Digital Signal Processing

The Fast Fourier Transform

Moslem Amiri, Vaclav Prenosil
Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons
(0-13-261480-4) © Pearson Education, 2011.



Relationship of FFT to DFT

Radix-2 FFT algorithm

A very efficient process for performing DFTs
under constraint that DF T size be an integral
power of two

Radix-2 FFT greatly reduces the number of
necessary arithmetic operations

The number of complex multiplications necessary
for an N-point DFT is N?

N-1
X(m) _ Zx(n) e—jzﬂnm/N
n=0

The number of complex multiplications for an N-
point FFT is approximately (N/2)log,N



Relationship of FFT to DFT

109 10 102 103 104 10°
N

Figure 4-1 Number of complex multiplications in the DFT and the radix-2 FFT as a
function of N. 3



Relationship of FFT to DFT

FFT is not an approximation of DFT
It's exactly equal to DFT

All of performance characteristics of DFT, output
symmetry, linearity, output magnitudes, leakage,

scalloping loss, etc., also describe the behavior of
FFT



Hints on Using FFTs in Practice

Sample fast enough and long enough

Sampling rate must be greater than twice the
bandwidth of continuous A/D input signal
Sample at 2.5 to 4 times the signal bandwidth

If we don’t know signal’'s bandwidth, we should
mistrust any FFT results that have significant spectral
components at frequencies near half f,

Be suspicious of aliasing if there are any spectral
components whose frequencies depend on f,

If we suspect that aliasing is occurring or continuous
signal contains broadband noise, we’ll have to use an
analog lowpass filter prior to A/D conversion

Cutoff frequency of lowpass filter must be greater than
frequency band of interest but less than half




Hints on Using FFTs in Practice

Sample fast enough and long enough

How many samples must we collect

Data collection time interval must be long enough to
satisfy desired FFT frequency resolution for given f,

Total data collection time interval is N/f, seconds, and
N-point FFT bin-to-bin frequency resolution is /N Hz

For example, if we need a spectral resolution of 5 Hz,
then /N =5 Hz, and

N = /s _Js =0.2f,

desired resolution 5

If f, is, say, 10 kHz, then N must be at least 2000, and
we’'d choose N = 2048 because this number is a power
of two



Hints on Using FFTs in Practice

Manipulating time data prior to transformation

If length of time-domain data sequence is not an
integral power of two, we have two options

Discard enough data samples so that remaining
sequence length is some integral power of two

Not recommended
A better approach is to append enough zero-
valued samples to the end of time data sequence
to match the number of points of the next largest
radix-2 FFT

Zero-padding technique



Hints on Using FFTs in Practice

Manipulating time data prior to transformation

We can multiply time data by a window function
to alleviate leakage problem

But frequency resolution is degraded when windows
are used
If appending zeros is necessary to extend a time
sequence, append zeros after multiplying original
time data sequence by a window function



Hints on Using FFTs in Practice

Manipulating time data prior to transformation

Even when windowing is employed, high-level
spectral components can obscure nearby low-
level spectral components

This is especially evident when original time data has a
nonzero average, i.e., it's riding on a DC bias

A large-amplitude DC spectral component at 0 Hz will
overshadow its spectral neighbors

We can eliminate this problem by calculating average
of time sequence and subtracting that average value
from each sample in original sequence

The averaging and subtraction process must be
performed before windowing




Hints on Using FFTs in Practice

Enhancing FFT results

To detect signal energy in presence of noise
(enough time-domain data is available), we can
improve sensitivity of processing by averaging
multiple FFTs

A 2N-point real sequence can be transformed
with a single N-point complex radix-2 FFT to
speed up our processing

If we need FFT of unwindowed and also

windowed time-domain data, we can perform FFT
of unwindowed data, and then we can perform
frequency-domain windowing to reduce spectral
leakage on any, or all, of FFT bin outputs 10



Hints on Using FFTs in Practice

Interpreting FFT results

First step in interpreting FFT results is to compute

absolute frequency of individual FFT bin centers
Like DFT, FFT bin spacing is f/N
Form=0,1,2,3,..., N-1, absolute frequency of mth
bin center is mf /N

