sample values on which 
to perform DFT 

 Sample rate = fs  sampling every 1/fs = ts sec. 
 

 If we sample xin(t) at fs = 8000 samples/second, 
DFT results will indicate what signal amplitude 
exists in x(n) at analysis frequencies of mfs/N, or 
0 kHz, 1 kHz, 2 kHz, . . ., 7 kHz 

 We use DFT equation for m = 0, …, 7 
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Understanding the DFT Equation 
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Understanding the DFT Equation 
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Understanding the DFT Equation 
 Example (cont.) 
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Understanding the DFT Equation 
 Example (cont.) 

 When m = 0 
 
 

 X(0) is sum of x(n) samples 
 X(0) is proportional to average of x(n) 

 = N times x(n)’s average value 
 X(0) frequency term is the non-time-varying (DC) 

component of x(n) 
 Our x(n) has no DC component 
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Understanding the DFT Equation 
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Understanding the DFT Equation 
 Fig. 3-4 

 Indicates that xin(t) has signal components at 1 
kHz (m = 1) and 2 kHz (m = 2) 

 1 kHz tone has a magnitude twice that of 2 kHz 
tone 

 DFT phase at frequency mfs/N is relative to a 
cosine wave at that same frequency of mfs/N Hz 
where m = 1, 2, 3, ..., N−1 
 E.g., phase of X(1) is −90 degrees, so input sinusoid 

whose frequency is 1 · fs/N = 1000 Hz was a cosine 
wave having an initial phase shift of −90 degrees (or a 
sinewave having an initial phase of zero) 
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Understanding the DFT Equation 
 Fig. 3-4 

 When DFT input signals are real-valued, DFT 
phase at 0 Hz (m = 0, DC) is always zero 
because X(0) is always real-only 
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DFT Symmetry 
 Fig. 3-4 

 There is a symmetry in DFT results 
 When input sequence x(n) is real, complex DFT 

outputs for m = 1 to m = (N/2) − 1 are redundant 
with frequency output values for m > (N/2) 
 
 
 

 for m = 1, 2, 3, . . . , N−1 
 To obtain DFT of x(n), we need only compute the first 

N/2+1 values of X(m) where 0 ≤ m ≤ (N/2); X(N/2+1) to 
X(N−1) DFT output terms provide no additional 
information about spectrum of real sequence x(n) 
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DFT Symmetry 
 Proving symmetry of DFT of real input 

sequences 
 
 
 
 
 
 
 
 X(N−m) is merely X(m) with the sign reversed on 

X(m)’s exponent 
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DFT Symmetry 
 An additional symmetry property of DFT 

 Determine DFT of real input functions where 
input index n is defined over both positive and 
negative values 

 If real input function is even, x(n) = x(−n), then 
X(m) is always real and even 
 Xreal(m) is in general nonzero and Ximag(m) is zero 

 If real input function is odd, x(n) = −x(−n), then 
Xreal(m) is always zero and Ximag(m) is, in general, 
nonzero 
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DFT Linearity 
 DFT has linearity property 

 
 
 
 Proof 
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DFT Magnitudes 
 Output magnitude of DFT 

 When a real input signal contains a sinewave 
component of peak amplitude Ao with an integral 
number of cycles over N input samples, output 
magnitude of DFT for that sinewave is 
 
 For real inputs, hardware memory registers must be 

able to hold values as large as N/2 times the maximum 
amplitude of input sample values 

 If DFT input is a complex sinusoid of magnitude 
Ao (i.e., Aoej2πfnts) with an integer number of cycles 
over N samples, output magnitude of DFT for that 
sinewave is 
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DFT Magnitudes 
 DFT is occasionally defined as 

 
 

 Some commercial software packages use 
 
 
 

 
 Forward and inverse DFTs 
 Scale factors are used so that there’s no scale 

change when transforming in either direction 
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Summary 
 To recap what we’ve learned so far 

 Each DFT output term is sum of term-by-term 
products of an input time-domain sequence with 
a sine and a cosine wave sequences 

