
Digital Signal Processing

Moslem Amiri, Václav Přenosil
Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons
(0-13-261480-4) © Pearson Education, 2011.

The Fast Fourier Transform

2

Relationship of FFT to DFT
 Radix-2 FFT algorithm

 A very efficient process for performing DFTs
under constraint that DFT size be an integral
power of two

 Radix-2 FFT greatly reduces the number of
necessary arithmetic operations

 The number of complex multiplications necessary
for an N-point DFT is N2

 The number of complex multiplications for an N-

point FFT is approximately (N/2)log2N

∑
−

=

−=
1

0

/2)()(
N

n

NmnjenxmX π

3

Relationship of FFT to DFT

4

Relationship of FFT to DFT
 FFT is not an approximation of DFT

 It’s exactly equal to DFT
 All of performance characteristics of DFT, output

symmetry, linearity, output magnitudes, leakage,
scalloping loss, etc., also describe the behavior of
FFT

5

Hints on Using FFTs in Practice
 Sample fast enough and long enough

 Sampling rate must be greater than twice the
bandwidth of continuous A/D input signal
 Sample at 2.5 to 4 times the signal bandwidth
 If we don’t know signal’s bandwidth, we should

mistrust any FFT results that have significant spectral
components at frequencies near half fs

 Be suspicious of aliasing if there are any spectral
components whose frequencies depend on fs

 If we suspect that aliasing is occurring or continuous
signal contains broadband noise, we’ll have to use an
analog lowpass filter prior to A/D conversion

 Cutoff frequency of lowpass filter must be greater than
frequency band of interest but less than half fs

6

Hints on Using FFTs in Practice
 Sample fast enough and long enough

 How many samples must we collect
 Data collection time interval must be long enough to

satisfy desired FFT frequency resolution for given fs

 Total data collection time interval is N/fs seconds, and
N-point FFT bin-to-bin frequency resolution is fs/N Hz

 For example, if we need a spectral resolution of 5 Hz,
then fs/N = 5 Hz, and

 If fs is, say, 10 kHz, then N must be at least 2000, and
we’d choose N = 2048 because this number is a power
of two

s
ss fffN 2.0

5resolution desired
===

7

Hints on Using FFTs in Practice
 Manipulating time data prior to transformation

 If length of time-domain data sequence is not an
integral power of two, we have two options

 Discard enough data samples so that remaining
sequence length is some integral power of two
 Not recommended

 A better approach is to append enough zero-
valued samples to the end of time data sequence
to match the number of points of the next largest
radix-2 FFT
 Zero-padding technique

8

Hints on Using FFTs in Practice
 Manipulating time data prior to transformation

 We can multiply time data by a window function
to alleviate leakage problem
 But frequency resolution is degraded when windows

are used
 If appending zeros is necessary to extend a time

sequence, append zeros after multiplying original
time data sequence by a window function

9

Hints on Using FFTs in Practice
 Manipulating time data prior to transformation

 Even when windowing is employed, high-level
spectral components can obscure nearby low-
level spectral components
 This is especially evident when original time data has a

nonzero average, i.e., it’s riding on a DC bias
 A large-amplitude DC spectral component at 0 Hz will

overshadow its spectral neighbors
 We can eliminate this problem by calculating average

of time sequence and subtracting that average value
from each sample in original sequence

 The averaging and subtraction process must be
performed before windowing

10

Hints on Using FFTs in Practice
 Enhancing FFT results

 To detect signal energy in presence of noise
(enough time-domain data is available), we can
improve sensitivity of processing by averaging
multiple FFTs

 A 2N-point real sequence can be transformed
with a single N-point complex radix-2 FFT to
speed up our processing

 If we need FFT of unwindowed and also
windowed time-domain data, we can perform FFT
of unwindowed data, and then we can perform
frequency-domain windowing to reduce spectral
leakage on any, or all, of FFT bin outputs

11

Hints on Using FFTs in Practice
 Interpreting FFT results

 First step in interpreting FFT results is to compute
absolute frequency of individual FFT bin centers
 Like DFT, FFT bin spacing is fs/N
 For m = 0, 1, 2, 3, . . ., N−1, absolute frequency of mth

bin center is mfs/N
 If FFT’s input time samples are real, only X(m)

outputs from m = 0 to m = N/2 are independent
 We need determine only absolute FFT bin frequencies

for m over range of 0 ≤ m ≤ N/2
 If FFT input samples are complex, all N of FFT outputs

are independent, and we should compute absolute
FFT bin frequencies for m over range of 0 ≤ m ≤ N−1

