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Introduction 
 Filtering 

 Filtering is the processing of a time-domain signal 
resulting in some change in that signal’s original 
spectral content 
 The change is usually the reduction, or filtering out, of 

some unwanted input spectral components 
 That is, filters allow certain frequencies to pass while 

attenuating other frequencies 

 Digital filter in Fig. 5-1(b) 
 Can be a software program in a computer, a 

programmable hardware processor, or a 
dedicated integrated circuit 
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Introduction 
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An Introduction to FIR Filters 
 FIR filter 

 Given a finite duration of nonzero input values, an 
FIR filter will always have a finite duration of 
nonzero output values 

 If FIR filter’s input is a sequence of all zeros, 
filter’s output will be all zeros 

 FIR filters use addition to calculate their outputs 
 Averaging is a kind of FIR filter 
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An Introduction to FIR Filters 
 Averaging example 

 We’re counting the number of cars that pass over a 
bridge every minute, and every minute we’ll calculate 
average number of cars/minute over the last five minutes 

Minute index No. of cars/minute over the 
last minute 

No. of cars/minute averaged over 
the last five minutes 

1 10 - 
2 22 - 
3 24 - 
4 42 - 
5 37 27 
6 77 40.4 
7 89 53.8 
8 22 53.4 
9 63 57.6 

10 9 52 
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An Introduction to FIR Filters 
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An Introduction to FIR Filters 
 Fig. 5-2 

 Sudden changes in input sequence of 
cars/minute are flattened out by averager 

 Since sudden transitions in a time sequence 
represent high-frequency components, averager 
is behaving like a lowpass filter 

 Averager is an FIR filter 
 No previous averager output value is used to 

determine a current output value; only input values are 
used to calculate output values 

 In addition, when input goes to zero, averager’s output 
approaches and settles to a value of zero 
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An Introduction to FIR Filters 
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An Introduction to FIR Filters 
 Fig. 5-3 

 Referred to as filter structure 
 Is a physical depiction of how to calculate 

averaging filter outputs with the input sequence of 
values shifted, in order, from left to right along the 
top of filter as new output calculations are 
performed 

 Delay elements, called unit delays, merely 
indicate a shift register arrangement where input 
sample values are temporarily stored during an 
output calculation 
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An Introduction to FIR Filters 
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An Introduction to FIR Filters 
 Fig. 5-4 

 
 In (a), each of the first five input values is multiplied 

by 1/5, and the five products are summed to give 
the fifth filter output value 

 To calculate sixth output value, input sequence is 
right-shifted, discarding the first input value of 10, 
and the sixth input value, 77, is accepted on left 

 The filter’s structure using this shifting process is 
called a transversal filter 

 Because we tap off five separate input sample 
values to calculate an output value, the structure is 
called a 5-tap tapped-delay line FIR filter 
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Convolution in FIR Filters 
 Averaging filter convolution 

 Convolution equation 
 
 

 We can graphically depict this equation’s 
calculations as shown in Fig. 5-5 

 Input samples: x(0), x(1), x(2), … 
 Filter coefficients: h(0) through h(4) 
 In above equation, we use factor of 1/5 as filter 

coefficients multiplied by averaging filter’s input 
samples 

 Time order of inputs in Fig. 5-5 is reversed 
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Convolution in FIR Filters 
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Convolution in FIR Filters 
 FIR filter’s y(n)th output 

 
 
 
 

 For a general M-tap FIR filter, nth output is 
 
 
 This is convolution equation as it applies to digital 

FIR filters 
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Convolution in FIR Filters 
 Impulse response of a filter 

 Filter’s output time-domain sequence when input 
is a single unity-valued sample (impulse) 
preceded and followed by zero-valued samples 