If FFT’s input time samples are real, only X(m)

outputs from m = 0 to m = N/2 are independent

We need determine only absolute FFT bin frequencies
for m over range of 0 = m < N/2

If FFT input samples are complex, all N of FFT outputs
are independent, and we should compute absolute
FFT bin frequencies for m over range of 0 < m < N-1

11



Hints on Using FFTs in Practice

Interpreting FFT results

We can determine true amplitude of time-domain
signals from their FFT spectral results

Radix-2 FFT outputs are complex
X(m) — Xreal (m) + JX; (m)

imag

FFT output magnitude samples

Xmag (m) — |X(m)| = \/)(real(n/l)2 + Ximag (m)2
are all inherently multiplied by factor N/2, when input
samples are real
If FFT input samples are complex, scaling factor is N

So to determine correct amplitudes of time-domain
sinusoidal components, divide FFT magnitudes by N/2
for real inputs and N for complex inputs

12



Hints on Using FFTs in Practice

Interpreting FFT results

If a window function was used on original time-
domain data, some of FFT input samples will be
attenuated

This reduces the resultant FFT output magnitudes from
their true unwindowed values

To calculate correct amplitudes of various time-domain
sinusoidal components, we have to further divide FFT
magnitudes by appropriate processing loss factor
associated with the window function used

13



Hints on Using FFTs in Practice

Interpreting FFT results

To determine power spectrum Xp5(m)
X ps (m) =X (m)]” = X 1o (m)° + X g (m)°

imag

X 45 (m) =10-log (| X (m)|") dB

normalized X ;53 (m) =10-log,, |X(m)|2 -
(X))

max

| X (m)
normalized X sz (m) = 20-log,,

|X(m)|max
Normalization through division by (|X(m)|,,,.,)? Or
|IX(m)|,x €liminates effect of any absolute FFT

scale factor (N or N/2) or window scale factor
No compensation need be performed



Hints on Using FFTs in Practice

Interpreting FFT results
Phase angles X, (m)

X, (m) = tan [ L imag (m)J

Xreal (m)
Our calculations (or compiler) should detect
occurrences of X, (m) = 0 and set corresponding
X5(m) to 907 if Xi,oo(m) > 0, set X,(m) to 0% if X ,4(m) =
0, and set X,,(m) to —90” if X, ,,(m) <0
FFT outputs containing significant noise
components can cause large fluctuations in the
computed X, (m) phase angles

X,(m) samples are meaningful when corresponding
|IX(m)| is well above average FFT output noise level



Derivation of Radix-2 FFT Algorithm

N-1
X(WZ) _ Zx(n) e—jZﬂnm/N
n=0

(N/2)-1 (N/2)-1

n=0 n=0
(N/2)-1 (N/2)-1

> = Zx(Zn)WAz["m + Wy Zx(Zn +W

n=0 n=0
Wy=e /272N (N/2)-1 (N/2)-1
—e /27 /N2 _py nm m nm
s = x(2n)Wy 1y + Wy Zx(2n+1)WN/2
n=0 n=0

where m is in range 0 to N/2-1

Index m has that reduced range because each of the
two N/2-point DFTs on the right side are periodic in m
with period N/2

Zx(zn)e—j27r(2n)m/N n Zx(2n+l)e—j27r(2n+l)m/N

16



Derivation of Radix-2 FFT Algorithm

i) (N/2)-1 (N/2)-1

s X (m) = Zx(zn)Wﬁz W Zx(2n+1) won
n=0 n=0

Wy ,=e

We have two N/2 summations whose results can
be combined to give the first N/2 samples of an

N-point DFT
Benefits of breaking N-point DFT into two parts

Reduction of number crunching because W terms in
the two summations are identical