12

Hints on Using FFTs in Practice
 Interpreting FFT results

 We can determine true amplitude of time-domain
signals from their FFT spectral results
 Radix-2 FFT outputs are complex

 FFT output magnitude samples

 are all inherently multiplied by factor N/2, when input

samples are real
 If FFT input samples are complex, scaling factor is N
 So to determine correct amplitudes of time-domain

sinusoidal components, divide FFT magnitudes by N/2
for real inputs and N for complex inputs

)()()(real mjXmXmX imag+=

2
imag

2
realmag)()()()(mXmXmXmX +==

13

Hints on Using FFTs in Practice
 Interpreting FFT results

 If a window function was used on original time-
domain data, some of FFT input samples will be
attenuated
 This reduces the resultant FFT output magnitudes from

their true unwindowed values
 To calculate correct amplitudes of various time-domain

sinusoidal components, we have to further divide FFT
magnitudes by appropriate processing loss factor
associated with the window function used

14

Hints on Using FFTs in Practice
 Interpreting FFT results

 To determine power spectrum XPS(m)

 Normalization through division by (|X(m)|max)2 or
|X(m)|max eliminates effect of any absolute FFT
scale factor (N or N/2) or window scale factor
 No compensation need be performed

⋅=

⋅=

⋅=

+==

max
10

2
max

2

10

2
10

2
imag

2
real

2

)(
)(

log20)(normalized

))((

)(
log10)(normalized

dB))((log10)(

)()()()(

mX
mX

mX

mX
mX

mX

mXmX

mXmXmXmX

dB

dB

dB

PS

15

Hints on Using FFTs in Practice
 Interpreting FFT results

 Phase angles Xø(m)

 Our calculations (or compiler) should detect

occurrences of Xreal(m) = 0 and set corresponding
Xø(m) to 90° if Ximag(m) > 0, set Xø(m) to 0° if Ximag(m) =
0, and set Xø(m) to −90° if Ximag(m) < 0

 FFT outputs containing significant noise
components can cause large fluctuations in the
computed Xø(m) phase angles
 Xø(m) samples are meaningful when corresponding

|X(m)| is well above average FFT output noise level

= −

)(
)(

tan)(
real

1

mX
mX

mX imag
φ

16

Derivation of Radix-2 FFT Algorithm

 where m is in range 0 to N/2−1
 Index m has that reduced range because each of the

two N/2-point DFTs on the right side are periodic in m
with period N/2

∑∑

∑∑

∑∑

∑

−

=

−

=

==
=

−

=

−

=

=

−

=

+−
−

=

−

−

=

−

++= →

++= →

++=

=

−

−

−

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0

2
1)2/(

0

2

1)2/(

0

/)12(2
1)2/(

0

/)2(2

1

0

/2

)12()2(

)12()2(

)12()2(

)()(

2/
)2//(2

)/(222

/2

N

n

mn
N

m
N

N

n

mn
N

We
eW

N

n

mn
N

m
N

N

n

mn
N

eW

N

n

Nmnj
N

n

Nmnj

N

n

Nmnj

WnxWWnx

WnxWWnx

enxenx

enxmX

N
Nj

Nj
N

Nj
N

π

π

π

ππ

π

17

Derivation of Radix-2 FFT Algorithm

 We have two N/2 summations whose results can

be combined to give the first N/2 samples of an
N-point DFT

 Benefits of breaking N-point DFT into two parts
 Reduction of number crunching because W terms in

the two summations are identical
 Also the upper half of DFT outputs is easy to calculate

∑∑
−

=

−

=

= ++= →
−

1)2/(

0
2/

1)2/(

0
2/)12()2()(

)2//(2
2/

N

n

mn
N

m
N

N

n

mn
N

eW WnxWWnxmX
Nj

N
π

18

Derivation of Radix-2 FFT Algorithm

 We just change sign of twiddle factor and use results
of the two summations from X(m) to get X(m+N/2)

 m goes from 0 to (N/2)−1
 To compute an N-point DFT, we actually perform two

N/2-point DFTs—one N/2-point DFT on even-indexed
and one N/2-point DFT on odd-indexed x(n) samples

