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Introduction 
 Infinite impulse response (IIR) digital filters 

 Are fundamentally different from FIR filters 
 FIR filter output samples depend only on past input 

samples 
 Each IIR filter output sample depends on previous input 

samples and previous filter output samples 
 IIR filters have memory of past outputs (require feedback) 

 As in all feedback systems, perturbations at IIR 
filter input could cause filter output to become 
unstable and oscillate indefinitely 
 Infinite impulse response 

 IIR filters have more complicated structures (block 
diagrams), are harder to design and analyze, and 
do not have linear phase responses 
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Introduction 
 Why use an IIR filter? 

 Because they are very efficient 
 IIR filters require far fewer multiplications per filter 

output sample to achieve a given frequency magnitude 
response 

 From a hardware standpoint, IIR filters can be very 
fast, allowing us to build real-time IIR filters that 
operate over much higher sample rates than FIR filters 
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Introduction 
where the 19-tap FIR filter requires 
19 multiplications per filter output 
sample, the 4th-order IIR filter 
requires only 9 multiplications for 
each filter output sample 

reduced passband ripple 
and a sharper filter roll-
off, with less than half the 
multiplication workload 
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Introduction 
 IIR vs. FIR 

 An FIR filter’s frequency response with very steep 
transition regions requires a very long impulse 
response 

 The maximum number of FIR filter taps we can 
have (length of impulse response) depends on 
how fast our hardware can perform the required 
number of multiplications and additions to get a 
filter output before the next input sample arrives 

 IIR filters can be designed to have impulse 
responses longer than their number of taps 
 Thus, IIR filters can give much better filtering for a 

given number of multiplications per output sample 
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An Introduction to IIR Filters 
 If IIR filter’s input suddenly becomes all 

zeros, its output could remain nonzero 
forever 
 This is because of feedback structure of their 

delay units, multipliers, and adders 
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An Introduction to IIR Filters 
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An Introduction to IIR Filters 
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An Introduction to IIR Filters 
 How determine a(k) and b(k) IIR filter coefficients 

 Window method of lowpass FIR filter design 
 Define frequency response of desired FIR filter  take 

inverse Fourier transform  shift that transform result 
 we get filter’s time-domain impulse response 

 Due to the nature of transversal FIR filters, the desired 
h(k) filter coefficients turn out to be exactly equal to the 
impulse response sequence 

 Following that same procedure with IIR filters 
 Desired frequency response of IIR filter  inverse 

Fourier transform  time-domain impulse response 
 But there’s no direct method for computing IIR filter’s 

a(k) and b(k) coefficients from impulse response 
 FIR filter design techniques cannot be used here 
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An Introduction to IIR Filters 
 Standard IIR filter design techniques  

 Fall into three basic classes: impulse invariance, 
bilinear transform, and optimization methods 

 These design methods use a discrete sequence, 
mathematical transformation process known as 
the z-transform whose origin is Laplace transform 
used in analyzing of continuous systems 
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The Laplace Transform 
 Laplace transform 

 A mathematical method of solving linear 
differential equations 

 Process of using Laplace transform 
 A time-domain differential equation is written that 

describes input/output relationship of a physical 
system 

 The differential equation is Laplace transformed, 
converting it to an algebraic equation 

 Standard algebraic techniques are used to determine 
desired output function’s equation in Laplace domain 

 The desired Laplace output equation is, then, inverse 
Laplace transformed to yield the desired time-domain 
output function’s equation 
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The Laplace Transform 
 Laplace transform of a continuous time-

domain function f(t) 
 
 
 Variable s is the complex number s = σ + jω 
 f(t) is defined only for positive time (t > 0) 

 Systems where system conditions for negative time (t 
< 0) are not needed (one-sided ) are referred to as 
causal systems 

 Causal systems may have initial conditions at t = 0 
that must be taken into account, but we don’t need 
to know what the system was doing prior to t = 0 
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The Laplace Transform 
 s = σ + jω 

 σ is a real number  
 ω is frequency in radians/second 
 e−st is dimensionless  s has dimension of 

1/time, or frequency 
 Laplace variable s is often called a complex frequency 
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The Laplace Transform 
 Laplace transform 