 Fig. 5-6 
 FIR filter’s impulse response is identical to the 

five filter coefficient values 
 For this reason, the terms FIR filter coefficients and 

impulse response are synonymous 
 Because there are a finite number of coefficients, 

impulse response will be finite in time duration 
 Finite impulse response, FIR 



16 

Convolution in FIR Filters 
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Convolution in FIR Filters 
 Process of convolution, as it applies to FIR 

filters 
 
 
 Two sequences resulting from h(k)*x(n) and 

H(m)·X(m) are Fourier transform pairs 
 Convolution in time domain is equivalent to 

multiplication in frequency domain 
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Convolution in FIR Filters 
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Convolution in FIR Filters 

H(m) is sin(x)/x 
function 
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Convolution in FIR Filters 

Conversion of 
discrete 
frequency axis 
in Fig. 5-8 to 
continuous 

m = N/2 = 32 = folding frequency = fs/2 

ideal lowpass filter 

poor lowpass filter 
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Convolution in FIR Filters 

initial four output 
samples (transient 
response) are not 
exactly sinusoidal: 
the no. of filter unit-
delay elements = 4 

averaging filter 
attenuates higher-
frequency inputs 

further 

output is a 
sinewave of same 
frequency as input 

filter’s coefficients 
are symmetrical 
 input/output 
delay = half the 
no. of unit-delay 

elements = 2 
samples (no 

dependence on 
frequency) 
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Convolution in FIR Filters 

Averager 
attenuates 
higher-frequency 
portion of input 
spectrum 



23 

Convolution in FIR Filters 
 Summary, so far 

 FIR filters perform time-domain convolution by 
summing the products of the shifted input samples 
and a sequence of filter coefficients 

 An FIR filter’s output sequence is equal to 
convolution of input sequence and a filter’s impulse 
response (coefficients) 

 An FIR filter’s frequency response is DFT of filter’s 
impulse response 

 An FIR filter’s output spectrum is product of input 
spectrum and filter’s frequency response 

 Convolution in time domain and multiplication in 
frequency domain are Fourier transform pairs 
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Convolution in FIR Filters 
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Convolution in FIR Filters 
 Fig. 5-12 

 Different sets of coefficients give us different 
frequency magnitude responses 

 A sudden change in values of coefficient 
sequence, such as 0.2 to 0 transition in the first 
coefficient set, causes ripples, or sidelobes, in 
frequency response 

 If we minimize suddenness of changes in 
coefficient values, such as the third set of 
coefficients in (a), we reduce sidelobe ripples in 
frequency response 
 However, reducing sidelobes results in increasing main 

lobe width of lowpass filter 
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Convolution in FIR Filters 
 
 
 
 
 
 

 We can have a filter with more than 5 taps 
 But input signal sample shifting, multiplications by 

constant coefficients, and summation are all there 
is to it 
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Lowpass FIR Filter Design 
 Design of a lowpass FIR filter 

 Design procedure starts with determination of a 
desired frequency response followed by 
calculating filter coefficients that will give us that 
response 

 There are two predominant techniques used to 
design FIR filters 
 1) window method 
 2) optimum method 
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Lowpass FIR Filter Design 
 Window design method 

 Begins with our deciding what frequency 
response we want for our lowpass filter 
 We can start by considering a continuous lowpass 

filter, and simulating that filter with a digital filter 
 We define the continuous frequency response H(f) to 

be ideal, i.e., a lowpass filter with unity gain at low 
frequencies and zero gain (infinite attenuation) beyond 
some cutoff frequency, as shown in Fig. 5-14(a) 

 Representing this H(f) response by a discrete 
frequency response is the same—with one difference: 
discrete frequency-domain representations are always 
periodic with the period being fs 
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Lowpass FIR Filter Design 
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Lowpass FIR Filter Design 
 Window design method 

 We have two ways to determine lowpass filter’s 
time-domain coefficients 

 The first way is algebraic 
 1. Develop an expression for discrete frequency 

response H(m) 
 2. Apply that expression to inverse DFT equation to get 

time domain h(k) 
 3. Evaluate that h(k) expression as a function of time 

index k 
 The second method is to define individual 

frequency-domain samples representing H(m) and 
then have a software routine perform inverse DFT of 
those samples, giving FIR filter coefficients 
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Lowpass FIR Filter Design 
 Window design method 

