Digital Signal Processing

The Discrete Fourier Transform (2)

Moslem Amiri, Václav Přenosil Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons (0-13-261480-4) © Pearson Education, 2011.

Zero padding

- A method to improve DFT spectral estimation
- Involves addition of zero-valued data samples to an original DFT input sequence to increase total number of input data samples
- Investigating zero-padding technique illustrates
 DFT's property of frequency-domain sampling
 - When we sample a continuous time-domain function, having a CFT, and take DFT of those samples, the DFT results in a frequency-domain sampled approximation of the CFT
 - The more points in DFT, the better DFT output approximates CFT

Figure 3-20 Continuous Fourier transform: (a) continuous time-domain f(t) of a truncated sinusoid of frequency 3/T; (b) continuous Fourier transform of f(t).

- Fig. 3-20
 - Because CFT is taken over an infinitely wide time interval, CFT has continuous resolution
 - Suppose we want to use a 16-point DFT to approximate CFT of *f*(*t*) in Fig. 3-20(a)
 - 16 discrete samples of f(t) are shown on left side of
 Fig. 3-21(a)
 - Applying those time samples to a 16-point DFT results in discrete frequency-domain samples, the positive frequencies of which are represented on right side of Fig. 3-21(a)
 - DFT output comprises samples of Fig. 3-20(b)'s CFT

Figure 3-21 DFT frequency-domain sampling: (a) 16 input data samples and N = 16; (b) 16 input data samples, 16 padded zeros, and N = 32; (c) 16 input data samples, 48 padded zeros, and N = 64; (d) 16 input data samples, 112 padded zeros, and N = 128.

- Fig. 3-21
 - If we append 16 zeros to input sequence and take a 32-point DFT, we get output shown on right side of (b)
 - DFT frequency sampling is increased by a factor of two
 - Adding 32 more zeros and taking a 64-point DFT, we get output shown on right side of (c)
 - 64-point DFT output shows true shape of CFT
 - Adding 64 more zeros and taking a 128-point DFT, we get output shown on right side of (d)
 - DFT frequency-domain sampling characteristic is obvious now

- Fig. 3-21
 - Although zero-padded DFT output bin index of main lobe changes as N increases, zero-padded DFT output frequency associated with main lobe remains the same
 - If we perform zero padding on *L* nonzero input samples to get a total of *N* time samples for an *N*point DFT, zero-padded DFT output bin center frequencies are related to original f_s by

center frequency of the *m*th bin =
$$\frac{m f_s}{N}$$

Fig. no.	Main lobe peak located at <i>m</i> =	L =	N =	Frequency of main lobe peak relative to <i>f_s</i>
3-21(a)	3	16	16	3 <i>f_s</i> / 16
3-21(b)	6	16	32	$6f_s / 32 = 3f_s / 16$
3-21(c)	12	16	64	$12f_s / 64 = 3f_s / 16$
3-21(d)	24	16	128	$24f_s / 128 = 3f_s / 16$

Zero padding

DFT magnitude expressions

 $M_{real} = A_o N / 2$ and $M_{complex} = A_o N$

don't apply if zero padding is used

- To perform zero padding on *L* nonzero samples of a sinusoid whose frequency is located at a bin center to get a total of *N* input samples, replace *N* with *L* above
- To perform both zero padding and windowing on input, do not apply window to entire input including appended zero-valued samples
 - Window function must be applied only to original nonzero time samples; otherwise padded zeros will zero out and distort part of window function, leading to erroneous results

9

- Discrete-time Fourier transform (DTFT)
 - DTFT is continuous Fourier transform of an Lpoint discrete time-domain sequence
 - On a computer we can't perform DTFT because it has an infinitely fine frequency resolution
 - But we can approximate DTFT by performing an Npoint DFT on an L-point discrete time sequence where N > L
 - Done by zero-padding original time sequence and taking DFT

Zero padding

- Zero padding does not improve our ability to resolve, to distinguish between, two closely spaced signals in frequency domain
 - E.g., main lobes of various spectra in Fig. 3-21 do not change in width, if measured in Hz, with increased zero padding
- To improve our true spectral resolution of two signals, we need more nonzero time samples
- To realize F_{res} Hz spectral resolution, we must collect 1/F_{res} seconds, worth of nonzero time samples for our DFT processing