 
 
 
 e−jωt is a unity-magnitude phasor rotating clockwise 

around origin of a complex plane at a frequency of ω 
radians/second 

 eσt is a real number whose value is one at t = 0 
 As t increases, eσt gets larger (when σ is positive), and 

complex e−st phasor’s magnitude gets smaller as phasor 
rotates on complex plane 

 The tip of that phasor traces out a curve spiraling in 
toward origin of complex plane 
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The Laplace Transform 

real part of F(s), for 
a particular value of 
s, is correlation of 
f(t) with a cosine 
wave of frequency 
ω and a damping 
factor of σ, and 
imaginary part of 
F(s) is correlation 
of f(t) with a 
sinewave of 
frequency ω and a 
damping factor of σ 
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The Laplace Transform 
 s-plane 

 If we associate each of different values of 
complex s variable with a point on a complex 
plane, called s-plane, we could plot real part of 
F(s) correlation as a surface above (or below) 
that s-plane and generate a second plot of 
imaginary part of F(s) correlation as a surface 
above (or below) s-plane 

 We can also graph magnitude |F(s)| as a function 
of s 



17 

The Laplace Transform 
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We’ll use Laplace transform toward 
our goal of figuring out what the y(t) 
output will be for any given x(t) input 
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The Laplace Transform 
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The Laplace Transform 
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The Laplace Transform 
 Laplace analysis technique is based on 

system’s x(t) input being some function of est, 
or x(est) 
 All practical x(t) input functions can be 

represented with complex exponentials, e.g., 
 A constant, c = ce0t 

 Sinusoids, sin(ωt) = (ejωt − e−jωt)/2j or cos(ωt) = (ejωt + 
e−jωt)/2 

 A monotonic exponential, eat 

 An exponentially varying sinusoid, e−at cos(ωt) 
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The Laplace Transform 
 System’s transfer function H(s) 

 If we know H(s), we can take Laplace transform 
of any x(t) input to determine X(s), multiply that 
X(s) by H(s) to get Y(s), and then inverse Laplace 
transform Y(s) to yield time-domain expression 
for the output y(t) 
 Not needed because it’s H(s) in which we’re interested  

 Being able to express H(s) mathematically or 
graph the surface |H(s)| as a function of s will tell 
us two important properties we need to know 
about system: 
 Is system stable 
 And if so, what is its frequency response 
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The Laplace Transform 
 Poles and zeros on s-plane and stability 

 A system is stable if, given any bounded input, 
the output will always be bounded 

 Instability would result in a filter output that’s not 
at all representative of filter input—a situation 
we’d like to avoid if we can 

 Example 
 
 
 If s = −a0/a1, denominator equals zero and H1(s) would 

have an infinite magnitude 
 This s = −a0/a1 point on s-plane is called a pole 
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The Laplace Transform 

the pole is located 
exactly on negative 
portion of real σ axis H1(s) is stable 

because its y(t) 
output approaches 
zero as time passes 

distance of pole from 
σ = 0 axis, a0/a1 for 
our H1(s), gives the 
decay rate of y(t) 
impulse response 

If the system described by H1 were at rest and we disturbed it with an 
impulse like x(t) input at time t = 0, its continuous time-domain y(t) 
output would be the damped exponential curve shown in (b) 
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The Laplace Transform 

Laplace transform is 
a more general case 
of Fourier transform 
because if σ = 0, 
then s = jω 

intersection of 
vertical σ = 0 plane 
(jω axis plane) and 
|H1(s)| surface, 
gives us frequency 
magnitude response 
|H1(ω)| of system 
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The Laplace Transform 
 Example: 2nd-order transfer function H2(s) 

 
 
 
 
 

 
 

 Order of transfer function is the largest exponential 
order of s in either numerator or denominator 

 If s is equal to −p or −p*, one of polynomial roots in the 
denominator will equal zero, and H2(s) will have an 
infinite magnitude  two complex poles 
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The Laplace Transform 

the two complex 
poles are located off 
the negative portion 
of real σ axis 

If H2 system were at rest and we disturbed it with an impulse-like x(t) 
input at t = 0, its continuous time-domain y(t) output would be the 
damped sinusoidal curve shown in (b) 