 In either method, we need only define the 
periodic H(m) over a single period of fs Hz 
 Defining H(m) in Fig. 5-14(b) over frequency span −fs/2 

to fs/2 is the easiest form to analyze algebraically 
 Defining H(m) over frequency span 0 to fs is the best 

representation if we use inverse DFT to obtain filter’s 
coefficients 
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Lowpass FIR Filter Design 
 Algebraic method 

 We can define an arbitrary discrete frequency 
response H(m) using N samples to cover −fs/2 to 
fs/2 and establish K unity-valued samples for the 
passband of lowpass filter as shown in Fig. 5-15 

 
 
 
 
 

 A great deal of algebraic manipulation is required here 
that digital filter designers avoid performing IDFT 
algebraically 
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Lowpass FIR Filter Design 
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Lowpass FIR Filter Design 
 Software IDFT method of FIR filter design 
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Lowpass FIR Filter Design 
 Software IDFT method of FIR filter design 

 Using a 32-point inverse FFT to implement a 32-
point inverse DFT of H(m) sequence in Fig. 5-
17(c), we get 32 h(k) values from k = −15 to k = 
16 in Fig. 5-18(a) 

 Because we want final 31-tap h(k) filter 
coefficients to be symmetrical with their peak 
value in center of coefficient sample set, we drop 
k = 16 sample and shift k index to left from Fig. 5-
18(a), giving us the desired sin(x)/x form of h(k) 
as shown in Fig. 5-18(b) 
 This shift of index k will not change frequency 

magnitude response of FIR filter 
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Lowpass FIR Filter Design 
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Lowpass FIR Filter Design 
the more h(k) 
terms we use as 
filter coefficients, 
the closer we’ll 
approximate our 
ideal lowpass filter 
response 
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Lowpass FIR Filter Design 
 Why are passband ripples in lowpass FIR 

filter response in Fig. 5-19 
 
 
 
 Replacing h(k) and x(n) with h∞(k) and w(k) 

 
 
 h∞(k) represents an infinitely long sin(x)/x sequence of 

ideal lowpass FIR filter coefficients 
 w(k) represents a window sequence that we use to 

truncate sin(x)/x terms 
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Lowpass FIR Filter Design 

length of w(k) is the 
no. of coefficients, or 
taps, we intend to 
use to implement our 
lowpass FIR filter 



40 

Lowpass FIR Filter Design 
FIR filter’s true 
frequency response is 
H(m) = H∞(m) * W(m) 

we can view a 
particular sample value 
of H(m) = H∞(m) * W(m) 
convolution as being 
sum of products of 
H∞(m) and W(m) for a 
particular frequency 
shift of W(m) 

unity for all of H∞(m)  
a particular H(m) value 
is sum of W(m) 
samples that overlap 
H∞(m) rectangle 

with a W(m) frequency 
shift of 0 Hz, sum of 
W(m) samples that 
overlap H∞(m) 
rectangle is the value of 
H(m) at 0 Hz 

sum of positive and 
negative W(m) samples 
under H∞(m) rectangle 
varies as W(m) is 
shifted  ripples in 
passband 

peak of W(m)’s main 
lobe is outside H∞(m) 
rectangle  H(m)’s 
passband begins to roll 
off 

as W(m) shift 
continues, ripples 
in H(m) beyond 
the positive cutoff 
frequency 

ripples in H(m) 
are caused by 
sidelobes of 
W(m) 
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Lowpass FIR Filter Design 
 How many sin(x)/x coefficients do we have to 

use (or how wide must w(k) be) to get nice 
sharp falling edges and no ripples in H(m) 
passband? 
 As long as w(k) is a finite number of unity values 

