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The Fast Fourier Transform 
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Relationship of FFT to DFT 
 Radix-2 FFT algorithm 

 A very efficient process for performing DFTs 
under constraint that DFT size be an integral 
power of two 

 Radix-2 FFT greatly reduces the number of 
necessary arithmetic operations 

 The number of complex multiplications necessary 
for an N-point DFT is N2 
 
 

 
 The number of complex multiplications for an N-

point FFT is approximately (N/2)log2N  

∑
−

=

−=
1

0

/2)()(
N

n

NmnjenxmX π



3 

Relationship of FFT to DFT 
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Relationship of FFT to DFT 
 FFT is not an approximation of DFT 

 It’s exactly equal to DFT 
 All of performance characteristics of DFT, output 

symmetry, linearity, output magnitudes, leakage, 
scalloping loss, etc., also describe the behavior of 
FFT 
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Hints on Using FFTs in Practice 
 Sample fast enough and long enough 

 Sampling rate must be greater than twice the 
bandwidth of continuous A/D input signal 
 Sample at 2.5 to 4 times the signal bandwidth 
 If we don’t know signal’s bandwidth, we should 

mistrust any FFT results that have significant spectral 
components at frequencies near half fs 

 Be suspicious of aliasing if there are any spectral 
components whose frequencies depend on fs 

 If we suspect that aliasing is occurring or continuous 
signal contains broadband noise, we’ll have to use an 
analog lowpass filter prior to A/D conversion 

 Cutoff frequency of lowpass filter must be greater than 
frequency band of interest but less than half fs 



6 

Hints on Using FFTs in Practice 
 Sample fast enough and long enough 

 How many samples must we collect 
 Data collection time interval must be long enough to 

satisfy desired FFT frequency resolution for given fs 

 Total data collection time interval is N/fs seconds, and 
N-point FFT bin-to-bin frequency resolution is fs/N Hz 

 For example, if we need a spectral resolution of 5 Hz, 
then fs/N = 5 Hz, and 
 
 

 If fs is, say, 10 kHz, then N must be at least 2000, and 
we’d choose N = 2048 because this number is a power 
of two 
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Hints on Using FFTs in Practice 
 Manipulating time data prior to transformation 

 If length of time-domain data sequence is not an 
integral power of two, we have two options 

 Discard enough data samples so that remaining 
sequence length is some integral power of two  
 Not recommended 

 A better approach is to append enough zero-
valued samples to the end of time data sequence 
to match the number of points of the next largest 
radix-2 FFT 
 Zero-padding technique 
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Hints on Using FFTs in Practice 
 Manipulating time data prior to transformation 

 We can multiply time data by a window function 
to alleviate leakage problem 
 But frequency resolution is degraded when windows 

are used 
 If appending zeros is necessary to extend a time 

sequence, append zeros after multiplying original 
time data sequence by a window function 
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Hints on Using FFTs in Practice 
 Manipulating time data prior to transformation 

 Even when windowing is employed, high-level 
spectral components can obscure nearby low-
level spectral components 
 This is especially evident when original time data has a 

nonzero average, i.e., it’s riding on a DC bias 
 A large-amplitude DC spectral component at 0 Hz will 

overshadow its spectral neighbors 
 We can eliminate this problem by calculating average 

of time sequence and subtracting that average value 
from each sample in original sequence 

 The averaging and subtraction process must be 
performed before windowing 
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Hints on Using FFTs in Practice 
 Enhancing FFT results 

 To detect signal energy in presence of noise 
(enough time-domain data is available), we can 
improve sensitivity of processing by averaging 
multiple FFTs 

 A 2N-point real sequence can be transformed 
with a single N-point complex radix-2 FFT to 
speed up our processing 

 If we need FFT of unwindowed and also 
windowed time-domain data, we can perform FFT 
of unwindowed data, and then we can perform 
frequency-domain windowing to reduce spectral 
leakage on any, or all, of FFT bin outputs 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 First step in interpreting FFT results is to compute 
absolute frequency of individual FFT bin centers 
 Like DFT, FFT bin spacing is fs/N 
 For m = 0, 1, 2, 3, . . ., N−1, absolute frequency of mth 

bin center is mfs/N 
 If FFT’s input time samples are real, only X(m) 

outputs from m = 0 to m = N/2 are independent 
 We need determine only absolute FFT bin frequencies 

for m over range of 0 ≤ m ≤ N/2 
 If FFT input samples are complex, all N of FFT outputs 

are independent, and we should compute absolute 
FFT bin frequencies for m over range of 0 ≤ m ≤ N−1 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 We can determine true amplitude of time-domain 
signals from their FFT spectral results 
 Radix-2 FFT outputs are complex 