- Two types of processing gain associated with DFTs
 - 1) DFT's processing gain
 - Using DFT to detect signal energy embedded in noise
 - DFT can *pull* signals out of background noise
 - This is due to inherent correlation gain that takes place in any *N*-point DFT
 - 2) integration gain
 - Possible when multiple DFT outputs are averaged

Processing gain of a single DFT

- A DFT output bin can be treated as a bandpass filter (band center = mf_s/N) whose gain can be increased and whose bandwidth can be reduced by increasing the value of N
 - Maximum possible DFT output magnitude increases as number of points (N) increases

 $M_{real} = A_o N / 2$ and $M_{complex} = A_o N$

- Also, as N increases, DFT output bin main lobes become narrower
- Decreasing a bandpass filter's bandwidth is useful in energy detection because frequency resolution improves in addition to filter's ability to minimize amount of background noise that resides within its passband

Figure 3-22 Single DFT processing gain: (a) N = 64; (b) N = 256; (c) N = 1024.

Fig. 3-22

- DFT of a spectral tone (a constant-frequency sinewave) added to random noise
- Output power levels are normalized so that the highest bin output power is set to 0 dB
- (a) shows first 32 outputs of a 64-point DFT when input tone is at center of DFT's m = 20th bin
 - Because tone's original signal power is below average noise power level, it is difficult to detect when N = 64
- If we quadruple the number of input samples (N = 256), the tone power is raised above average background noise power as shown for m = 80 in (b)

Signal-to-noise ratio (SNR)

- DFT's output signal-power level over the average output noise-power level
- DFT's output SNR increases as *N* gets larger because a DFT bin's output noise standard deviation (*rms*) value is proportional to \sqrt{N} , and DFT's output magnitude for the bin containing signal tone is proportional to *N*
- For real inputs, if N > N', an N-point DFT's output SNR_N increases over N'-point DFT SNR_{N'} by:

 $SNR_N = SNR_{N'} + 10\log_{10}(N/N')$

If we increase a DFT's size from N' to N = 2N', DFT's output SNR increases by 3 dB

Figure 3-23 DFT processing gain versus number of DFT points *N* for various input signal-to-noise ratios: (a) linear *N* axis; (b) logarithmic *N* axis.

- Integration gain due to averaging multiple DFTs
 - Theoretically, we could get very large DFT processing gains by increasing DFT size
 - Problem is that the number of necessary DFT multiplications increases proportionally to N²
 - Larger DFTs become very computationally intensive
 - Because addition is easier and faster to perform than multiplication, we can average outputs of multiple DFTs to obtain further processing gain and signal detection sensitivity

DFT of a rectangular function

- One of the most prevalent and important computations encountered in DSP
- Seen in sampling theory, window functions, discussions of convolution, spectral analysis, and in design of digital filters

DFT_{rect. function} =
$$\frac{\sin(x)}{\sin(x/N)}$$
, or $\frac{\sin(x)}{x}$, or $\frac{\sin(Nx/2)}{\sin(x/2)}$

DFT of a general rectangular function

 A general rectangular function x(n) is defined as N samples containing K unity-valued samples

Figure 3-24 Rectangular function of width K samples defined over N samples where K < N.

$$\begin{split} X(m) &= \sum_{n=-(N/2)+1}^{N/2} x(n) e^{-j2\pi nm/N} \\ &= \sum_{n=-n_o}^{-n_o+(K-1)} 1 \cdot e^{-j2\pi nm/N} \\ \xrightarrow{q=2\pi m/N} \\ X(q) &= \sum_{n=-n_o}^{-n_o+(K-1)} e^{-jqn} \\ &= e^{-jq(-n_o)} + e^{-jq(-n_o+1)} + e^{-jq(-n_o+2)} + \dots + e^{-jq(-n_o+(K-1))} \\ &= e^{-jq(-n_o)} e^{-j0q} + e^{-jq(-n_o)} e^{-j1q} + e^{-jq(-n_o)} e^{-j2q} + \dots + e^{-jq(-n_o)} e^{-jq(K-1)} \\ &= e^{jq(n_o)} \cdot [e^{-j0q} + e^{-j1q} + e^{-j2q} + \dots + e^{-jq(K-1)}] \\ X(q) &= e^{jq(n_o)} \sum_{p=0}^{K-1} e^{-jpq} \end{split}$$

