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Relationship of FFT to DFT 
 Radix-2 FFT algorithm 

 A very efficient process for performing DFTs 
under constraint that DFT size be an integral 
power of two 

 Radix-2 FFT greatly reduces the number of 
necessary arithmetic operations 

 The number of complex multiplications necessary 
for an N-point DFT is N2 
 
 

 
 The number of complex multiplications for an N-

point FFT is approximately (N/2)log2N  
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Relationship of FFT to DFT 
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Relationship of FFT to DFT 
 FFT is not an approximation of DFT 

 It’s exactly equal to DFT 
 All of performance characteristics of DFT, output 

symmetry, linearity, output magnitudes, leakage, 
scalloping loss, etc., also describe the behavior of 
FFT 
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Hints on Using FFTs in Practice 
 Sample fast enough and long enough 

 Sampling rate must be greater than twice the 
bandwidth of continuous A/D input signal 
 Sample at 2.5 to 4 times the signal bandwidth 
 If we don’t know signal’s bandwidth, we should 

mistrust any FFT results that have significant spectral 
components at frequencies near half fs 

 Be suspicious of aliasing if there are any spectral 
components whose frequencies depend on fs 

 If we suspect that aliasing is occurring or continuous 
signal contains broadband noise, we’ll have to use an 
analog lowpass filter prior to A/D conversion 

 Cutoff frequency of lowpass filter must be greater than 
frequency band of interest but less than half fs 
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Hints on Using FFTs in Practice 
 Sample fast enough and long enough 

 How many samples must we collect 
 Data collection time interval must be long enough to 

satisfy desired FFT frequency resolution for given fs 

 Total data collection time interval is N/fs seconds, and 
N-point FFT bin-to-bin frequency resolution is fs/N Hz 

 For example, if we need a spectral resolution of 5 Hz, 
then fs/N = 5 Hz, and 
 
 

 If fs is, say, 10 kHz, then N must be at least 2000, and 
we’d choose N = 2048 because this number is a power 
of two 
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Hints on Using FFTs in Practice 
 Manipulating time data prior to transformation 

 If length of time-domain data sequence is not an 
integral power of two, we have two options 

 Discard enough data samples so that remaining 
sequence length is some integral power of two  
 Not recommended 

 A better approach is to append enough zero-
valued samples to the end of time data sequence 
to match the number of points of the next largest 
radix-2 FFT 
 Zero-padding technique 
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Hints on Using FFTs in Practice 
 Manipulating time data prior to transformation 

 We can multiply time data by a window function 
to alleviate leakage problem 
 But frequency resolution is degraded when windows 

are used 
 If appending zeros is necessary to extend a time 

sequence, append zeros after multiplying original 
time data sequence by a window function 
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Hints on Using FFTs in Practice 
 Manipulating time data prior to transformation 

 Even when windowing is employed, high-level 
spectral components can obscure nearby low-
level spectral components 
 This is especially evident when original time data has a 

nonzero average, i.e., it’s riding on a DC bias 
 A large-amplitude DC spectral component at 0 Hz will 

overshadow its spectral neighbors 
 We can eliminate this problem by calculating average 

of time sequence and subtracting that average value 
from each sample in original sequence 

 The averaging and subtraction process must be 
performed before windowing 
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Hints on Using FFTs in Practice 
 Enhancing FFT results 

 To detect signal energy in presence of noise 
(enough time-domain data is available), we can 
improve sensitivity of processing by averaging 
multiple FFTs 

 A 2N-point real sequence can be transformed 
with a single N-point complex radix-2 FFT to 
speed up our processing 

 If we need FFT of unwindowed and also 
windowed time-domain data, we can perform FFT 
of unwindowed data, and then we can perform 
frequency-domain windowing to reduce spectral 
leakage on any, or all, of FFT bin outputs 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 First step in interpreting FFT results is to compute 
absolute frequency of individual FFT bin centers 
 Like DFT, FFT bin spacing is fs/N 
 For m = 0, 1, 2, 3, . . ., N−1, absolute frequency of mth 

bin center is mfs/N 
 If FFT’s input time samples are real, only X(m) 

outputs from m = 0 to m = N/2 are independent 
 We need determine only absolute FFT bin frequencies 

for m over range of 0 ≤ m ≤ N/2 
 If FFT input samples are complex, all N of FFT outputs 

are independent, and we should compute absolute 
FFT bin frequencies for m over range of 0 ≤ m ≤ N−1 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 We can determine true amplitude of time-domain 
signals from their FFT spectral results 
 Radix-2 FFT outputs are complex 