 
 FFT output magnitude samples 

 
 are all inherently multiplied by factor N/2, when input 

samples are real 
 If FFT input samples are complex, scaling factor is N 
 So to determine correct amplitudes of time-domain 

sinusoidal components, divide FFT magnitudes by N/2 
for real inputs and N for complex inputs 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 If a window function was used on original time-
domain data, some of FFT input samples will be 
attenuated 
 This reduces the resultant FFT output magnitudes from 

their true unwindowed values 
 To calculate correct amplitudes of various time-domain 

sinusoidal components, we have to further divide FFT 
magnitudes by appropriate processing loss factor 
associated with the window function used 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 To determine power spectrum XPS(m) 
 
 
 
 
 
 

 Normalization through division by (|X(m)|max)2 or 
|X(m)|max eliminates effect of any absolute FFT 
scale factor (N or N/2) or window scale factor 
 No compensation need be performed 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 Phase angles Xø(m) 
 
 
 Our calculations (or compiler) should detect 

occurrences of Xreal(m) = 0 and set corresponding 
Xø(m) to 90° if Ximag(m) > 0, set Xø(m) to 0° if Ximag(m) = 
0, and set Xø(m) to −90° if Ximag(m) < 0 

 FFT outputs containing significant noise 
components can cause large fluctuations in the 
computed Xø(m) phase angles 
 Xø(m) samples are meaningful when corresponding 

|X(m)| is well above average FFT output noise level 
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Derivation of Radix-2 FFT Algorithm 
 
 
 
 
 
 
 
 

 where m is in range 0 to N/2−1  
 Index m has that reduced range because each of the 

two N/2-point DFTs on the right side are periodic in m 
with period N/2 
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Derivation of Radix-2 FFT Algorithm 
 
 
 We have two N/2 summations whose results can 

be combined to give the first N/2 samples of an 
N-point DFT 

 Benefits of breaking N-point DFT into two parts 
 Reduction of number crunching because W terms in 

the two summations are identical 
 Also the upper half of DFT outputs is easy to calculate 
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Derivation of Radix-2 FFT Algorithm 
 
 
 
 
 
 

 We just change sign of twiddle factor and use results 
of the two summations from X(m) to get X(m+N/2) 

 m goes from 0 to (N/2)−1 
 To compute an N-point DFT, we actually perform two 

N/2-point DFTs—one N/2-point DFT on even-indexed 
and one N/2-point DFT on odd-indexed x(n) samples 
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Derivation of Radix-2 FFT Algorithm 

∑

∑

∑

∑

−

=

−

=

−

=

−

=

+−

=+

++

=

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)12(

)2()2/(

)12(

)2()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxW

WnxNmX

WnxW

WnxmX



20 

Derivation of Radix-2 FFT Algorithm 
 
 
 

 Twiddle factors 
 Because −e−j2πm/N = e−j2π(m+N/2)/N, negative W 

twiddle factors are implemented with positive W 
twiddle factors that follow the lower DFT in Fig. 4-
2 

∑∑

∑∑
−

=

−

=

−

=

−

=

+−=+

++=

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)12()2()2/(

)12()2()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxWWnxNmX

WnxWWnxmX



21 

Derivation of Radix-2 FFT Algorithm 
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Derivation of Radix-2 FFT Algorithm 
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Derivation of Radix-2 FFT Algorithm 
 Fig. 4-3 

 For any N-point DFT, we break each of N/2-point 
DFTs into two N/4-point DFTs to further reduce 
the number of sine and cosine multiplications 

 Eventually, we arrive at an array of 2-point DFTs 
where no further computational savings could be 
realized 
 The 2-point DFT functions cannot be partitioned into 

smaller parts 
 Butterfly of a single 2-point DFT is shown in Fig. 4-4 
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Derivation of Radix-2 FFT Algorithm 
 
 
 
 
 
 The 2-point DFT blocks in Fig. 4-3 are replaced 

by butterfly in Fig. 4-4 to give a full 8-point FFT 
implementation of DFT as shown in Fig. 4-5 
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Derivation of Radix-2 FFT Algorithm 
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FFT Input/Output Data Index Bit Reversal 
 Decimation-in-time FFT implementation 