H2(s) is stable 
because its oscillating 
y(t) output approaches 
zero as time increases 

distance of poles from σ = 0 axis 
(−preal) gives decay rate of sinusoidal 
y(t) impulse response. Likewise, 
distance of poles from jω = 0 axis 
(±pimag) gives frequency of sinusoidal 
y(t) impulse response 
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The Laplace Transform 
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The Laplace Transform 
stable systems: when 
disturbed from their 
at-rest condition, they 
respond and, at some 
later time, return to 
that initial condition 

1/s transfer function 
conditional stability: 
if an H(s) transfer 
function has 
conjugate poles 
located exactly on 
jω axis (σ = 0), the 
system will go into 
oscillation when 
disturbed from its 
initial condition 

instability: the poles 
lie to the right of jω 
axis. When disturbed 
from their initial at-
rest condition by an 
impulse input, their 
outputs grow without 
bound 
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The Laplace Transform 
for a system to be 
stable, all of its 
transfer-function 
poles must lie on the 
left half of s-plane 
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The z-Transform 
 z-transform 

 Discrete-time cousin of continuous Laplace 
transform 
 While Laplace transform is used to simplify analysis of 

continuous differential equations, z-transform facilitates 
analysis of discrete difference equations 

 z-transform is performed on a discrete h(n) 
sequence, converting that sequence into a 
continuous function H(z) of the continuous 
complex variable z 
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The z-Transform 
 z-transform 

 
 
 

 This Equation can be interpreted as Fourier transform 
of product of original sequence h(n) and exponential 
sequence r−n 

 When r = 1, it simplifies to Fourier transform 
 Thus on z-plane, the contour of H(z) surface for those 

values where |z| = 1 is Fourier transform of h(n) 
 If h(n) represents a filter impulse response sequence, 

evaluating H(z) transfer function for |z| = 1 yields 
frequency response of filter 
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The z-Transform 
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The z-Transform 
jω frequency axis on continuous Laplace s-plane is linear and ranges from 
− ∞ to + ∞ radians/second. The ω frequency axis on complex z-plane, 
however, spans only the range from −π to +π radians  z-plane frequency 
axis is equivalent to coiling s-plane’s jω axis about the unit circle on z-plane 
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The z-Transform 
 Poles, zeros, and digital filter stability 

 Region of filter stability is mapped to the inside of 
unit circle on z-plane 

 Given H(z) transfer function of a digital filter, we 
can examine that function’s pole locations to 
determine filter stability 

 If all poles are located inside unit circle, filter will 
be stable 
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The z-Transform 
 Example 

 If a causal filter’s H(z) transfer function has a 
single pole at location p on z-plane, its transfer 
function can be represented by 
 
 

 Filter’s time-domain impulse response sequence 
 
 u(n) represents a unit step (all ones) sequence 

beginning at time n = 0 
 When |p| < 1, h(n) impulse response sequence is 

unconditionally bounded in amplitude 
 |p| < 1 means that pole must lie inside z-plane’s unit circle 
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The z-Transform 

point z = −1 
corresponds to π 
radians (or πfs 
radians/second = 
fs/2 Hz)  ωo = π/4 
means that fo = fs/8 
and our y(n) will 
have eight samples 
per cycle of fo 
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Using z-Transform to Analyze IIR Filters 
 Representing delay operation 

 Assume we have a sequence x(n) whose z-
transform is X(z) and a sequence y(n) = x(n−1) 
whose z-transform is Y(z) 
 
 
 
 
 
 
 Thus, effect of a single unit of time delay is to multiply 

z-transform of undelayed sequence by z−1 
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Using z-Transform to Analyze IIR Filters 
X(z)z−k is z-transform of x(n) 
delayed by k samples. So a 
transfer function of z−k is 
equivalent to a delay of kts 
seconds from the instant 
when t = 0, where ts = 1/fs 

Because a delay of one 
sample is equivalent to 
factor z−1, the unit time 
delay symbol is usually 
indicated by z−1 operator 
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Using z-Transform to Analyze IIR Filters 
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Using z-Transform to Analyze IIR Filters 
 Fig. 6-17 