$$X(q) = e^{jq(n_o)} \sum_{\substack{p=0\\geometric series}}^{K-1} e^{-jpq}$$

geometric series
$$\sum_{p=0}^{K-1} e^{-jpq} = \frac{1 - e^{-jqK}}{1 - e^{-jq}}$$
$$= \frac{e^{-jqK/2} (e^{jqK/2} - e^{-jqK/2})}{e^{-jq/2} (e^{jq/2} - e^{-jq/2})}$$
$$= e^{-jq(K-1)/2} \cdot \frac{(e^{jqK/2} - e^{-jqK/2})}{(e^{jq/2} - e^{-jq/2})}$$

Euler's equation:
$$\frac{\sin(\phi) = (e^{j\phi} - e^{-j\phi})/2j}{\sin(\phi) = e^{-jq(K-1)/2}} \cdot \frac{2j\sin(qK/2)}{2j\sin(q/2)}$$
$$\sum_{p=0}^{K-1} e^{-jpq} = e^{-jq(K-1)/2} \cdot \frac{\sin(qK/2)}{\sin(q/2)}$$

$$X(q) = e^{jq(n_o)} \sum_{p=0}^{K-1} e^{-jpq}$$

$$\xrightarrow{\sum_{p=0}^{K-1} e^{-jpq} = e^{-jq(K-1)/2} \cdot \frac{\sin(qK/2)}{\sin(q/2)}}{\sin(q/2)} = e^{jq(n_o)} \cdot e^{-jq(K-1)/2} \cdot \frac{\sin(qK/2)}{\sin(q/2)}$$

$$= e^{jq(n_o - (K-1)/2)} \cdot \frac{\sin(qK/2)}{\sin(q/2)}$$

$$\xrightarrow{q=2\pi m/N} X(m) = e^{j(2\pi m/N)(n_o - (K-1)/2)} \cdot \frac{\sin(2\pi mK/2N)}{\sin(2\pi m/2N)}$$

$$\xrightarrow{\text{General form of the}} X(m) = e^{j(2\pi m/N)(n_o - (K-1)/2)} \cdot \frac{\sin(\pi mK/N)}{\sin(\pi m/N)}$$

Figure 3-25 The Dirichlet kernel of X(m): (a) periodic continuous curve on which the X(m) samples lie; (b) X(m) amplitudes about the m = 0 sample; (c) |X(m)| magnitudes about the m = 0 sample.

- Dirichlet kernel (DFT of rectangular function)
 - Has a main lobe, centered about m = 0 point
 - Peak amplitude of main lobe is K
 - X(0) = sum of K unity-valued samples = K
 - Main lobe's width = 2N/K $X(m) = e^{j(2\pi m/N)(n_o - (K-1)/2)} \cdot \frac{\sin(\pi m K/N)}{\sin(\pi m/N)}$ $m_{\text{first zero crossing}} = \frac{\pi N}{\pi K} = \frac{N}{K}$
 - Thus main lobe width is inversely proportional to K
 - A fundamental characteristic of Fourier transforms: the narrower the function in one domain, the wider its transform will be in the other domain

Figure 3-26 DFT of a rectangular function: (a) original function x(n); (b) real part of the DFT of x(n), $X_{real}(m)$; (c) imaginary part of the DFT of x(n), $X_{imag}(m)$.

Fig. 3-26

- 64-point DFT of 64-sample rectangular function, with 11 unity values (N = 64 and K = 11)
- It's easier to comprehend the true spectral nature of X(m) by viewing its absolute magnitude
 - Provided in Fig. 3-27(a)

Fig. 3-27(a)

- The main and sidelobes are clearly evident now
- $K = 11 \rightarrow$ peak value of main lobe = 11
- Width of main lobe = N/K = 64/11 = 5.82

Figure 3-27 DFT of a generalized rectangular function: (a) magnitude |X(m)|; (b) phase angle in radians.