 For real inputs, an N-point DFT’s output provides 
only N/2+1 independent terms 

 DFT is a linear operation 
 Magnitude of DFT results is directly proportional 

to N 
 DFT’s frequency resolution (spacing) is fs/N 
 X(m = N/2) corresponds to mfs/N = fs/2 = folding 

(Nyquist) frequency 
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DFT Shifting Theorem 
 Shifting theorem property of DFT 

 A shift in time of a periodic x(n) input sequence 
manifests itself as a constant phase shift in 
angles associated with DFT results 

 If we sample x(n) starting at n = k (integer), DFT 
of those time-shifted sample values is Xshifted(m) 
where 
 

 If the point where we start sampling x(n) is shifted 
to right by k samples, DFT output spectrum of 
Xshifted(m) is X(m) with each of X(m)’s complex 
terms multiplied by linear phase shift ej2πkm/N, 
which is merely a phase shift of 2πkm/N radians 
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DFT Shifting Theorem 
 Example 

 Suppose we sampled preceding DFT example 
input sequence later in time by k = 3 samples 

 xin(t) = sin(2π1000t) + 0.5sin(2π2000t+3π/4) 
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DFT Shifting Theorem 
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DFT Shifting Theorem 



27 

DFT Shifting Theorem 
 Fig. 3-6 

 Magnitude of Xshifted(m) should be unchanged 
from that of X(m) 
 Fig. 3-6(a) is identical to Fig. 3-4(a) 

 Phase of DFT result does change depending on 
the instant at which we started to sample xin(t) 
 E.g., X(1) from preceding DFT Example had a 

magnitude of 4 at a phase angle of −π/2 
 k = 3 and N = 8 

 
 
 

 Xshifted(1): magnitude of 4, phase angle of π/4 
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Inverse DFT 
 Inverse discrete Fourier transform (IDFT) 

 We can obtain the original time-domain signal by 
performing IDFT on X(m) frequency-domain 
values 
 
 
 
 

 A discrete time-domain signal can be considered the 
sum of various sinusoidal analytical frequencies and 
that the X(m) outputs of the DFT are a set of N 
complex values indicating the magnitude and phase 
of each analysis frequency comprising that sum 
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DFT Leakage 
 Leakage 

 Causes DFT results to be only an approximation 
of the true spectra of the original input signals 
prior to digital sampling 

 Although there are ways to minimize leakage, we 
can’t eliminate it entirely 
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DFT Leakage 
 Leakage 

 DFT produces correct results only when input 
data sequence contains energy precisely at 
integral multiples of fundamental frequency fs/N 
 

 If input has a signal component at some 
intermediate frequency between analytical 
frequencies of mfs/N, say 1.5fs/N, this input signal 
will show up to some degree in all of N output 
analysis frequencies of DFT 
 We say that input signal energy shows up in all of 

DFT’s output bins 
 DFT samples = “bins” 
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DFT Leakage 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-8 

 An input sequence having 3.4 cycles over N = 64 
samples 

 Because input sequence does not have an 
integral number of cycles over 64-sample 
interval, input energy has leaked into all the other 
DFT output bins 

 m = 4 bin, for example, is not zero because sum 
of products of input sequence and m = 4 analysis 
frequency is no longer zero 
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DFT Leakage 
 Cause of leakage 

 For a real cosine input having k cycles (k need 
not be an integer) in N-point input time sequence, 
amplitude response of an N-point DFT bin in 
terms of bin index m is approximated by sinc 
function 
 
 
 Ao is peak value of DFT’s input sinusoid 
 For our examples here, Ao is unity 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-9 

 The curve comprises a main lobe and periodic 
peaks and valleys known as sidelobes 

 DFT output will be a sampled version of the 
continuous spectrum 

 When DFT’s input sequence has exactly an 
integral k number of cycles (centered exactly in 
the m = k bin), no leakage occurs 
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DFT Leakage 
 Example (Fig. 3-10(a)) 

 A real 8 kHz sinusoid, having unity amplitude, is 
sampled at a rate of fs = 32000 samples/second 

