
Digital Signal Processing

Moslem Amiri, Václav Přenosil
Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons
(0-13-261480-4) © Pearson Education, 2011.

The Fast Fourier Transform

2

Relationship of FFT to DFT
 Radix-2 FFT algorithm

 A very efficient process for performing DFTs
under constraint that DFT size be an integral
power of two

 Radix-2 FFT greatly reduces the number of
necessary arithmetic operations

 The number of complex multiplications necessary
for an N-point DFT is N2

 The number of complex multiplications for an N-

point FFT is approximately (N/2)log2N

∑
−

=

−=
1

0

/2)()(
N

n

NmnjenxmX π

3

Relationship of FFT to DFT

4

Relationship of FFT to DFT
 FFT is not an approximation of DFT

 It’s exactly equal to DFT
 All of performance characteristics of DFT, output

symmetry, linearity, output magnitudes, leakage,
scalloping loss, etc., also describe the behavior of
FFT

5

Hints on Using FFTs in Practice
 Sample fast enough and long enough

 Sampling rate must be greater than twice the
bandwidth of continuous A/D input signal
 Sample at 2.5 to 4 times the signal bandwidth
 If we don’t know signal’s bandwidth, we should

mistrust any FFT results that have significant spectral
components at frequencies near half fs

 Be suspicious of aliasing if there are any spectral
components whose frequencies depend on fs

 If we suspect that aliasing is occurring or continuous
signal contains broadband noise, we’ll have to use an
analog lowpass filter prior to A/D conversion

 Cutoff frequency of lowpass filter must be greater than
frequency band of interest but less than half fs

6

Hints on Using FFTs in Practice
 Sample fast enough and long enough

 How many samples must we collect
 Data collection time interval must be long enough to

satisfy desired FFT frequency resolution for given fs

 Total data collection time interval is N/fs seconds, and
N-point FFT bin-to-bin frequency resolution is fs/N Hz

 For example, if we need a spectral resolution of 5 Hz,
then fs/N = 5 Hz, and

 If fs is, say, 10 kHz, then N must be at least 2000, and
we’d choose N = 2048 because this number is a power
of two

s
ss fffN 2.0

5resolution desired
===

7

Hints on Using FFTs in Practice
 Manipulating time data prior to transformation

 If length of time-domain data sequence is not an
integral power of two, we have two options

 Discard enough data samples so that remaining
sequence length is some integral power of two
 Not recommended

 A better approach is to append enough zero-
valued samples to the end of time data sequence
to match the number of points of the next largest
radix-2 FFT
 Zero-padding technique

8

Hints on Using FFTs in Practice
 Manipulating time data prior to transformation

 We can multiply time data by a window function
to alleviate leakage problem
 But frequency resolution is degraded when windows

are used
 If appending zeros is necessary to extend a time

sequence, append zeros after multiplying original
time data sequence by a window function

9

Hints on Using FFTs in Practice
 Manipulating time data prior to transformation

 Even when windowing is employed, high-level
spectral components can obscure nearby low-
level spectral components
 This is especially evident when original time data has a

nonzero average, i.e., it’s riding on a DC bias
 A large-amplitude DC spectral component at 0 Hz will

overshadow its spectral neighbors
 We can eliminate this problem by calculating average

of time sequence and subtracting that average value
from each sample in original sequence

 The averaging and subtraction process must be
performed before windowing

10

Hints on Using FFTs in Practice
 Enhancing FFT results

 To detect signal energy in presence of noise
(enough time-domain data is available), we can
improve sensitivity of processing by averaging
multiple FFTs

 A 2N-point real sequence can be transformed
with a single N-point complex radix-2 FFT to
speed up our processing

 If we need FFT of unwindowed and also
windowed time-domain data, we can perform FFT
of unwindowed data, and then we can perform
frequency-domain windowing to reduce spectral
leakage on any, or all, of FFT bin outputs

11

Hints on Using FFTs in Practice
 Interpreting FFT results

 First step in interpreting FFT results is to compute
absolute frequency of individual FFT bin centers
 Like DFT, FFT bin spacing is fs/N
 For m = 0, 1, 2, 3, . . ., N−1, absolute frequency of mth

bin center is mfs/N
 If FFT’s input time samples are real, only X(m)

outputs from m = 0 to m = N/2 are independent
 We need determine only absolute FFT bin frequencies

for m over range of 0 ≤ m ≤ N/2
 If FFT input samples are complex, all N of FFT outputs

are independent, and we should compute absolute
FFT bin frequencies for m over range of 0 ≤ m ≤ N−1