Also the upper half of DFT outputs is easy to calculate

17



Derivation of Radix-2 FFT Algorithm

(N/2)-1 (N/2)-1

 _i2zANI2)
Wy ,=e

>X(m)= Y xQmWl + WYY x@u+ D)W
n=0 n=0
(N/2)-1 (N/2)-1
X(m+N/2)= Zx(Zn)W](’,ETN/z) + N T2) Zx(Zn + 1w 2)
n=0 n=0

n(m+N/2) _ ygnmypg-nN/2 _ ygrnm , —j2an2N/2N~N _ grnm _ qqrhm
Wy =Wy Wy = =Wyale ) =Wy (D) =Wy,

twiddle factor | 17, (m+N/2) _ ypymypyrN/2 _ yggymy —j2xN/2N~N _ qqym _ m

(N/2)-1 (N/2)-1
X(m+N/2)= > xQuWyls =W > x@n+ )Wy,
n=0 n=0

We just change sign of twiddle factor and use results
of the two summations from X(m) to get X(m+N/2)

m goes from 0 to (N/2)-1

To compute an N-point DFT, we actually perform two
N/2-point DFTs—one N/2-point DFT on even-indexed
and one N/2-point DFT on odd-indexed x(n) samples 45



Derivation of Radix-2 FFT Algorithm

m=0
x(0) — = X(m)
4-point /l = X(0)
DFT W,
m=1
x(2) —] / B X(m)

3 = X(1)
(N/2)-1 S x@nW, \\ W
X(m)= Y x@mWy, ow] \ [ -

m)
n=0 =X2)
2
(N/2)-1 A
m nm X(6) —= = X(m)
+Wy Zx(2n+1)WN/2 1 -xo
n=0 "s
(N/2)-1 S

nm X(1) —
X(m+N/2)= Z xQ2nyWw i vooin
n=0 DFT

(N/2)-1 X(3) —= ; / A X(_"r;7+é))
nm -
_I/V]G1 Zx(2n -I—l) W]G;WZ Z((2n+1)W4 // \
n=0 x(5) —1 ° / 2 i

X(7) —

Figure 4-2 FFT implementation of an 8-point DFT using two 4-point DFTs.



Derivation of Radix-2 FFT Algorithm

(N/2)-1 (N/2)-1

X(m) = Zx(zn)W]f,;"z + Wy Z x2n+ )Wy,
n=0 n=0
(N/2)-1 (N/2)-1
X(m+N/2)= Y x@oWyy=Wi > x@n+ D,

n=0 n=0

Twiddle factors

Because —e2mmIN = g2mm*NI2)N ‘negative W
twiddle factors are implemented with positive W

twiddle factors that follow the lower DFT in Fig. 4-
2

20



Derivation of Radix-2 FFT Algorithm

(N/2)-1 (N/2)-1

X(my= ) xQmWylh+ Wi D xQn+ )W,
n=0 n=0
(N/2)-1 (N/2)-1

X(m+N/2)= Y xQmWyls - Y xQn+ )W,
n=0 n=0

simplification_, ¥ (m) = A(m)+ W B(m)
simplification N X(m + N/z) = A(m) — W]GQB(WI)

(N/2)-1

A(m)= x@mWyT
n=0
(N/4)-1 (N/4)-1

= Y x@mWgit+ > x(4n+ 2w

n=0 n=0
. (N/4)-1 (N/4)-1
T s A(my= Y x(AnWNT AW, Y x(An+ W,
n=0 n=0

(N/4)-1 (N/4)-1

B(m) = ZX(“” LW W, Zx(4n +3)wen .
n=0 n=0



Derivation of Radix-2 FFT Algorithm

x(0) —»= X(0)
X (m) = A(m) + W} B(m) - \ 7\
X(m+N/2)=A(m)-Wy B(m) /

i v/
=" o QAN

n=0

2-point s

(N/4)-1 i

SR, XA+ W e FIRVEAVA

A/
O
B(m) = (N§;(4n +DW 74 A“

A : X(4)

X(1) — B(0) a A Wg
n=0 2-point W v v
M
m nm X 5
+ WN/2 Z X(4I’l + 3)WN/4 v B(1) w; X(5)
’ 7

Xx(5) —
n=0
Twiddle factor WN ,, for N =8, X3 —- W W= X0
ranges from W, to W, 2poin / \
because the m index, for o VAR ; p

A(m) and B(m), goes from 0

to 3 Figure 4-3 FFT implementation of an 8-point DFT as two 4-point DFTs and four
2-point DFTs.