(i.e., a rectangular window of finite width), there 
will be sidelobe ripples in W(m), and this will 
induce passband ripples in final H(m) frequency 
response 
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Lowpass FIR Filter Design 
we can make filter’s 
transition region 
narrower using 
additional h(k) filter 
coefficients, but we 
cannot eliminate 
passband ripple 

a wider w(k) does 
not even reduce 
peak-to-peak ripple 
magnitudes, as long 
as w(k) has sudden 
discontinuities 
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Lowpass FIR Filter Design 
 Gibbs’s phenomenon 

 The ripple is known as Gibbs’s phenomenon, 
which manifests itself anytime a function (w(k) in 
this case) with an instantaneous discontinuity is 
represented by a Fourier series 

 No finite set of sinusoids will be able to change 
fast enough to be exactly equal to an 
instantaneous discontinuity 

 No matter how wide w(k) window is, W(m) will 
always have sidelobe ripples 
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Lowpass FIR Filter Design 
 Windows used in FIR filter design 

 We can minimize FIR passband ripple with 
window functions the same way we minimized 
DFT leakage 

 Window FIR design method is the technique of 
reducing w(k)’s discontinuities by using window 
functions other than rectangular window 
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Lowpass FIR Filter Design 
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passband ripples 
are greatly reduced 

the price we paid for reduced 
passband ripple is a wider 
H(m) transition region 

we can get a steeper filter response roll-
off by increasing the no. of taps in FIR 
filter (we should use a 63-coefficient 
Blackman window for a 63-tap FIR filter) 
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Lowpass FIR Filter Design 

greatly reduced 
sidelobe levels of 
Blackman window 

Blackman window’s 
main lobe is almost 
three times as wide 
as rectangular 
window’s main lobe 
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Lowpass FIR Filter Design 
 Summary of window method of FIR filter 

design 
 We pick a window function and multiply it by 

sin(x)/x values from h∞(k) to get our final h(k) filter 
coefficients 
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Lowpass FIR Filter Design 
 Window functions with more control over their 

frequency responses 
 There are two window functions with more 

flexibility in trading off the window’s main lobe 
width and sidelobe levels 
 Chebyshev and Kaiser window functions 
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Lowpass FIR Filter Design 
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Lowpass FIR Filter Design 

unlike the constant 
sidelobe peak levels 
of Chebyshev window, 
Kaiser window’s 
sidelobes decrease 
with increased 
frequency 

Kaiser sidelobes 
are higher than 
Chebyshev 
window’s 
sidelobes near 
main lobe 
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Lowpass FIR Filter Design 
Selecting different 
values for γ 
enables us to 
adjust sidelobe 
levels and see 
what effect those 
values have on 
main lobe width 

Chebyshev 
window function’s 
stopband 
attenuation, in dB 
AttenCheb = -20 γ  
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Lowpass FIR Filter Design 
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Lowpass FIR Filter Design 
 Chebyshev or Kaiser, which is the best? 

 Depends on the application 
 Digital filter designers typically experiment with 

various values of γ and β for Chebyshev and 
Kaiser windows to get the optimum WdB(m) for a 
particular application 

 Blackman window’s very low sidelobe levels 
outweigh its wide main lobe in many applications 
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Bandpass FIR Filter Design 
 Bandpass FIR filter design 

 Window method of lowpass FIR filter design can 
be used as the first step 

 Let’s say we want a 31-tap FIR filter with the 
frequency response shown in Fig. 5-22(a), but 
instead of being centered about zero Hz, we want 
filter’s passband to be centered about fs/4 Hz 