DFT of a symmetrical rectangular function

Figure 3-28 Rectangular x(n) with K samples centered about n = 0.

$$X(m) = e^{j(2\pi m/N)(n_o - (K-1)/2)} \cdot \frac{\sin(\pi m K/N)}{\sin(\pi m/N)}$$

$$\xrightarrow{n_o = (K-1)/2} X(m) = e^{j(2\pi m/N)((K-1)/2 - (K-1)/2)} \cdot \frac{\sin(\pi m K/N)}{\sin(\pi m/N)}$$

$$=e^{j(2\pi m/N)(0)}\cdot\frac{\sin(\pi mK/N)}{\sin(\pi m/N)}$$

Symmetrical form of the Dirichlet kernel $\rightarrow X(m) = \frac{\sin(\pi m K / N)}{\sin(\pi m / N)}$

DFT of a symmetrical rectangular function

$$X(m) = \frac{\sin(\pi m K / N)}{\sin(\pi m / N)}$$

- This DFT is itself a real function
 - So it contains no imaginary part or phase term
 - If x(n) is real and even, x(n) = x(-n), then $X_{real}(m)$ is nonzero and $X_{imag}(m)$ is always zero

Figure 3-29 DFT of a rectangular function centered about n = 0: (a) original x(n); (b) $X_{real}(m)$; (c) $X_{imag}(m)$; (d) magnitude of X(m); (e) phase angle of X(m) in radians.

Fig. 3-29 (64-point DFT)

- $X_{\text{real}}(m)$ is nonzero and $X_{\text{imag}}(m)$ is zero
- Identical magnitudes in Figs. 3-27(a) and 3-29(d)
 - Shifting K unity-valued samples to center merely affects phase angle of X(m), not its magnitude (shifting theorem of DFT)
- Even though X_{imag}(m) is zero in (c), phase angle of X(m) is not always zero
 - X(m)'s phase angles in (e) are either $+\pi$, zero, or $-\pi$
 - $e^{j\pi} = e^{j(-\pi)} = -1 \rightarrow$ we could easily reconstruct $X_{real}(m)$ from |X(m)| and phase angle $X_{g}(m)$ if we must
 - X_{real}(m) is equal to |X(m)| with the signs of |X(m)|'s alternate sidelobes reversed

Figure 3-30 DFT of a symmetrical rectangular function with 31 unity values: (a) original x(n); (b) magnitude of X(m).

Fig. 3-30

- Another example of how DFT of a rectangular function is a sampled version of Dirichlet kernel
- A 64-point x(n) where 31 unity-valued samples are centered about n = 0 index location
- By broadening x(n), i.e., increasing K, we've narrowed Dirichlet kernel of X(m)

$$m_{\text{first zero crossing}} = \frac{N}{K} = \frac{64}{31}$$

• Peak value of |X(m)| = K = 31

DFT of an all-ones rectangular function

Figure 3-31 Rectangular function with N unity-valued samples.

$$X(m) = e^{j(2\pi m/N)(n_o - (K-1)/2)} \cdot \frac{\sin(\pi m K/N)}{\sin(\pi m/N)}$$

 $\xrightarrow{K=N \text{ and}}_{n_o=(N-1)/2} X(m) = e^{j(2\pi m/N)((N-1)/2 - (N-1)/2)} \cdot \frac{\sin(\pi mN/N)}{\sin(\pi m/N)}$

$$=e^{j(2\pi m/N)(0)}\cdot\frac{\sin(\pi m)}{\sin(\pi m/N)}$$

All-ones form of the Dirichlet kernel (Type 1) $\rightarrow X(m) = \frac{\sin(\pi m)}{\sin(\pi m / N)}$

Figure 3-32 All-ones function: (a) rectangular function with N = 64 unity-valued samples; (b) DFT magnitude of the all-ones time function; (c) close-up view of the DFT magnitude of an all-ones time function.

36

Fig. 3-32

- Dirichlet kernel of X(m) in (b) is as narrow as it can get
- Main lobe's first positive zero crossing occurs at m = 64/64 = 1 sample in (b)
- Peak value of |X(m)| = N = 64
- x(n) is all ones $\rightarrow |X(m)|$ is zero for all $m \neq 0$
- The sinc function

All-ones form of the $\xrightarrow{\text{Dirichlet kernel}(\text{Type1})} X(m) = \frac{\sin(\pi m)}{\sin(\pi m/N)}$

- Defines overall DFT frequency response to an input sinusoidal sequence
- Is also amplitude response of a single DFT bin

DFT of an all-ones rectangular function

Figure 3-34 DFT time and frequency axis dimensions: (a) time-domain axis uses time index *n*; (b) various representations of the DFT's frequency axis.