Derivation of Radix-2 FFT Algorithm

Fig. 4-3
For any N-point DFT, we break each of N/2-point

DFTs into two N/4-point DFTs to further reduce
the number of sine and cosine multiplications

Eventually, we arrive at an array of 2-point DFTs
where no further computational savings could be

realized

The 2-point DFT functions cannot be partitioned into
smaller parts

Butterfly of a single 2-point DFT is shown in Fig. 4-4

23



Derivation of Radix-2 FFT Algorithm
X(K) 0;0

x(k+N/2) W

Figure 4-4 Single 2-point DFT butterfly.

The 2-point DFT blocks in Fig. 4-3 are replaced
by butterfly in Fig. 4-4 to give a full 8-point FFT
implementation of DFT as shown in Fig. 4-5

W]\(} _ 20N

N/2 _ —j2zN/2N _ —j
Wy'==e /" =e /" =-1

24



Derivation of Radix-2 FFT Algorithm

A(0)
= X(0)
/\ ngy\ /
- /
— >0 B X(1)

W— X(7)

Figure 4-5 Full decimation-in-time FFT implementation of an 8-point DFT. 25



FFT Input/Output Data Index Bit Reversal

Decimation-in-time FFT implementation
Was the title of Fig. 4-5

Decimation-in-time phrase refers to how we
broke DFT input samples into odd and even parts

This time decimation leads to scrambled order of
input data’s index n in Fig. 4-5
Shuffling of input data is known as bit reversal

Because scrambled order of input data index can be
obtained by reversing bits of binary representation of
normal input data index order

26



FFT Input/Output Data Index Bit Reversal

Input index bit reversal for an 8-point FFT

Normal order of | Binary bits of Reversed bits Bit-reversed
index n index n of index n order of index n
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

27



Radix-2 FFT Butterfly Structures

Twiddle factors in Fig. 4-5

To simplify signal flows, replace twiddle factors
with their equivalent values referenced to wy/
where N =8

We show just exponents m of Wy, to get FFT structure
shown in Fig. 4-8

Fig. 4-8
w,) from Fig. 4-5 > Wy
W} from Fig. 4-5 > W'

1s and —1s in the first stage of Fig. 4-5 are

replaced by Os and 4s, respectively -



Radix-2 FFT Butterfly Structures

= X(0)

= X(1)

= X(2)

= X(3)

— X)

= X(5)

= X(6)

= X(7)

Figure 4-8 Eight-point decimation-in-time FFT with bit-reversed inpufs.

29



Radix-2 FFT Butterfly Structures
PN .

0
x(1) 4
0
\\ / . -
N0 % 7
\ O
X(3) - : :

R -
x(4) v’v > > = X(1)
5 4
x(5) / / \ . . 5 X(5)
x(6) / 4 6 - —>— X(3)
x(7) 4 6 7 X(7)

Figure 4-9 Eight-point decimation-in-fime FFT with bif-reversed outpufs.

30



Radix-2 FFT Butterfly Structures
Fig. 4-9

Input data is in its normal order and output data
iIndices are bit-reversed

In this case, a bit-reversal operation needs to be
performed at output of FFT to unscramble
frequency-domain results

Fig. 4-10

Shows an FFT signal-flow structure that avoids
bit-reversal problem altogether

31



Radix-2 FFT Butterfly Structures

7 X(7

Figure 4-10 Eight-point decimation-in-time FFT with inputs and outputs in normal
order.

