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The Discrete Fourier Transform (2) 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Zero padding 
 A method to improve DFT spectral estimation 
 Involves addition of zero-valued data samples to 

an original DFT input sequence to increase total 
number of input data samples 

 Investigating zero-padding technique illustrates 
DFT’s property of frequency-domain sampling 
 When we sample a continuous time-domain function, 

having a CFT, and take DFT of those samples, the 
DFT results in a frequency-domain sampled 
approximation of the CFT 

 The more points in DFT, the better DFT output 
approximates CFT 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Fig. 3-20 
 Because CFT is taken over an infinitely wide time 

interval, CFT has continuous resolution 
 Suppose we want to use a 16-point DFT to 

approximate CFT of f(t) in Fig. 3-20(a) 
 16 discrete samples of f(t) are shown on left side of 

Fig. 3-21(a) 
 Applying those time samples to a 16-point DFT results 

in discrete frequency-domain samples, the positive 
frequencies of which are represented on right side of 
Fig. 3-21(a) 

 DFT output comprises samples of Fig. 3-20(b)’s CFT 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Fig. 3-21 
 If we append 16 zeros to input sequence and 

take a 32-point DFT, we get output shown on 
right side of (b) 
 DFT frequency sampling is increased by a factor of two 

 Adding 32 more zeros and taking a 64-point DFT, 
we get output shown on right side of (c) 
 64-point DFT output shows true shape of CFT 

 Adding 64 more zeros and taking a 128-point 
DFT, we get output shown on right side of (d) 
 DFT frequency-domain sampling characteristic is 

obvious now 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Fig. 3-21 
 Although zero-padded DFT output bin index of 

main lobe changes as N increases, zero-padded 
DFT output frequency associated with main lobe 
remains the same 

 If we perform zero padding on L nonzero input 
samples to get a total of N time samples for an N-
point DFT, zero-padded DFT output bin center 
frequencies are related to original fs by 

N
fmm s=bin th   theoffrequency center 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

Fig. no. 
Main lobe peak 
located at m = L = N = 

Frequency of main 
lobe peak relative to fs 

3-21(a) 3 16 16 3fs / 16 

3-21(b) 6 16 32 6fs / 32 = 3fs / 16 

3-21(c) 12 16 64 12fs / 64 = 3fs / 16 

3-21(d) 24 16 128 24fs / 128 = 3fs / 16 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Zero padding 
 DFT magnitude expressions 

 
 don’t apply if zero padding is used 

 To perform zero padding on L nonzero samples of a 
sinusoid whose frequency is located at a bin center to get 
a total of N input samples, replace N with L above 

 To perform both zero padding and windowing on 
input, do not apply window to entire input 
including appended zero-valued samples 
 Window function must be applied only to original nonzero 

time samples; otherwise padded zeros will zero out and 
distort part of window function, leading to erroneous 
results 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Discrete-time Fourier transform (DTFT) 
 DTFT is continuous Fourier transform of an L-

point discrete time-domain sequence 
 On a computer we can’t perform DTFT because it 

has an infinitely fine frequency resolution 
 But we can approximate DTFT by performing an N-

point DFT on an L-point discrete time sequence where 
N > L 

 Done by zero-padding original time sequence and 
taking DFT 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling 

 Zero padding 
 Zero padding does not improve our ability to 

resolve, to distinguish between, two closely 
spaced signals in frequency domain 
 E.g., main lobes of various spectra in Fig. 3-21 do not 

change in width, if measured in Hz, with increased 
zero padding 

 To improve our true spectral resolution of two 
signals, we need more nonzero time samples 

 To realize Fres Hz spectral resolution, we must 
collect 1/Fres seconds, worth of nonzero time 
samples for our DFT processing 
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DFT Processing Gain 
 Two types of processing gain associated with 

DFTs 
 1) DFT’s processing gain 

 Using DFT to detect signal energy embedded in noise 
 DFT can pull signals out of background noise 
 This is due to inherent correlation gain that takes place 

in any N-point DFT 
 2) integration gain 

 Possible when multiple DFT outputs are averaged 
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DFT Processing Gain 
 Processing gain of a single DFT 

 A DFT output bin can be treated as a bandpass filter 
(band center = mfs/N) whose gain can be increased and 
whose bandwidth can be reduced by increasing the 
value of N 
 Maximum possible DFT output magnitude increases as 

number of points (N) increases 
 
 Also, as N increases, DFT output bin main lobes 

become narrower 
 Decreasing a bandpass filter’s bandwidth is useful in 

energy detection because frequency resolution 
improves in addition to filter’s ability to minimize amount 
of background noise that resides within its passband 