 Was the title of Fig. 4-5 
 Decimation-in-time phrase refers to how we 

broke DFT input samples into odd and even parts 
 This time decimation leads to scrambled order of 

input data’s index n in Fig. 4-5 
 Shuffling of input data is known as bit reversal  

 Because scrambled order of input data index can be 
obtained by reversing bits of binary representation of 
normal input data index order 
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FFT Input/Output Data Index Bit Reversal 
 Input index bit reversal for an 8-point FFT 

Normal order of 
index n 

Binary bits of 
index n 

Reversed bits 
of index n 

Bit-reversed 
order of index n 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 
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Radix-2 FFT Butterfly Structures 
 Twiddle factors in Fig. 4-5 

 To simplify signal flows, replace twiddle factors 
with their equivalent values referenced to     
where N = 8 
 We show just exponents m of       , to get FFT structure 

shown in Fig. 4-8 

 Fig. 4-8 
      from Fig. 4-5   
      from Fig. 4-5   
 … 
 1s and −1s in the first stage of Fig. 4-5 are 

replaced by 0s and 4s, respectively 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 



31 

Radix-2 FFT Butterfly Structures 
 Fig. 4-9 

 Input data is in its normal order and output data 
indices are bit-reversed 

 In this case, a bit-reversal operation needs to be 
performed at output of FFT to unscramble 
frequency-domain results 

 Fig. 4-10 
 Shows an FFT signal-flow structure that avoids 

bit-reversal problem altogether 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
 Bit reversal 

 A few years ago, hardware implementations of 
FFT spent most of their time performing 
multiplications 
 Bit-reversal process necessary to access data in 

memory wasn’t a significant portion of overall FFT 
computational problem 

 Now that high-speed multiplier/accumulator 
integrated circuits can multiply two numbers in a 
single clock cycle, FFT data multiplexing and 
memory addressing are more important  
 Led to development of efficient algorithms to perform 

bit reversal 
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Radix-2 FFT Butterfly Structures 
 Decimation-in-frequency algorithm 

 Decimation-in-time or -frequency is determined 
by whether the DFT inputs or outputs are 
partitioned (into odd and even) when deriving a 
particular FFT butterfly structure from the DFT 
equations 

 Decimation-in-frequency butterfly structures 
(analogous to structures in Figs. 4-8 through 4-
10) are illustrated in Figs. 4-11 through 4-13 
 An equivalent decimation-in-frequency FFT structure 

exists for each decimation-in-time FFT structure 
 The number of necessary multiplications is the same 

for both structures 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
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Alternate Single-Butterfly Structures 
 Butterfly structures 

 FFT butterfly structures are direct result of 
derivations of decimation-in-time and decimation-
in-frequency algorithms 
 Twiddle factors always take general forms shown in 

Fig. 4-14(a) 
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Alternate Single-Butterfly Structures 
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Alternate Single-Butterfly Structures 
 Fig. 4-14 

 To implement decimation-in-time butterfly of (a), 
we have to perform two complex multiplications 
and two complex additions 
 
 
 

 So we replace            in (a) with         to give us 
simplified butterflies in (b) 

 Because twiddle factors in (b) differ only by their 
signs, the optimized butterflies in (c) can be used 
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Alternate Single-Butterfly Structures 
 Optimized butterflies in 4-14(c) 

 Require two complex additions but only one 
complex multiplication, thus reducing 
computational workload 

 Because there are (N/2)log2N butterflies in an N-
point FFT, the number of complex multiplications 
performed by an FFT is (N/2)log2N 

 An algorithm is decimation-in-time if the twiddle 
factor precedes the −1 in optimized butterflies 

 An algorithm is decimation-in-frequency if the 
twiddle factor follows the −1 in optimized 
butterflies 
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Alternate Single-Butterfly Structures 
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Alternate Single-Butterfly Structures 
 In-place FFT algorithms 

 An in-place algorithm is depicted in Fig. 4-5 
 Output of a butterfly operation can be stored in 

the same hardware memory locations that 
previously held butterfly’s input data 
 No intermediate storage is necessary 

 For an N-point FFT, only 2N memory locations 
are needed 
 The 2 comes from fact that each butterfly node 

represents a data value that has both a real and an 
imaginary part 

 Data routing and memory addressing are rather 
complicated 
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Alternate Single-Butterfly Structures 
 Double-memory FFT algorithms 

 A double-memory FFT structure is depicted in 
Fig. 4-10 

 Intermediate storage is necessary because we no 
longer have standard butterflies, and 4N memory 
locations are needed 

 Data routing and memory address control are 
much simpler in double-memory FFT structures 
than in-place technique 