32



Radix-2 FFT Butterfly Structures

Bit reversal

A few years ago, hardware implementations of
FFT spent most of their time performing
multiplications

Bit-reversal process necessary to access data in
memory wasn’t a significant portion of overall FFT
computational problem
Now that high-speed multiplier/accumulator
integrated circuits can multiply two numbers in a
single clock cycle, FFT data multiplexing and
memory addressing are more important

Led to development of efficient algorithms to perform
bit reversal

33



Radix-2 FFT Butterfly Structures

Decimation-in-frequency algorithm
Decimation-in-time or -frequency is determined
by whether the DF T inputs or outputs are
partitioned (into odd and even) when deriving a

particular FFT butterfly structure from the DFT
equations

Decimation-in-frequency butterfly structures
(analogous to structures in Figs. 4-8 through 4-
10) are illustrated in Figs. 4-11 through 4-13

An equivalent decimation-in-frequency FFT structure
exists for each decimation-in-time FFT structure

The number of necessary multiplications is the same
for both structures

34



Radix-2 FFT Butterfly Structures

2
X(7) L 6—}/ A

Figure 4-11 Eight-point decimation-in-frequency FFT with bif-reversed inputs.

35



Radix-2 FFT Butterfly Structures

0
/ : \4‘\:>/ -
2 0
x(7) 7 6 4—B m X(7)
Figure 4-12 Eight-point decimation-in-frequency FFT with bit-reversed outputs.

36



Radix-2 FFT Butterfly Structures

x(0) 7\ 7\ = X(0)

x(1) 0 / = X(1)
4

)

)

(
. X N
° / 2: / °
x(7) 7—Ao 6 4\ = X(7)
Figure 4-13 Eight-point decimation-in-frequency FFT with inpufs and outpufts in
normal order.

37



Alternate Single-Butterfly Structures

Butterfly structures

FFT butterfly structures are direct result of
derivations of decimation-in-time and decimation-
in-frequency algorithms

Twiddle factors always take general forms shown in
Fig. 4-14(a)

38



Alternate Single-Butterfly Structures

Decimation in time Decimation in frequency

k
yo— WI:I( —1—>ey y —1 Wisey

Figure 4-14 Decimation-in-time and decimation-in-frequency butterfly struc-
tures: (a) original form; (b) simplified form; (c) optimized form.

39



Alternate Single-Butterfly Structures
Fig. 4-14

To implement decimation-in-time butterfly of (a),
we have to perform two complex multiplications
and two complex additions

xX'= x+WAl§y

" k+N/2
V'=x+Wy

o ficat .
simplification >W]$+N/2 =W]1VCW;{/W2 :W]\l;(e JZEN/ZN):WJG(—I):_WJG

So we replace w+V'2 in (a) with-w ! to give us
simplified butterflies in (b)

Because twiddle factors in (b) differ only by their
signs, the optimized butterflies in (c) can be used

40



Alternate Single-Butterfly Structures

Optimized butterflies in 4-14(c)

Require two complex additions but only one
complex multiplication, thus reducing
computational workload

Because there are (N/2)log,N butterflies in an N-
point FFT, the number of complex multiplications
performed by an FFT is (N/2)log,N

An algorithm is decimation-in-time if the twiddle
factor precedes the —1 in optimized butterflies

An algorithm is decimation-in-frequency if the
twiddle factor follows the —1 in optimized
butterflies

41



Alternate Single-Butterfly Structures

Figure 4-15 Alternate FFT butterfly notation: (a) decimation in fime; (b) decima-
tion in frequency.

42



Alternate Single-Butterfly Structures

In-place FFT algorithms
An in-place algorithm is depicted in Fig. 4-5

Output of a butterfly operation can be stored in
the same hardware memory locations that
previously held butterfly’s input data

No intermediate storage is necessary

For an N-point FFT, only 2N memory locations
are needed
The 2 comes from fact that each butterfly node
represents a data value that has both a real and an
Imaginary part
Data routing and memory addressing are rather
complicated



Alternate Single-Butterfly Structures

Double-memory FFT algorithms

A double-memory FFT structure is depicted in
Fig. 4-10
ntermediate storage is necessary because we no

onger have standard butterflies, and 4N memory
ocations are needed

Data routing and memory address control are
much simpler in double-memory FFT structures
than in-place technique

44