12

Hints on Using FFTs in Practice
 Interpreting FFT results

 We can determine true amplitude of time-domain
signals from their FFT spectral results
 Radix-2 FFT outputs are complex

 FFT output magnitude samples

 are all inherently multiplied by factor N/2, when input

samples are real
 If FFT input samples are complex, scaling factor is N
 So to determine correct amplitudes of time-domain

sinusoidal components, divide FFT magnitudes by N/2
for real inputs and N for complex inputs

)()()(real mjXmXmX imag+=

2
imag

2
realmag)()()()(mXmXmXmX +==

13

Hints on Using FFTs in Practice
 Interpreting FFT results

 If a window function was used on original time-
domain data, some of FFT input samples will be
attenuated
 This reduces the resultant FFT output magnitudes from

their true unwindowed values
 To calculate correct amplitudes of various time-domain

sinusoidal components, we have to further divide FFT
magnitudes by appropriate processing loss factor
associated with the window function used

14

Hints on Using FFTs in Practice
 Interpreting FFT results

 To determine power spectrum XPS(m)

 Normalization through division by (|X(m)|max)2 or
|X(m)|max eliminates effect of any absolute FFT
scale factor (N or N/2) or window scale factor
 No compensation need be performed














⋅=














⋅=

⋅=

+==

max
10

2
max

2

10

2
10

2
imag

2
real

2

)(
)(

log20)(normalized

))((

)(
log10)(normalized

dB))((log10)(

)()()()(

mX
mX

mX

mX
mX

mX

mXmX

mXmXmXmX

dB

dB

dB

PS

15

Hints on Using FFTs in Practice
 Interpreting FFT results

 Phase angles Xø(m)

 Our calculations (or compiler) should detect

occurrences of Xreal(m) = 0 and set corresponding
Xø(m) to 90° if Ximag(m) > 0, set Xø(m) to 0° if Ximag(m) =
0, and set Xø(m) to −90° if Ximag(m) < 0

 FFT outputs containing significant noise
components can cause large fluctuations in the
computed Xø(m) phase angles
 Xø(m) samples are meaningful when corresponding

|X(m)| is well above average FFT output noise level









= −

)(
)(

tan)(
real

1

mX
mX

mX imag
φ

16

Derivation of Radix-2 FFT Algorithm

 where m is in range 0 to N/2−1
 Index m has that reduced range because each of the

two N/2-point DFTs on the right side are periodic in m
with period N/2

∑∑

∑∑

∑∑

∑

−

=

−

=

==
=

−

=

−

=

=

−

=

+−
−

=

−

−

=

−

++= →

++= →

++=

=

−

−

−

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0

2
1)2/(

0

2

1)2/(

0

/)12(2
1)2/(

0

/)2(2

1

0

/2

)12()2(

)12()2(

)12()2(

)()(

2/
)2//(2

)/(222

/2

N

n

mn
N

m
N

N

n

mn
N

We
eW

N

n

mn
N

m
N

N

n

mn
N

eW

N

n

Nmnj
N

n

Nmnj

N

n

Nmnj

WnxWWnx

WnxWWnx

enxenx

enxmX

N
Nj

Nj
N

Nj
N

π

π

π

ππ

π

17

Derivation of Radix-2 FFT Algorithm

 We have two N/2 summations whose results can

be combined to give the first N/2 samples of an
N-point DFT

 Benefits of breaking N-point DFT into two parts
 Reduction of number crunching because W terms in

the two summations are identical
 Also the upper half of DFT outputs is easy to calculate

∑∑
−

=

−

=

= ++= →
−

1)2/(

0
2/

1)2/(

0
2/)12()2()(

)2//(2
2/

N

n

mn
N

m
N

N

n

mn
N

eW WnxWWnxmX
Nj

N
π

18

Derivation of Radix-2 FFT Algorithm

 We just change sign of twiddle factor and use results
of the two summations from X(m) to get X(m+N/2)

 m goes from 0 to (N/2)−1
 To compute an N-point DFT, we actually perform two

N/2-point DFTs—one N/2-point DFT on even-indexed
and one N/2-point DFT on odd-indexed x(n) samples