∑∑

∑∑

∑∑

−

=

−

=

−+

−+

−

=

++
−

=

+

−

=

−

=

=

+−=+

−=−=== →

====

++=+

++= →
−

1)2/(

0
2/

1)2/(

0
2/

2/22/)2/(factor twiddle
2/2/

2/22
2/

2/
2/2/

)2/(
2/

1)2/(

0

)2/(
2/

)2/(
1)2/(

0

)2/(
2/

1)2/(

0
2/

1)2/(

0
2/

)12()2()2/(

)1()(

)1()(

)12()2()2/(

)12()2()(
)2//(2

2/

N

n

mn
N

m
N

N

n

mn
N

m
N

m
N

NNjm
N

N
N

m
N

Nm
N

mn
N

mn
N

NNnjmn
N

Nn
N

mn
N

Nmn
N

N

n

Nmn
N

Nm
N

N

n

Nmn
N

N

n

mn
N

m
N

N

n

mn
N

eW

WnxWWnxNmX

WWeWWWW

WWeWWWW

WnxWWnxNmX

WnxWWnxmX
Nj

N

π

π

π

19

Derivation of Radix-2 FFT Algorithm

∑

∑

∑

∑

−

=

−

=

−

=

−

=

+−

=+

++

=

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)12(

)2()2/(

)12(

)2()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxW

WnxNmX

WnxW

WnxmX

20

Derivation of Radix-2 FFT Algorithm

 Twiddle factors
 Because −e−j2πm/N = e−j2π(m+N/2)/N, negative W

twiddle factors are implemented with positive W
twiddle factors that follow the lower DFT in Fig. 4-
2

∑∑

∑∑
−

=

−

=

−

=

−

=

+−=+

++=

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)12()2()2/(

)12()2()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxWWnxNmX

WnxWWnxmX

21

Derivation of Radix-2 FFT Algorithm

∑∑

∑∑

∑∑

∑

∑∑

∑∑

−

=

−

=

−

=

−

=

=

−

=

+
−

=

−

=

−

=

−

=

−

=

−

=

+++=

++= →

++=

=

−=+ →

+= →

+−=+

++=

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0

)12(
2/

1)4/(

0

2
2/

1)2/(

0
2/

tionsimplifica

tionsimplifica

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)34()14()(

)24()4()(

)24()4(

)2()(

)()()2/(

)()()(

)12()2()2/(

)12()2()(

4/
2

2/

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WW

N

n

mn
N

N

n

mn
N

N

n

mn
N

m
N

m
N

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxWWnxmB

WnxWWnxmA

WnxWnx

WnxmA

mBWmANmX

mBWmAmX

WnxWWnxNmX

WnxWWnxmX

mn
N

mn
N

22

Derivation of Radix-2 FFT Algorithm

∑

∑

∑

∑

−

=

−

=

−

=

−

=

++

+=

++

=

−=+

+=

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0
4/2/

1)4/(

0
4/

)34(

)14()(

)24(

)4()(

)()()2/(

)()()(

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

m
N

m
N

WnxW

WnxmB

WnxW

WnxmA

mBWmANmX

mBWmAmX

Twiddle factor for N = 8,
ranges from to
because the m index, for
A(m) and B(m), goes from 0
to 3

m
NW 2/0

4W 3
4W

23

Derivation of Radix-2 FFT Algorithm
 Fig. 4-3

 For any N-point DFT, we break each of N/2-point
DFTs into two N/4-point DFTs to further reduce
the number of sine and cosine multiplications

 Eventually, we arrive at an array of 2-point DFTs
where no further computational savings could be
realized
 The 2-point DFT functions cannot be partitioned into

smaller parts
 Butterfly of a single 2-point DFT is shown in Fig. 4-4

24

Derivation of Radix-2 FFT Algorithm

 The 2-point DFT blocks in Fig. 4-3 are replaced

by butterfly in Fig. 4-4 to give a full 8-point FFT
implementation of DFT as shown in Fig. 4-5

1

1
2/22/

/020

−===

==
−−

−

ππ

π

jNNjN
N

Nj
N

eeW

eW

25

Derivation of Radix-2 FFT Algorithm

26

FFT Input/Output Data Index Bit Reversal
 Decimation-in-time FFT implementation

 Was the title of Fig. 4-5
 Decimation-in-time phrase refers to how we

broke DFT input samples into odd and even parts
 This time decimation leads to scrambled order of

input data’s index n in Fig. 4-5
 Shuffling of input data is known as bit reversal

 Because scrambled order of input data index can be
obtained by reversing bits of binary representation of
normal input data index order

27

FFT Input/Output Data Index Bit Reversal
 Input index bit reversal for an 8-point FFT