 If we define a lowpass FIR filter’s coefficients as 
hlp(k), to find hbp(k) coefficients of a bandpass FIR 
filter, we can shift Hlp(m)’s frequency response by 
multiplying hlp(k) lowpass coefficients by a 
sinusoid of fs/4 Hz (sshift(k)) 
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Bandpass FIR Filter Design 

actual magnitude of 
|Hbp(m)| is half that 
of the original 
|Hlp(m)| because half 
the values in hbp(k) 
are zero when 
sshift(k) corresponds 
exactly to fs/4 

when we design an 
N-tap bandpass FIR 
filter centered at a 
frequency of fs/4 Hz, 
we only need to 
perform N/2 
multiplications for 
each filter output 
sample 

hlp(k) lowpass 
coefficients have not 
been multiplied by 
any window function. 
In practice, we’d use 
an hlp(k) that has 
been windowed to 
reduce passband 
ripple 

If we wanted to 
center bandpass 
filter’s response at 
some frequency 
other than fs/4, we 
need to modify 
sshift(k) to represent 
sampled values of a 
sinusoid whose 
frequency is equal to 
the desired 
bandpass center 
frequency 
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Highpass FIR Filter Design 
 Highpass FIR filter design 

 We can use the bandpass FIR filter design 
technique to design a highpass FIR filter 

 To obtain coefficients for a highpass filter, we 
need only modify the shifting sequence sshift(k) to 
make it represent a sampled sinusoid whose 
frequency is fs/2 

 hhp(k) = hlp(k) . sshift(k) = hlp(k) . (1,-1,1,-1,etc.) 
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Highpass FIR Filter Design 

hhp(k) is merely hlp(k) 
with the sign 
changed for every 
other coefficient 

|Hhp(m)| response 
has the same 
amplitude as the 
original |Hlp(m)| 

hlp(k) lowpass 
coefficients have not 
been modified by 
any window function. 
In practice, we’d use 
a windowed hlp(k) to 
reduce passband 
ripple 
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Parks-McClellan Exchange FIR Filter Design Method 

 Parks-McClellan FIR filter design method 
 Also called Remez Exchange, or Optimal method 
 A popular technique used to design high-

performance FIR filters 
to use this method, 
we have to visualize 
a desired frequency 
response Hd(m): we 
have to establish 
desired fpass, fstop, δp 
and δs 
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Parks-McClellan Exchange FIR Filter Design Method 

 Parks-McClellan FIR filter design method 
 Passband and stopband ripples, in decibels, are 

related to δp and δs by 
 
 

 Next, we apply these parameters to a software 
routine that generates the filter’s N time-domain 
h(k) coefficients where N is the minimum number 
of filter taps to achieve the desired filter response 
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Parks-McClellan Exchange FIR Filter Design Method 
some software 
Parks-McClellan 
routines assume that 
we want δp and δs to 
be as small as 
possible and require 
us only to define the 
desired values of 
Hd(m) response as 
shown by solid black 
dots 

filter designer has 
the option to define 
some of Hd(m) 
values in transition 
band, and software 
calculates remaining 
undefined Hd(m) 
transition band 
values 
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Parks-McClellan Exchange FIR Filter Design Method 
the three filters have 
roughly the same 
stopband sidelobe 
levels, near main 
lobe, but Parks-
McClellan filter has 
the more desirable 
(steeper) transition 
band roll-off 
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Half-band FIR Filters 
 Half-band FIR filter 

 Very useful in signal decimation and interpolation 
applications 

 Its frequency magnitude response is symmetrical 
about fs/4 point 
 fpass + fstop = fs/2 
 When filter has an odd number of taps, filter’s time-

domain impulse response has every other filter 
coefficient being zero, except center coefficient 

 This enables us to avoid approximately half the 
number of multiplications when implementing this filter 

 For an N-tap half-band FIR filter, we’ll only need to 
perform (N + 1)/2 + 1 multiplications per output sample 
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Half-band FIR Filters 
coefficients for a 
31-tap half-band 
filter where Δf is 
defined to be 
approximately 
fs/32 using Parks-
McClellan FIR 
filter design 
method 

alternating h(k) 
coefficients are 
zero, so we 
perform 17 
multiplications 
per output 
sample instead of 
the expected 31 
multiplications h(1) and h(5) 

multipliers are 
absent 
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Half-band FIR Filters 
 Half-band FIR filter 