NAMNAM ocomplexoreal ==      and     2/
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DFT Processing Gain 
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DFT Processing Gain 
 Fig. 3-22 

 DFT of a spectral tone (a constant-frequency 
sinewave) added to random noise 

 Output power levels are normalized so that the 
highest bin output power is set to 0 dB 

 (a) shows first 32 outputs of a 64-point DFT when 
input tone is at center of DFT’s m = 20th bin 
 Because tone’s original signal power is below average 

noise power level, it is difficult to detect when N = 64 
 If we quadruple the number of input samples (N = 

256), the tone power is raised above average 
background noise power as shown for m = 80 in 
(b) 
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DFT Processing Gain 
 Signal-to-noise ratio (SNR) 

 DFT’s output signal-power level over the average 
output noise-power level 

 DFT’s output SNR increases as N gets larger 
because a DFT bin’s output noise standard 
deviation (rms) value is proportional to      , and 
DFT’s output magnitude for the bin containing 
signal tone is proportional to N 

 For real inputs, if N > N′, an N-point DFT’s output 
SNRN increases over N′-point DFT SNRN′ by: 
 
 If we increase a DFT’s size from N′ to N = 2N′, DFT’s 

output SNR increases by 3 dB 

N

)'(log10 10' NNSNRSNR NN +=
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DFT Processing Gain 



18 

DFT Processing Gain 
 Integration gain due to averaging multiple 

DFTs 
 Theoretically, we could get very large DFT 

processing gains by increasing DFT size 
 Problem is that the number of necessary DFT 

multiplications increases proportionally to N2 
 Larger DFTs become very computationally intensive 

 Because addition is easier and faster to perform 
than multiplication, we can average outputs of 
multiple DFTs to obtain further processing gain 
and signal detection sensitivity 
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The DFT of Rectangular Functions 
 DFT of a rectangular function 

 One of the most prevalent and important 
computations encountered in DSP 

 Seen in sampling theory, window functions, 
discussions of convolution, spectral analysis, and 
in design of digital filters 
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The DFT of Rectangular Functions 
 DFT of a general rectangular function 

 A general rectangular function x(n) is defined as 
N samples containing K unity-valued samples 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
 Dirichlet kernel (DFT of rectangular function) 

 Has a main lobe, centered about m = 0 point 
 Peak amplitude of main lobe is K 

 X(0) = sum of K unity-valued samples = K 
 Main lobe’s width = 2N/K 

 
 
 
 Thus main lobe width is inversely proportional to K 
 A fundamental characteristic of Fourier transforms: the 

narrower the function in one domain, the wider its 
transform will be in the other domain 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
 Fig. 3-26 

 64-point DFT of 64-sample rectangular function, 
with 11 unity values (N = 64 and K = 11) 

 It’s easier to comprehend the true spectral nature 
of X(m) by viewing its absolute magnitude 
 Provided in Fig. 3-27(a) 

 Fig. 3-27(a) 
 The main and sidelobes are clearly evident now 
 K = 11  peak value of main lobe = 11 
 Width of main lobe = N/K = 64/11 = 5.82 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
 DFT of a symmetrical rectangular function 
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The DFT of Rectangular Functions 
 DFT of a symmetrical rectangular function 

 
 

 This DFT is itself a real function 
 So it contains no imaginary part or phase term 
 If x(n) is real and even, x(n) = x(−n), then Xreal(m) is 

nonzero and Ximag(m) is always zero 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
 Fig. 3-29 (64-point DFT) 

 Xreal(m) is nonzero and Ximag(m) is zero 
 Identical magnitudes in Figs. 3-27(a) and 3-29(d) 

 Shifting K unity-valued samples to center merely 
affects phase angle of X(m), not its magnitude (shifting 
theorem of DFT) 

 Even though Ximag(m) is zero in (c), phase angle 
of X(m) is not always zero 
 X(m)’s phase angles in (e) are either +π, zero, or −π 
 ejπ = ej(−π) = −1 we could easily reconstruct Xreal(m) 

from |X(m)| and phase angle Xø(m) if we must 
 Xreal(m) is equal to |X(m)| with the signs of |X(m)|’s 

alternate sidelobes reversed 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
 Fig. 3-30 