 
 FFT output magnitude samples 

 
 are all inherently multiplied by factor N/2, when input 

samples are real 
 If FFT input samples are complex, scaling factor is N 
 So to determine correct amplitudes of time-domain 

sinusoidal components, divide FFT magnitudes by N/2 
for real inputs and N for complex inputs 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 If a window function was used on original time-
domain data, some of FFT input samples will be 
attenuated 
 This reduces the resultant FFT output magnitudes from 

their true unwindowed values 
 To calculate correct amplitudes of various time-domain 

sinusoidal components, we have to further divide FFT 
magnitudes by appropriate processing loss factor 
associated with the window function used 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 To determine power spectrum XPS(m) 
 
 
 
 
 
 

 Normalization through division by (|X(m)|max)2 or 
|X(m)|max eliminates effect of any absolute FFT 
scale factor (N or N/2) or window scale factor 
 No compensation need be performed 
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Hints on Using FFTs in Practice 
 Interpreting FFT results 

 Phase angles Xø(m) 
 
 
 Our calculations (or compiler) should detect 

occurrences of Xreal(m) = 0 and set corresponding 
Xø(m) to 90° if Ximag(m) > 0, set Xø(m) to 0° if Ximag(m) = 
0, and set Xø(m) to −90° if Ximag(m) < 0 

 FFT outputs containing significant noise 
components can cause large fluctuations in the 
computed Xø(m) phase angles 
 Xø(m) samples are meaningful when corresponding 

|X(m)| is well above average FFT output noise level 
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Derivation of Radix-2 FFT Algorithm 
 
 
 
 
 
 
 
 

 where m is in range 0 to N/2−1  
 Index m has that reduced range because each of the 

two N/2-point DFTs on the right side are periodic in m 
with period N/2 
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Derivation of Radix-2 FFT Algorithm 
 
 
 We have two N/2 summations whose results can 

be combined to give the first N/2 samples of an 
N-point DFT 

 Benefits of breaking N-point DFT into two parts 
 Reduction of number crunching because W terms in 

the two summations are identical 
 Also the upper half of DFT outputs is easy to calculate 
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Derivation of Radix-2 FFT Algorithm 
 
 
 
 
 
 

 We just change sign of twiddle factor and use results 
of the two summations from X(m) to get X(m+N/2) 

 m goes from 0 to (N/2)−1 
 To compute an N-point DFT, we actually perform two 

N/2-point DFTs—one N/2-point DFT on even-indexed 
and one N/2-point DFT on odd-indexed x(n) samples 
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Derivation of Radix-2 FFT Algorithm 
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Derivation of Radix-2 FFT Algorithm 
 
 
 

 Twiddle factors 
 Because −e−j2πm/N = e−j2π(m+N/2)/N, negative W 

twiddle factors are implemented with positive W 
twiddle factors that follow the lower DFT in Fig. 4-
2 
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Derivation of Radix-2 FFT Algorithm 

∑∑

∑∑

∑∑

∑

∑∑

∑∑

−

=

−

=

−

=

−

=

=

−

=

+
−

=

−

=

−

=

−

=

−

=

−

=

+++=

++= →

++=

=

−=+ →

+= →

+−=+

++=

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0
4/2/

1)4/(

0
4/

1)4/(

0

)12(
2/

1)4/(

0

2
2/

1)2/(

0
2/

tionsimplifica

tionsimplifica

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0
2/

)34()14()(

)24()4()(

)24()4(

)2()(

)()()2/(

)()()(

)12()2()2/(

)12()2()(

4/
2

2/

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WW

N

n

mn
N

N

n

mn
N

N

n

mn
N

m
N

m
N

N

n

mn
N

m
N

N

n

mn
N

N

n

mn
N

m
N

N

n

mn
N

WnxWWnxmB

WnxWWnxmA

WnxWnx

WnxmA

mBWmANmX

mBWmAmX

WnxWWnxNmX

WnxWWnxmX

mn
N

mn
N



22 

Derivation of Radix-2 FFT Algorithm 
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Derivation of Radix-2 FFT Algorithm 
 Fig. 4-3 

 For any N-point DFT, we break each of N/2-point 
DFTs into two N/4-point DFTs to further reduce 
the number of sine and cosine multiplications 

 Eventually, we arrive at an array of 2-point DFTs 
where no further computational savings could be 
realized 
 The 2-point DFT functions cannot be partitioned into 

smaller parts 
 Butterfly of a single 2-point DFT is shown in Fig. 4-4 
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Derivation of Radix-2 FFT Algorithm 
 
 
 
 
 
 The 2-point DFT blocks in Fig. 4-3 are replaced 

by butterfly in Fig. 4-4 to give a full 8-point FFT 
implementation of DFT as shown in Fig. 4-5 
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Derivation of Radix-2 FFT Algorithm 
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FFT Input/Output Data Index Bit Reversal 
 Decimation-in-time FFT implementation 