DFT frequency axis representation	Frequency variable	Resolution of X(m)	Repetition interval of X(m)	Frequency axis range
Frequency in Hz	f	f _s /N	f _s	-f _s /2 to f _s /2
Frequency in cycles/sample	f/f _s	1/N	1	-1/2 to 1/2
Frequency in radians/sample	ω	2π/N	2π	-п to п

- Alternate form of DFT of an all-ones rectangular function
 - Using radians/sample frequency notation for DFT axis leads to another prevalent form of DFT of allones rectangular function
 - Letting normalized discrete frequency axis variable be $\omega = 2\pi m/N$, then $\pi m = N\omega/2$

All-ones form of the
Dirichlet kernel (Type 1)
$$\rightarrow X(m) = \frac{\sin(\pi m)}{\sin(\pi m/N)}$$

All-ones form of the
Dirichlet kernel (Type 4) $\rightarrow X(\omega) = \frac{\sin(N\omega/2)}{\sin(\omega/2)}$

Figure 3-35 Time-domain signals and sequences, and the magnitudes of their transforms in the frequency domain.

Fig. 3-35

- (a) shows an infinite-length continuous-time signal containing a single finite-width pulse
 - Magnitude of its continuous Fourier transform (CFT) is continuous frequency-domain function $X_1(\omega)$
 - continuous frequency variable ω is radians per second
- If CFT is performed on infinite-length signal of periodic pulses in (b), result is line spectra known as *Fourier series* $X_2(\omega)$
 - X₂(ω) Fourier series is a sampled version of continuous spectrum in (a)

Fig. 3-35

- (c) shows infinite-length discrete time sequence x(n), containing several nonzero samples
 - We can perform a CFT of x(n) describing its spectrum as a continuous frequency-domain function $X_3(\omega)$
 - This continuous spectrum is called a discrete-time Fourier transform (DTFT) defined by

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n) e^{-j\omega n}$$

ω frequency variable is measured in radians/sample

- DTFT example
 - Time sequence: $x_o(n) = (0.75)^n$ for $n \ge 0$
 - Its DTFT is

• $X_{o}(\omega)$ is continuous and periodic with a period of 2π , whose magnitude is shown in Fig. 3-36

Figure 3-36 DTFT magnitude | X_o(ω) |.
 Verification of 2π periodicity of DTFT

$$X(\omega + 2\pi k) = \sum_{n = -\infty}^{\infty} x(n) e^{-j(\omega + 2\pi k)n} = \sum_{n = -\infty}^{\infty} x(n) e^{-j\omega n} e^{-j2\pi kn}$$
$$= \sum_{n = -\infty}^{\infty} x(n) e^{-j\omega n} = X(\omega)$$

=1

Figure 3-35 Time-domain signals and sequences, and the magnitudes of their transforms in the frequency domain.

Fig. 3-35 (cont.)

- Transforms indicated in Figs. (a) through (c) are pencil-and-paper mathematics of calculus
- In a computer, using only finite-length discrete sequences, we can only approximate CFT (the DTFT) of infinite-length x(n) time sequence in (c)
 - That approximation is DFT, and it's the only Fourier transform tool available
 - Taking DFT of x₁(n), where x₁(n) is a finite-length portion of x(n), we obtain discrete periodic X₁(m) in (d)
 - $X_1(m)$ is a sampled version of $X_3(\omega)$

$$X_1(m) = X_3(\omega) |_{\omega = 2\pi m/N} = \sum_{n=0}^{N-1} x_1(n) e^{-j2\pi nm/N}$$

Fig. 3-35

- X₁(m) is also exactly equal to CFT of periodic time sequence x₂(n) in (d)
- The DFT is equal to the continuous Fourier transform (the DTFT) of a periodic time-domain discrete sequence
- If a function is periodic, its forward/inverse DTFT will be discrete; if a function is discrete, its forward/inverse DTFT will be periodic