Normal order of
index n

Binary bits of
index n

Reversed bits
of index n

Bit-reversed
order of index n

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

28

Radix-2 FFT Butterfly Structures
 Twiddle factors in Fig. 4-5

 To simplify signal flows, replace twiddle factors
with their equivalent values referenced to
where N = 8
 We show just exponents m of , to get FFT structure

shown in Fig. 4-8

 Fig. 4-8
 from Fig. 4-5
 from Fig. 4-5
 …
 1s and −1s in the first stage of Fig. 4-5 are

replaced by 0s and 4s, respectively

m
NW

m
NW

1
4W 2

8W
2

4W 4
8W

29

Radix-2 FFT Butterfly Structures

30

Radix-2 FFT Butterfly Structures

31

Radix-2 FFT Butterfly Structures
 Fig. 4-9

 Input data is in its normal order and output data
indices are bit-reversed

 In this case, a bit-reversal operation needs to be
performed at output of FFT to unscramble
frequency-domain results

 Fig. 4-10
 Shows an FFT signal-flow structure that avoids

bit-reversal problem altogether

32

Radix-2 FFT Butterfly Structures

33

Radix-2 FFT Butterfly Structures
 Bit reversal

 A few years ago, hardware implementations of
FFT spent most of their time performing
multiplications
 Bit-reversal process necessary to access data in

memory wasn’t a significant portion of overall FFT
computational problem

 Now that high-speed multiplier/accumulator
integrated circuits can multiply two numbers in a
single clock cycle, FFT data multiplexing and
memory addressing are more important
 Led to development of efficient algorithms to perform

bit reversal

34

Radix-2 FFT Butterfly Structures
 Decimation-in-frequency algorithm

 Decimation-in-time or -frequency is determined
by whether the DFT inputs or outputs are
partitioned (into odd and even) when deriving a
particular FFT butterfly structure from the DFT
equations

 Decimation-in-frequency butterfly structures
(analogous to structures in Figs. 4-8 through 4-
10) are illustrated in Figs. 4-11 through 4-13
 An equivalent decimation-in-frequency FFT structure

exists for each decimation-in-time FFT structure
 The number of necessary multiplications is the same

for both structures

35

Radix-2 FFT Butterfly Structures

36

Radix-2 FFT Butterfly Structures

37

Radix-2 FFT Butterfly Structures

38

Alternate Single-Butterfly Structures
 Butterfly structures

 FFT butterfly structures are direct result of
derivations of decimation-in-time and decimation-
in-frequency algorithms
 Twiddle factors always take general forms shown in

Fig. 4-14(a)

39

Alternate Single-Butterfly Structures

40

Alternate Single-Butterfly Structures
 Fig. 4-14

 To implement decimation-in-time butterfly of (a),
we have to perform two complex multiplications
and two complex additions

 So we replace in (a) with to give us
simplified butterflies in (b)

 Because twiddle factors in (b) differ only by their
signs, the optimized butterflies in (c) can be used

k
N

k
N

NNjk
N

N
N

k
N

Nk
N

Nk
N

k
N

WWeWWWW

yWxy

yWxx

−=−=== →

+=

+=

−+

+

)1()(

'

'

2/22/2/tionsimplifica

2/

π

2/Nk
NW + k

NW−

41

Alternate Single-Butterfly Structures
 Optimized butterflies in 4-14(c)

 Require two complex additions but only one
complex multiplication, thus reducing
computational workload

 Because there are (N/2)log2N butterflies in an N-
point FFT, the number of complex multiplications
performed by an FFT is (N/2)log2N

 An algorithm is decimation-in-time if the twiddle
factor precedes the −1 in optimized butterflies

 An algorithm is decimation-in-frequency if the
twiddle factor follows the −1 in optimized
butterflies

42

Alternate Single-Butterfly Structures

43

Alternate Single-Butterfly Structures
 In-place FFT algorithms

 An in-place algorithm is depicted in Fig. 4-5
 Output of a butterfly operation can be stored in

the same hardware memory locations that
previously held butterfly’s input data
 No intermediate storage is necessary

 For an N-point FFT, only 2N memory locations
are needed
 The 2 comes from fact that each butterfly node

represents a data value that has both a real and an
imaginary part

 Data routing and memory addressing are rather
complicated

44

Alternate Single-Butterfly Structures
 Double-memory FFT algorithms

 A double-memory FFT structure is depicted in
Fig. 4-10

 Intermediate storage is necessary because we no
longer have standard butterflies, and 4N memory
locations are needed

 Data routing and memory address control are
much simpler in double-memory FFT structures
than in-place technique