 To build linear-phase N-tap half-band FIR filters, 
having alternating zero-valued coefficients, N + 1 
must be an integer multiple of four 
 If this restriction is not met, e.g. when N = 9, the first 

and last coefficients will both be equal to zero and can 
be discarded, yielding a 7-tap half-band filter 

 When designing a half-band filter, assuming that 
the modeled filter has a passband gain of unity, 
ensure that filter has a gain of 0.5 (−6 dB) at fs/4 

 Numerical computation errors yield alternate filter 
coefficients that are not exactly zero-valued  
force those values to zero 
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Phase Response of FIR Filters 

the 25 h(k) sequence 
is padded with 103 
zeros to take a 128-
point DFT, resulting in 
H(m) sample values 

at m = 17, H(m) 
experiences a polarity 
change of its real part 
while its imaginary 
part remains 
negative—this 
induces a true phase-
angle discontinuity (in 
Fig. 5-35(c)) that 
really is a constituent 
of H(m) at m = 17. 
Additional phase 
discontinuities occur 
each time the real 
part of H(m) reverses 
polarity 
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Phase Response of FIR Filters 
software adds 360° to 
any negative angles 
in the range of   
−180° > ø ≥ −360° 

one of the dominant 
features of FIR filters 
is their linear phase 
response. Hø(m) is 
linear over the 
passband of H(m) 



67 

Phase Response of FIR Filters 
 Group delay 

 G = −dø/df 
 For FIR filters, group delay is slope of Hø(m) response 

curve 
 When group delay is constant, as it is over passband of 

all FIR filters having symmetrical coefficients, all 
frequency components of filter input signal are delayed 
by an equal amount of time G before they reach filter’s 
output 
 Crucial in communications signals 
 For amplitude modulation (AM) signals, constant group 

delay preserves time waveform shape of signal’s 
modulation envelope 
 Important because modulation portion of an AM signal 

contains signal’s information 
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Phase Response of FIR Filters 
 Group delay 

 Over passband frequency range for a linear-
phase, S-tap FIR filter, group delay is 
 
 D = S−1 is the number of unit-delay elements 
 ts is sample period (1/fs) 
 Eliminating ts factor changes its dimensions to samples 

 Passband phase-angle resolution 
 
 N = the number of points in DFT 

seconds  
2

stDG ⋅
=

N
G 360⋅−

=∆φ
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Phase Response of FIR Filters 

128-point DFT was 
used to obtain 
frequency responses 
in Figs. 5-34 and 5-
35; we could use N = 
32-point or N = 64-
point DFTs 

phase-angle 
resolution is much 
finer here 

S = 25-tap filter in Fig. 
5-34(a)  G = 12  
Δø = −12 · 360°/32 = 
−135° 

S = 25-tap filter in Fig. 
5-34(a)  G = 12  
Δø = −12 · 360°/128 = 
−33.75° 
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Phase Response of FIR Filters 
 For FIR filters, output phase shift (in degrees) 

for passband frequency f = mfs/N, is 
 
 Relationship between phase responses in Fig. 5-

36 considering the phase delay associated with 
frequency of fs/32 
 

N
GmmNfmH s

360)/(delay  phase ⋅⋅−
=∆⋅== φφ

DFT size, N Index m Hø(mfs / N) 
32 1 −135° 
64 2 −135° 
128 4 −135° 
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Analyzing FIR Filters 
 Analyzing tapped-delay line, nonrecursive 

FIR filters 
 Means determining FIR filter’s frequency 

response based on known filter coefficients 
 Two ways to analyze 

 Using continuous-time Fourier algebra 
 Using discrete Fourier transform 
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Analyzing FIR Filters 
 Algebraic analysis of FIR filters 

 Uses DTFT equation 
 

 DTFT of an FIR filter having N coefficients 
(impulse response) represented by h(k), where   
k = 0, 1, 2, ..., N−1 
 