 Is a general Mth-order IIR filter 
 This IIR filter structure is called Direct Form I 
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Using z-Transform to Analyze IIR Filters 
 Two things to know about an IIR filter: its 

frequency response and stability 
 We can evaluate denominator of H(z) to 

determine positions of filter’s poles on z-plane 
indicating filter’s stability 

 From H(z) we develop an expression for IIR 
filter’s frequency response 
 H(z) is a complex-valued surface above, or below, the 

z-plane 
 Intersection of H(z) surface and perimeter of a cylinder 

representing z = ejω unit circle is the filter’s complex 
frequency response 
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Using z-Transform to Analyze IIR Filters 
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Using z-Transform to Analyze IIR Filters 
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Using z-Transform to Analyze IIR Filters 
 Fig. 6-18 

 (a) is a 2nd-order lowpass IIR filter whose 
positive cutoff frequency is ω = π/5 (fs/10 Hz) 
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Using z-Transform to Analyze IIR Filters 
although both filters 
require the same 
computational workload, 
five multiplications per 
filter output sample, 
lowpass IIR filter has 
the superior frequency 
magnitude response 

phase nonlinearity is 
inherent in IIR filters 

knowing that the 
filter’s phase 
response is nonlinear, 
we should expect the 
impulse response to 
be asymmetrical 

infinite impulse response: 
if we used infinite-
precision arithmetic in our 
filter implementation, h(k) 
impulse response would 
be infinite in duration 
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Using z-Transform to Analyze IIR Filters 
 To determine our IIR filter’s stability 

 
 
 
 
 

 So when z = p0 = 0.597 − j0.282, or when z = p1 
= 0.597 + j0.282, filter’s H(z) transfer function’s 
denominator is zero and |H(z)| is infinite 
 Because those pole locations are inside the unit circle 

(their magnitudes are less than one), our example IIR 
filter is unconditionally stable 
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Using z-Transform to Analyze IIR Filters 

if we were to unwrap the 
bold |H(ω)| curve and lay 
it on a flat surface, we 
would have the |H(ω)| 
curve in Fig. 6-19(a) 
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Using Poles and Zeros to Analyze IIR Filters 
 IIR filter transfer function algebra 

 Several ways to write H(z) = Y(z)/X(z) z-domain 
transfer function 
 
 
 
 
 
 

 ))()()((
))()()((

)(

)4()3()2()1(
)4()3()2()1()0()(

)4()3()2()1(1
)4()3()2()1()0()(

3210

3210form factored

234

234
)form polynomial(
/by  gmultiplyin

4321

4321

44

pzpzpzpz
zzzzzzzzzH

azazazaz
bzbzbzbzbzH

zazazaza
zbzbzbzbbzH

zz

−−−−
−−−−

= →

++++
++++

= →

++++
++++

=
−−−−

−−−−

useful because we can 
replace z with ejω to 
obtain an expression for 
frequency response of 
filter 

necessary so we can factor (find 
roots of) polynomials to obtain 
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Using Poles and Zeros to Analyze IIR Filters 
 Using poles/zeros to obtain transfer functions 

 We can analyze an IIR filter’s frequency-domain 
performance based solely on poles and zeros 

 Given zk zeros and pk poles, we can write the 
factored form of filter’s transfer function as 
 
 
 
 
 G = G1/G2 is an arbitrary gain constant 
 Filter zeros are associated with decreased frequency 

magnitude response, and filter poles are associated with 
increased frequency magnitude response 
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Using Poles and Zeros to Analyze IIR Filters 
if a filter has no z-plane 
zeros, and one pole at p0 
= 0.8, we can write its 
transfer function as 
H1(z)=G/(z-0.8) 

|H1(ω)| is normalized. 
P0 is closest to ω = 0 
radians/sample (z = 1) 
on unit circle  
lowpass filter. 
|p0| < 1  filter is 
unconditionally stable 

if a filter has a zero at z0 
= 1, and a pole at p0 = 
−0.8, we write its 
transfer function as 
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pole is closest to ω = π 
radians/sample (z = −1) 
on unit circle  
highpass filter. 
the zero located at z = 
1 causes filter to have 
infinite attenuation at ω 
= 0 radians/sample 
(zero Hz) 
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Using Poles and Zeros to Analyze IIR Filters 
 Fig. 6-21(c) 