∑∑

∑∑

∑∑

−

=

−

=

−+

−+

−

=

++
−

=

+

−

=

−

=

=

+−=+

−=−=== →

====

++=+

++= →
−

1)2/(

0
2/

1)2/(

0
2/

2/22/)2/(factor twiddle
2/2/

2/22
2/

2/
2/2/

)2/(
2/

1)2/(

0

)2/(
2/

)2/(
1)2/(

0

)2/(
2/

1)2/(

0
2/

1)2/(

0
2/

)12()2()2/(

)1()(

)1()(

)12()2()2/(

)12()2()(
)2//(2

2/

N

n

mn
N

m
N

N

n

mn
N

m
N

m
N

NNjm
N

N
N

m
N

Nm
N

mn
N

mn
N

NNnjmn
N

Nn
N

mn
N

Nmn
N

N

n

Nmn
N

Nm
N

N

n

Nmn
N

N

n

mn
N

m
N

N

n

mn
N

eW

WnxWWnxNmX

WWeWWWW

WWeWWWW

WnxWWnxNmX

WnxWWnxmX
Nj

N

π

π

π

19

Derivation of Radix-2 FFT Algorithm

∑

∑

∑

∑

−

=

−

=

−

=

−

=

+−

=+

++

=

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)12(

)2()2/(

)12(

)2()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxW

WnxNmX

WnxW

WnxmX

20

Derivation of Radix-2 FFT Algorithm

 Twiddle factors
 Because −e−j2πm/N = e−j2π(m+N/2)/N, negative W

twiddle factors are implemented with positive W
twiddle factors that follow the lower DFT in Fig. 4-
2

∑∑

∑∑
−

=

−

=

−

=

−

=

+−=+

++=

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)12()2()2/(

)12()2()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxWWnxNmX

WnxWWnxmX

21

Derivation of Radix-2 FFT Algorithm

∑∑

∑∑

∑∑

∑

∑∑

∑∑

−

=

−

=

−

=

−

=

=

−

=

+
−

=

−

=

−

=

−

=

−

=

−

=

+++=

++= →

++=

=

−=+ →

+= →

+−=+

++=

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0

)12(
2/

1)4/(

0

2
2/

1)2/(

0
2/

tionsimplifica

tionsimplifica

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)34()14()(

)24()4()(

)24()4(

)2()(

)()()2/(

)()()(

)12()2()2/(

)12()2()(

4/
2

2/

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WW

N

n

mn
N

N

n

mn
N

N

n

mn
N

m
N

m
N

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxWWnxmB

WnxWWnxmA

WnxWnx

WnxmA

mBWmANmX

mBWmAmX

WnxWWnxNmX

WnxWWnxmX

mn
N

mn
N

22

Derivation of Radix-2 FFT Algorithm

∑

∑

∑

∑

−

=

−

=

−

=

−

=

++

+=

++

=

−=+

+=

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0
4/2/

1)4/(

0
4/

)34(

)14()(

)24(

)4()(

)()()2/(

)()()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

m
N

m
N

WnxW

WnxmB

WnxW

WnxmA

mBWmANmX

mBWmAmX

Twiddle factor for N = 8,
ranges from to
because the m index, for
A(m) and B(m), goes from 0
to 3

m
NW 2/0

4W 3
4W

23

Derivation of Radix-2 FFT Algorithm
 Fig. 4-3

 For any N-point DFT, we break each of N/2-point
DFTs into two N/4-point DFTs to further reduce
the number of sine and cosine multiplications

 Eventually, we arrive at an array of 2-point DFTs
where no further computational savings could be
realized
 The 2-point DFT functions cannot be partitioned into

smaller parts
 Butterfly of a single 2-point DFT is shown in Fig. 4-4

24

Derivation of Radix-2 FFT Algorithm

 The 2-point DFT blocks in Fig. 4-3 are replaced

by butterfly in Fig. 4-4 to give a full 8-point FFT
implementation of DFT as shown in Fig. 4-5

1

1
2/22/

/020

−===

==
−−

−

ππ

π

jNNjN
N

Nj
N

eeW

eW

25

Derivation of Radix-2 FFT Algorithm

26

FFT Input/Output Data Index Bit Reversal
 Decimation-in-time FFT implementation

 Was the title of Fig. 4-5
 Decimation-in-time phrase refers to how we

broke DFT input samples into odd and even parts
 This time decimation leads to scrambled order of

input data’s index n in Fig. 4-5
 Shuffling of input data is known as bit reversal

 Because scrambled order of input data index can be
obtained by reversing bits of binary representation of
normal input data index order

27

FFT Input/Output Data Index Bit Reversal
 Input index bit reversal for an 8-point FFT