 
 
 H(ω) is an (N−1)th-order polynomial 
 ω is continuous and ranges from 0 to 2π rad/samp, 

corresponding to a continuous-time frequency range of 0 
to fs Hz 
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Analyzing FIR Filters 
 Example 

 A 4-tap FIR filter whose coefficients are h(k) = 
[0.2, 0.4, 0.4, 0.2] 
 
 
 
 

 Magnitude and phase (Hø(ω) = arctangent of ratio 
of imaginary part over real part of H(ω)) are 
plotted in Fig. 5-46 
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Analyzing FIR Filters 
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Analyzing FIR Filters 
 DFT analysis of FIR filters 

 The most convenient way to determine an FIR 
filter’s frequency response is to perform DFT of 
filter’s coefficients 
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Analyzing FIR Filters 
We need more |H(m)| frequency-domain 
information. That is, we need improved 
frequency resolution. 
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Analyzing FIR Filters 

a finer-granularity 
version of H(m) 
obtained by zero 
padding h(k) 
coefficients 

circular white 
dots correspond 
to square dots in 
Fig. 5-47(b) 
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Analyzing FIR Filters 
 A filter’s complex H(m) frequency response 

sequence 


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


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Analyzing FIR Filters 
 FIR filter (constant) group delay 

 A filter has a linear phase response over its 
passband and will induce no phase distortion in 
its output signals 
 

 
 ω is continuous and ranges from −π to π 

radians/sample, corresponding to a continuous-time 
frequency range of −fs/2 to fs/2 Hz 

 Hø(ω) in radians 
 ω in radians/sample 
 G(ω) are time measured in samples 

samples  
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Analyzing FIR Filters 
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Analyzing FIR Filters 
 FIR filter group delay 

 Example: complex-valued frequency response of 
a K-tap moving average filter is 
 
 
 
 
 

 For symmetrical-coefficient FIR filters 
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Analyzing FIR Filters 
 FIR filter group delay 

 In general, group delay of a tapped-delay line FIR 
digital filter, whose impulse response is 
symmetric, is 
 
 

 If a tapped-delay line (FIR) network has an 
antisymmetrical impulse response, it also has a 
linear phase response and its group delay is also 
described by above equation 
 Antisymmetrical impulse response: h(k)=−h(N−k−1) 
 where 0≤k≤(N−1)/2 when N is odd and 0≤k≤(N/2)−1 

when N is even 

samples  
2

1length  response impulse
samples

−
=G
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Analyzing FIR Filters 

samples  
2samples
DG = fractional delay 
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Analyzing FIR Filters 
 FIR filter passband gain 

 Passband gain is filter’s passband magnitude 
response level around which the passband ripple 
fluctuates 

 In practice we design filters to have very small 
passband ripple, so a lowpass filter’s passband 
gain is roughly equal to its DC gain (gain at 0 Hz) 
 DC gain is sum of filter’s impulse response sequence, 

i.e., sum of FIR filter’s coefficients 
 Most commercial FIR filter design software 

packages compute filter coefficients such that 
their passband gain is unity 
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Analyzing FIR Filters 

passband gain 
equals unity here 
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Analyzing FIR Filters 
 Estimating the number of FIR filter taps 

 How do we estimate the number of filter taps 
(coefficients), N, that can satisfy a given 
frequency magnitude response of an FIR filter? 
 A simple expression proposed by Prof. Fred Harris for 

N, for passband ripple values near 0.1 dB, is 
 
 

 Atten = desired stopband attenuation measured in dB 
 fpass and fstop are frequencies normalized to fs sample 

rate in Hz 
 E.g., fpass = 0.2 means that continuous-time frequency 

of fpass is 0.2fs Hz 

)(22 passstop
FIR ff

AttenN
−

≈
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Analyzing FIR Filters 

8.21
)1000/2501000/350(22
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)(22
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the lowpass filter 
can be built using 
a 22-tap FIR filter 