 Consider a filter having two complex conjugate 
zeros at −0.707 ± j0.707, as well as two complex 
conjugate poles at 0.283 ± j0.283 
 
 
 
 
 The two poles on the right side of z-plane make this a 

lowpass filter having a wider passband than H1(z) 
 Two zeros are on unit circle at angles of ω = ±3π/4 

radians, causing filter to have infinite attenuation at 
frequencies ω = ±3π/4 radians/sample (±3fs/8 Hz) 
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Using Poles and Zeros to Analyze IIR Filters 
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Using Poles and Zeros to Analyze IIR Filters 
 Fig. 6-21(d) 

 If we add a z-plane zero at z = 1 to H3(z) 
 
 

 The zero at z = 1 yields infinite attenuation at ω = 
0 radians/sample (zero Hz), creating a bandpass 
filter 

 Because p0 and p1 poles are oriented at angles of 
θ = ±π/4 radians, filter’s passbands are centered 
in the vicinity of frequencies ω = ±π/4 
radians/sample (±fs/8 Hz) 
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Using Poles and Zeros to Analyze IIR Filters 
 Fig. 6-21(e) 

 If we increase magnitude of H4(z) filter’s poles, 
making them equal to 0.636 ± j0.636, we position 
the conjugate poles much closer to unit circle 
 
 

 Poles near unit circle now have a much more 
profound effect on filter’s magnitude response 
 The poles’ infinite gains cause H5(z) passbands to be 

very narrow (sharp) 
 When a pole is close to unit circle, center 

frequency of its associated passband can be 
accurately estimated to be equal to pole’s angle 
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Using Poles and Zeros to Analyze IIR Filters 
 Fig. 6-21(f) 

 Consider an FIR filter—a digital filter whose H(z) 
transfer function denominator is unity 
 For an FIR filter to have linear phase, each z-plane 

zero located at z = z0 = Mejα, where M ≠ 1, must be 
accompanied by a zero having an angle of −α and a 
magnitude of 1/M 
 z0 is accompanied by z3 

 If FIR filter’s transfer function polynomial has real-
valued bk coefficients, then a z0 zero not on the z-
plane’s real axis will be accompanied by a complex 
conjugate zero at z = z2 

 Likewise, for FIR filter to have linear phase, z2 zero 
must be accompanied by z1 zero 
 z1 and z3 zeros are complex conjugates of each other 
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Using Poles and Zeros to Analyze IIR Filters 
 z-plane pole/zero properties 

 Filter poles are associated with increased 
frequency magnitude response (gain) 

 Filter zeros are associated with decreased 
frequency magnitude response (attenuation) 

 To be unconditionally stable, all filter poles must 
reside inside the unit circle 

 Filter zeros do not affect filter stability 
 The closer a pole (zero) is to unit circle, the 

stronger will be its effect on filter’s gain 
(attenuation) at the frequency associated with the 
pole’s (zero’s) angle 
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Using Poles and Zeros to Analyze IIR Filters 
 z-plane pole/zero properties 

 A pole (zero) located on unit circle produces 
infinite filter gain (attenuation) 

 If a pole is at the same z-plane location as a zero, 
they cancel each other 

 Poles or zeros located at origin of z-plane do not 
affect frequency response of filter 

 Filters whose transfer function denominator 
(numerator) polynomial has real-valued 
coefficients have poles (zeros) located on real z-
plane axis, or pairs of poles (zeros) that are 
complex conjugates of each other 
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Using Poles and Zeros to Analyze IIR Filters 
 z-plane pole/zero properties 

 For an FIR filter (transfer function denominator is 
unity) to have linear phase, any zero on z-plane 
located at z0 = Mejα, where z0 is not on unit circle 
and α is not zero, must be accompanied by a 
reciprocal zero whose location is 1/z0 = e−jα/M 