 If we take a 32-point DFT of samples, DFT’s 
frequency resolution, or bin spacing, is fs/N = 
32000/32 Hz = 1.0 kHz 

 We can predict DFT’s magnitude response by 
centering input sinusoid’s spectral curve at positive 
frequency of 8 kHz 

 DFT output is a sampled version of continuous 
spectral curve 

 DFT outputs reside on continuous spectrum at its 
peak and exactly at curve’s zero crossing points 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-10(b) 

 Input frequency is 8.5 kHz 
 Frequency-domain sampling results in nonzero 

magnitudes for all DFT output bins 
 Fig. 3-10(c) 

 An 8.75 kHz input sinusoid 
 Results in the leaky DFT output shown 
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DFT Leakage 
 Fig. 3-8(b): two questions 

 1) If the continuous spectra that we’re sampling 
are symmetrical, why does DFT output in this 
Figure look so asymmetrical? 
 Bins to the right of third bin are decreasing in 

amplitude faster than bins to the left of third bin 
 2) With k = 3.4 and m = 3, from sinc function the 

X(3) bin’s magnitude should be 24.2—but Fig. 3-
8(b) shows X(3) bin magnitude to be greater than 
25. Why? 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-11 

 When examining a DFT output, we’re normally 
interested only in m = 0 to m = (N/2−1) bins 
 Thus, only the first 32 bins are shown in Fig. 3-8(b) 

 DFT is periodic in frequency domain 
 Upon examining DFT’s output for higher frequencies, 

we end up going in circles, and spectrum repeats itself 
forever 

 Fig. 3-11 shows cyclic representation of 64-point DFT 
shown in Fig. 3-8(b) 

 The more conventional way to view a DFT output 
is to unwrap the spectrum in Fig. 3-11 to get the 
spectrum in Fig. 3-12 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-12 

 As some of the input 3.4-cycle signal amplitude 
leaks into 2nd bin, 1st bin, and 0th bin, leakage 
continues into −1st bin, −2nd bin, −3rd bin, etc 
 63rd bin = −1st bin, 62nd bin = −2nd bin, and so on 
 These bin equivalencies allow us to view DFT output 

bins as if they extend into negative-frequency range, 
as shown in Fig. 3-13(a) 

 Result is that the leakage wraps around m = 0, as 
well as around m = N 
 m = 0 frequency is m = N frequency 

 Leakage wraparound at m = 0 accounts for the 
asymmetry around DFT’s m = 3 bin in Fig. 3-8(b) 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-13(b) 

 when a DFT input sequence x(n) is real, DFT 
outputs from m = 0 to m = (N/2−1) are redundant 
with frequency bin values for m > (N/2) 
 |X(m)| = |X(N−m)| 
 This means that leakage wraparound also occurs 

around m = N/2 bin 
 This can be illustrated using an input of 28.6 cycles per 

sample interval (32 − 3.4) whose spectrum is shown in 
Fig. 3-13(b) 

 Figs. 3-13(a) and (b) are similar 
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DFT Leakage 
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DFT Leakage 
 Fig. 3-14 

 DFT exhibits leakage wraparound about m = 0 
and m = N/2 bins 

 Minimum leakage asymmetry will occur near 
N/4th bin 



49 

Windows 
 Windowing 

 Windowing reduces DFT leakage by minimizing 
magnitude of sinc function’s sidelobes 
 Done by forcing amplitude of input time sequence at 

both beginning and end of sample interval to go 
smoothly toward a single common amplitude value 
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Windows 
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Windows 
 Fig. 3-15 

 Considering infinite-duration time signal shown in 
(a), a DFT can only be performed over a finite-
time sample interval like that shown in (c) 

 We can think of DFT input signal in (c) as product 
of (a), and rectangular window whose magnitude 
is 1 over sample interval shown in (b) 

 Anytime we take DFT of a finite-extent input 
sequence, we are, by default, multiplying that 
sequence by a window of all ones 