 Another example of how DFT of a rectangular 
function is a sampled version of Dirichlet kernel 

 A 64-point x(n) where 31 unity-valued samples 
are centered about n = 0 index location 

 By broadening x(n), i.e., increasing K, we’ve 
narrowed Dirichlet kernel of X(m) 
 
 

 Peak value of |X(m)| = K = 31 
31
64

crossing zerofirst ==
K
Nm
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The DFT of Rectangular Functions 
 DFT of an all-ones rectangular function 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 
 Fig. 3-32 

 Dirichlet kernel of X(m) in (b) is as narrow as it 
can get 

 Main lobe’s first positive zero crossing occurs at 
m = 64/64 = 1 sample in (b)  

 Peak value of |X(m)| = N = 64 
 x(n) is all ones  |X(m)| is zero for all m ≠ 0 
 The sinc function 

 
 Defines overall DFT frequency response to an input 

sinusoidal sequence 
 Is also amplitude response of a single DFT bin 
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The DFT of Rectangular Functions 
 DFT of an all-ones rectangular function 
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The DFT of Rectangular Functions 
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The DFT of Rectangular Functions 

DFT frequency 
axis 

representation 

Frequency 
variable 

Resolution of 
X(m) 

Repetition 
interval of 

X(m) 

Frequency 
axis range 

Frequency in Hz f fs/N fs -fs/2 to fs/2 

Frequency in 
cycles/sample f/fs 1/N 1 -1/2 to 1/2 

Frequency in 
radians/sample ω 2π/N 2π -π to π 
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The DFT of Rectangular Functions 
 Alternate form of DFT of an all-ones 

rectangular function 
 Using radians/sample frequency notation for DFT 

axis leads to another prevalent form of DFT of all-
ones rectangular function 

 Letting normalized discrete frequency axis 
variable be ω = 2πm/N, then πm = Nω/2 
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Interpreting DFT Using DTFT 
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Interpreting DFT Using DTFT 
 Fig. 3-35 

 (a) shows an infinite-length continuous-time 
signal containing a single finite-width pulse 
 Magnitude of its continuous Fourier transform (CFT) is 

continuous frequency-domain function X1(ω) 
 continuous frequency variable ω is radians per second 

 If CFT is performed on infinite-length signal of 
periodic pulses in (b), result is line spectra known 
as Fourier series X2(ω) 
 X2(ω) Fourier series is a sampled version of 

continuous spectrum in (a) 



44 

Interpreting DFT Using DTFT 
 Fig. 3-35 

 (c) shows infinite-length discrete time sequence 
x(n), containing several nonzero samples 
 We can perform a CFT of x(n) describing its spectrum 

as a continuous frequency-domain function X3(ω) 
 This continuous spectrum is called a discrete-time 

Fourier transform (DTFT) defined by 
 
 

 ω frequency variable is measured in radians/sample 
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Interpreting DFT Using DTFT 
 DTFT example 

 Time sequence: xo(n) = (0.75)n for n ≥ 0 
 Its DTFT is 

 
 
 
 
 
 

 Xo(ω) is continuous and periodic with a period of 
2π, whose magnitude is shown in Fig. 3-36 
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Interpreting DFT Using DTFT 
 
 
 
 
 

 Verification of 2π periodicity of DTFT 
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Interpreting DFT Using DTFT 
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Interpreting DFT Using DTFT 
 Fig. 3-35 (cont.) 

 Transforms indicated in Figs. (a) through (c) are 
pencil-and-paper mathematics of calculus 

 In a computer, using only finite-length discrete 
sequences, we can only approximate CFT (the 
DTFT) of infinite-length x(n) time sequence in (c) 
 That approximation is DFT, and it’s the only Fourier 

transform tool available 
 Taking DFT of x1(n), where x1(n) is a finite-length 

portion of x(n), we obtain discrete periodic X1(m) in (d) 
 X1(m) is a sampled version of X3(ω) 
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Interpreting DFT Using DTFT 
 Fig. 3-35 

 X1(m) is also exactly equal to CFT of periodic 
time sequence x2(n) in (d) 

 The DFT is equal to the continuous Fourier 
transform (the DTFT) of a periodic time-domain 
discrete sequence 

 If a function is periodic, its forward/inverse DTFT 
will be discrete; if a function is discrete, its 
forward/inverse DTFT will be periodic 