 If an FIR filter has real-valued coefficients, is 
linear phase, and has a z-plane zero not located 
on real z-plane axis or on unit circle, that z-plane 
zero is a member of a “gang of four” zeros 
 If we know z-plane location of one of those four zeros, 

then we know location of the other three zeros 
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Alternate IIR Filter Structures 
 Direct Form I, Direct Form II, and transposed 

structures 
 Direct Form I structure of an IIR filter can be 

converted to several alternate forms 



60 

Alternate IIR Filter Structures 
thinking of 
feedforward and 
feedback portions as 
two separate filter 
stages, because both 
stages are linear and 
time invariant, we can 
swap them with no 
change in y(n) output 

because sequence 
g(n) is shifted down 
along both delay lines 
in (b), we can 
eliminate one of delay 
paths and arrive at 
filter structure shown 
in (c), where only half 
the delay storage 
registers are required 
compared to Direct 
Form I structure 
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Alternate IIR Filter Structures 
 Transposition theorem 

 There is a process in DSP that allows us to 
change structure of an LTI digital network without 
changing network’s transfer function (its 
frequency response) 
 That network conversion process follows transposition 

theorem 
 A transposed version of some digital network 

might be easier to implement, or may exhibit 
more accurate processing, than the original 
network 
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Alternate IIR Filter Structures 
 Steps to transpose a digital filter (starting with 

Direct Form II) 
 1. reverse direction of all signal-flow arrows 
 2. convert all adders to signal nodes 
 3. convert all signal nodes to adders 
 4. swap x(n) input and y(n) output labels 
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Alternate IIR Filter Structures 

By convention, we flip 
the network in (b) from 
left to right so that x(n) 
input is on the left as 
shown in (c) 
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Alternate IIR Filter Structures 
 Fig. 6-23 

 Transposed filter contains the same number of 
delay elements, multipliers, and addition 
operations as the original filter, and both filters 
have the same transfer function given by 
 
 

 When implemented using infinite-precision 
arithmetic, Direct Form II and transposed Direct 
Form II filters have identical frequency response 
properties 
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Alternate IIR Filter Structures 
 Fig. 6-23 

 Transposed Direct Form II structure is less 
susceptible to errors that can occur when finite-
precision binary arithmetic is used to represent 
data values and filter coefficients within a filter 
implementation 
 Direct Form II filters implement (possibly high-gain) 

feedback pole computations before feedforward zeros 
computations  large intermediate data values which 
must be truncated 

 Transposed Direct Form II filters implement zeros 
computations first followed by pole computations 

 Direct Form I filter has the most resistance to 
coefficient quantization and stability problems 
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Impulse Invariance IIR Filter Design Method 
 Impulse invariance method 

 Is based upon the notion that we can design a 
discrete filter whose time-domain impulse 
response is a sampled version of impulse 
response of a continuous analog filter 

 If that analog filter (called prototype filter) has 
some desired frequency response, then our IIR 
filter will yield a discrete approximation of that 
desired response 
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Impulse Invariance IIR Filter Design Method 



68 

Impulse Invariance IIR Filter Design Method 
 Impulse invariance method 

 Our goal is to design a digital filter whose impulse 
response is a sampled version of analog filter’s 
continuous impulse response 

 We can map each pole on s-plane for analog 
filter’s Hc(s) transfer function to a pole on z-plane 
for discrete IIR filter’s H(z) transfer function 

 Impulse invariance method yields useful IIR filters 
as long as sampling rate is high relative to 
bandwidth of signal to be filtered 
 IIR filters designed using impulse invariance method 

are susceptible to aliasing problems because practical 
analog filters cannot be perfectly band-limited 
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Impulse Invariance IIR Filter Design Method 

we prefer to make fs as 
large as possible to 
minimize the overlap 
between primary 
frequency response 
curve and its replicated 
images spaced at 
multiples of ±fs Hz 

Due to aliasing 
behavior of impulse 
invariance design 
method, this filter 
design process should 
never be used to 
design highpass digital 
filters 
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Impulse Invariance IIR Filter Design Method 
 Two methods for designing IIR filters using 

impulse invariance 
 Method 1 

 Requires that an inverse Laplace transform as well as 
a z-transform be performed 