 Sinc function’s sin(x)/x shape is caused by this 
rectangular window because CFT of rectangular 
window in (b) is sinc function 
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Windows 
 Fig. 3-15 

 Rectangular window’s abrupt changes between 
one and zero cause sidelobes in sinc function 
 To minimize spectral leakage caused by those 

sidelobes, we have to reduce sidelobe amplitudes by 
using window functions other than rectangular window 

 If we multiply DFT input, (c), by triangular window 
function, (d), to obtain windowed input signal, (e), 
values of final input signal appear to be the same 
at beginning and end of sample interval in (e) 
 Reduced discontinuity decreases level of relatively 

high-frequency components in overall DFT output; that 
is, DFT bin sidelobe levels are reduced in magnitude 
using a triangular window 
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Windows 
 Fig. 3-15 

 There are window functions that reduce leakage 
even more than triangular window 

 Hanning window in (f) 
 Product of window in (f) and input sequence provides 

signal shown in (g) as input to DFT 
 Hamming window in (h) 

 It’s much like Hanning window, but it’s raised on a 
pedestal 
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Windows 
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Windows 
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Windows 
 Fig. 3-16 

 Hamming, Hanning, and triangular give reduced 
sidelobe levels relative to rectangular 

 Because Hamming, Hanning, and triangular 
reduce time-domain signal levels, their main lobe 
peak values are reduced relative to rectangular 

 Log magnitude response (normalized) 
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Windows 
 Fig. 3-16(b) 

 Main lobe of rectangular window’s magnitude 
response is the most narrow, fs/N 
 However, its first sidelobe level is only −13 dB below 

main lobe peak, which is not good 
 Various nonrectangular windows’ wide main 

lobes degrade the windowed DFT’s frequency 
resolution by almost a factor of two 
 However, important benefits of leakage reduction 

usually outweigh the loss in DFT frequency resolution 
 Hanning has rapid sidelobe roll-off 

 Hamming has lower first sidelobe levels, but its 
sidelobes roll off slowly relative to Hanning 
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Windows 
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Windows 
 Fig. 3-17 

 Shape of Hanning window’s response looks 
broader and has a lower peak amplitude, but its 
sidelobe leakage is noticeably reduced from that 
of rectangular window 
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Windows 
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Windows 
 Windows 

 Overall frequency resolution and signal sensitivity 
are affected much more by size and shape of 
window function than mere size of DFTs 

 There are many different window functions 
described in literature of DSP 

 Window selection is a trade-off between main 
lobe widening, first sidelobe levels, and how fast 
the sidelobes decrease with increased frequency 
 Use of any particular window depends on application 
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DFT Scalloping Loss 
 Scalloping 

 Fluctuations in overall magnitude response of an 
N-point DFT 

 When no input windowing function is used, 
sin(x)/x shape of sinc function’s magnitude 
response applies to each DFT output bin 
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DFT Scalloping Loss 
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DFT Scalloping Loss 
 Fig. 3-19 

 (a) shows a DFT’s aggregate magnitude 
response by superimposing several sin(x)/x bin 
magnitude responses 
 Sinc function’s sidelobes are not key here 

 In (b), overall DFT frequency-domain response is 
indicated by bold envelope curve 
 This rippled curve, also called picket fence effect, 

illustrates processing loss for input frequencies 
between bin centers 

 Magnitude of DFT response fluctuates from 1.0, at bin 
center, to 0.637 halfway between bin centers 

 This envelope ripple exhibits a scalloping loss of −4 dB 
halfway between bin centers 
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DFT Scalloping Loss 
 Fig. 3-19 

 Illustrates a DFT output when no window (i.e., a 
rectangular window) is used 

 Because nonrectangular window functions 
broaden DFT’s main lobe, their use results in a 
scalloping loss that will not be as severe as with 
rectangular window 
 Their wider main lobes overlap more and fill in valleys 

of envelope curve in (b) 
 Scalloping loss isn’t a severe problem in practice 

 Real-world signals normally have bandwidths that span 
many frequency bins so that DFT magnitude response 
ripples can go almost unnoticed 