Normal order of
index n

Binary bits of
index n

Reversed bits
of index n

Bit-reversed
order of index n

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

28

Radix-2 FFT Butterfly Structures
 Twiddle factors in Fig. 4-5

 To simplify signal flows, replace twiddle factors
with their equivalent values referenced to
where N = 8
 We show just exponents m of , to get FFT structure

shown in Fig. 4-8

 Fig. 4-8
 from Fig. 4-5 
 from Fig. 4-5 
 …
 1s and −1s in the first stage of Fig. 4-5 are

replaced by 0s and 4s, respectively

m
NW

m
NW

1
4W 2

8W
2

4W 4
8W

29

Radix-2 FFT Butterfly Structures

30

Radix-2 FFT Butterfly Structures

31

Radix-2 FFT Butterfly Structures
 Fig. 4-9

 Input data is in its normal order and output data
indices are bit-reversed

 In this case, a bit-reversal operation needs to be
performed at output of FFT to unscramble
frequency-domain results

 Fig. 4-10
 Shows an FFT signal-flow structure that avoids

bit-reversal problem altogether

32

Radix-2 FFT Butterfly Structures

33

Radix-2 FFT Butterfly Structures
 Bit reversal

 A few years ago, hardware implementations of
FFT spent most of their time performing
multiplications
 Bit-reversal process necessary to access data in

memory wasn’t a significant portion of overall FFT
computational problem

 Now that high-speed multiplier/accumulator
integrated circuits can multiply two numbers in a
single clock cycle, FFT data multiplexing and
memory addressing are more important
 Led to development of efficient algorithms to perform

bit reversal

34

Radix-2 FFT Butterfly Structures
 Decimation-in-frequency algorithm

 Decimation-in-time or -frequency is determined
by whether the DFT inputs or outputs are
partitioned (into odd and even) when deriving a
particular FFT butterfly structure from the DFT
equations

 Decimation-in-frequency butterfly structures
(analogous to structures in Figs. 4-8 through 4-
10) are illustrated in Figs. 4-11 through 4-13
 An equivalent decimation-in-frequency FFT structure

exists for each decimation-in-time FFT structure
 The number of necessary multiplications is the same

for both structures

35

Radix-2 FFT Butterfly Structures

36

Radix-2 FFT Butterfly Structures

37

Radix-2 FFT Butterfly Structures

38

Alternate Single-Butterfly Structures
 Butterfly structures

 FFT butterfly structures are direct result of
derivations of decimation-in-time and decimation-
in-frequency algorithms
 Twiddle factors always take general forms shown in

Fig. 4-14(a)

39

Alternate Single-Butterfly Structures

40

Alternate Single-Butterfly Structures
 Fig. 4-14

 To implement decimation-in-time butterfly of (a),
we have to perform two complex multiplications
and two complex additions

 So we replace in (a) with to give us
simplified butterflies in (b)

 Because twiddle factors in (b) differ only by their
signs, the optimized butterflies in (c) can be used

k
N

k
N

NNjk
N

N
N

k
N

Nk
N

Nk
N

k
N

WWeWWWW

yWxy

yWxx

−=−=== →

+=

+=

−+

+

)1()(

'

'

2/22/2/tionsimplifica

2/

π

2/Nk
NW + k

NW−

41

Alternate Single-Butterfly Structures
 Optimized butterflies in 4-14(c)

 Require two complex additions but only one
complex multiplication, thus reducing
computational workload

 Because there are (N/2)log2N butterflies in an N-
point FFT, the number of complex multiplications
performed by an FFT is (N/2)log2N

 An algorithm is decimation-in-time if the twiddle
factor precedes the −1 in optimized butterflies

 An algorithm is decimation-in-frequency if the
twiddle factor follows the −1 in optimized
butterflies

42

Alternate Single-Butterfly Structures

43

Alternate Single-Butterfly Structures
 In-place FFT algorithms

 An in-place algorithm is depicted in Fig. 4-5
 Output of a butterfly operation can be stored in

the same hardware memory locations that
previously held butterfly’s input data
 No intermediate storage is necessary

 For an N-point FFT, only 2N memory locations
are needed
 The 2 comes from fact that each butterfly node

represents a data value that has both a real and an
imaginary part

 Data routing and memory addressing are rather
complicated

44

Alternate Single-Butterfly Structures
 Double-memory FFT algorithms

 A double-memory FFT structure is depicted in
Fig. 4-10

 Intermediate storage is necessary because we no
longer have standard butterflies, and 4N memory
locations are needed

 Data routing and memory address control are
much simpler in double-memory FFT structures
than in-place technique