 Was the title of Fig. 4-5 
 Decimation-in-time phrase refers to how we 

broke DFT input samples into odd and even parts 
 This time decimation leads to scrambled order of 

input data’s index n in Fig. 4-5 
 Shuffling of input data is known as bit reversal  

 Because scrambled order of input data index can be 
obtained by reversing bits of binary representation of 
normal input data index order 
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FFT Input/Output Data Index Bit Reversal 
 Input index bit reversal for an 8-point FFT 

Normal order of 
index n 

Binary bits of 
index n 

Reversed bits 
of index n 

Bit-reversed 
order of index n 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 
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Radix-2 FFT Butterfly Structures 
 Twiddle factors in Fig. 4-5 

 To simplify signal flows, replace twiddle factors 
with their equivalent values referenced to     
where N = 8 
 We show just exponents m of       , to get FFT structure 

shown in Fig. 4-8 

 Fig. 4-8 
      from Fig. 4-5   
      from Fig. 4-5   
 … 
 1s and −1s in the first stage of Fig. 4-5 are 

replaced by 0s and 4s, respectively 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
 Fig. 4-9 

 Input data is in its normal order and output data 
indices are bit-reversed 

 In this case, a bit-reversal operation needs to be 
performed at output of FFT to unscramble 
frequency-domain results 

 Fig. 4-10 
 Shows an FFT signal-flow structure that avoids 

bit-reversal problem altogether 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
 Bit reversal 

 A few years ago, hardware implementations of 
FFT spent most of their time performing 
multiplications 
 Bit-reversal process necessary to access data in 

memory wasn’t a significant portion of overall FFT 
computational problem 

 Now that high-speed multiplier/accumulator 
integrated circuits can multiply two numbers in a 
single clock cycle, FFT data multiplexing and 
memory addressing are more important  
 Led to development of efficient algorithms to perform 

bit reversal 
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Radix-2 FFT Butterfly Structures 
 Decimation-in-frequency algorithm 

 Decimation-in-time or -frequency is determined 
by whether the DFT inputs or outputs are 
partitioned (into odd and even) when deriving a 
particular FFT butterfly structure from the DFT 
equations 

 Decimation-in-frequency butterfly structures 
(analogous to structures in Figs. 4-8 through 4-
10) are illustrated in Figs. 4-11 through 4-13 
 An equivalent decimation-in-frequency FFT structure 

exists for each decimation-in-time FFT structure 
 The number of necessary multiplications is the same 

for both structures 



35 

Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
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Radix-2 FFT Butterfly Structures 
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Alternate Single-Butterfly Structures 
 Butterfly structures 

 FFT butterfly structures are direct result of 
derivations of decimation-in-time and decimation-
in-frequency algorithms 
 Twiddle factors always take general forms shown in 

Fig. 4-14(a) 
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Alternate Single-Butterfly Structures 
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Alternate Single-Butterfly Structures 
 Fig. 4-14 

 To implement decimation-in-time butterfly of (a), 
we have to perform two complex multiplications 
and two complex additions 
 
 
 

 So we replace            in (a) with         to give us 
simplified butterflies in (b) 

 Because twiddle factors in (b) differ only by their 
signs, the optimized butterflies in (c) can be used 
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Alternate Single-Butterfly Structures 
 Optimized butterflies in 4-14(c) 

 Require two complex additions but only one 
complex multiplication, thus reducing 
computational workload 

 Because there are (N/2)log2N butterflies in an N-
point FFT, the number of complex multiplications 
performed by an FFT is (N/2)log2N 

 An algorithm is decimation-in-time if the twiddle 
factor precedes the −1 in optimized butterflies 

 An algorithm is decimation-in-frequency if the 
twiddle factor follows the −1 in optimized 
butterflies 
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Alternate Single-Butterfly Structures 
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Alternate Single-Butterfly Structures 
 In-place FFT algorithms 

 An in-place algorithm is depicted in Fig. 4-5 
 Output of a butterfly operation can be stored in 

the same hardware memory locations that 
previously held butterfly’s input data 
 No intermediate storage is necessary 

 For an N-point FFT, only 2N memory locations 
are needed 
 The 2 comes from fact that each butterfly node 

represents a data value that has both a real and an 
imaginary part 

 Data routing and memory addressing are rather 
complicated 
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Alternate Single-Butterfly Structures 
 Double-memory FFT algorithms 

 A double-memory FFT structure is depicted in 
Fig. 4-10 

 Intermediate storage is necessary because we no 
longer have standard butterflies, and 4N memory 
locations are needed 

 Data routing and memory address control are 
much simpler in double-memory FFT structures 
than in-place technique 