 Method 2 
 Uses a direct substitution process to avoid inverse 

Laplace and z-transformations at the expense of 
needing partial fraction expansion algebra necessary 
to handle polynomials 
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Impulse Invariance IIR Filter Design Method 
 Method 1 

 Step 1: Design a prototype analog filter with 
desired frequency response 
 In a lowpass filter design, for example, filter type 

(Chebyshev, Butterworth, elliptic), filter order (number 
of poles), and cutoff frequency are parameters to be 
defined in this step 

 Result of this step is a continuous Laplace transfer 
function Hc(s) expressed as ratio of two polynomials, 
such as 
 
 
 

 N < M, and a(k) and b(k) are constants 
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Impulse Invariance IIR Filter Design Method 
 Method 1 

 Step 2: Determine analog filter’s continuous time-
domain impulse response hc(t) from Hc(s) 
Laplace transfer function 
 Can be done using Laplace tables as opposed to 

actually evaluating an inverse Laplace transform 
equation 

 Step 3: Determine digital filter’s fs, and calculate 
ts = 1/fs  
 fs is chosen based on absolute frequency, in Hz, of 

prototype analog filter 
 Because of aliasing problems associated with this 

impulse invariance design method, fs should be made 
as large as is practical 
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Impulse Invariance IIR Filter Design Method 
 Method 1 

 Step 4: Find z-transform of continuous hc(t) to 
obtain IIR filter’s z-domain transfer function H(z) 
in form of a ratio of polynomials in z 

 Step 5: Substitute the value ts for the continuous 
variable t in H(z) transfer function obtained in 
Step 4 
 In performing this step, we are ensuring that IIR filter’s 

discrete h(n) impulse response is a sampled version of 
continuous filter’s hc(t) impulse response so that h(n) = 
hc(nts), for 0 ≤ n ≤ ∞ 
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Impulse Invariance IIR Filter Design Method 
 Method 1 

 Step 6: H(z) from Step 5 will now be of the 
general form 
 
 
 Because process of sampling continuous impulse 

response results in a digital filter frequency response 
that’s scaled by a factor of 1/ts, we include ts factor in this 
equation 
 
 

 Incorporating ts makes IIR filter time-response scaling 
independent of sampling rate, and discrete filter will have 
the same gain as prototype analog filter 
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Impulse Invariance IIR Filter Design Method 
 Method 1 

 Step 7: By inspection, we can express filter’s 
time-domain difference equation as 
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these time-domain 
expressions apply only 
to the filter structure in 
Fig. 6-18. The a(k) and 
b(k), or ts · b(k), 
coefficients, however, 
can be applied to the 
improved IIR structure 
shown in Fig. 6-22 to 
complete our design 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
 Method 2 

 Step 1: Obtain Laplace transfer function Hc(s) for 
prototype analog filter  
 Same as Method 1, Step 1 

 
 

 
 Step 2: Select an appropriate sampling frequency 

fs and calculate sample period as ts = 1/fs  
 Same as Method 1, Step 3 
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Impulse Invariance IIR Filter Design Method 
 Method 2 

 Step 3: Express analog filter’s Laplace transfer 
function Hc(s) as sum of single-pole filters 
 This requires us to use partial fraction expansion 

methods 
 
 
 
 

 where M > N, individual Ak factors are constants, and 
the kth pole is located at −pk on s-plane 

 Hk(s) = kth single-pole analog filter 
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Impulse Invariance IIR Filter Design Method 
 Method 2 

 Step 4: Substitute 1−e−pktsz−1 for s+pk in Hc(s) 
equation in Step 3 
 This mapping of each Hk(s) pole, located at s = −pk on 

s-plane, to z = e−pkts location on z-plane is how we 
approximate the impulse response of each single-pole 
analog filter by a single-pole digital filter  

 So, the kth analog single-pole filter Hk(s) is 
approximated by a single-pole digital filter whose z-
domain transfer function is 
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Impulse Invariance IIR Filter Design Method 
 Method 2 

 Step 5: Calculate z-domain transfer function of 
the sum of M single-pole digital filters in the form 
of a ratio of two polynomials in z 
 Because H(z) in Step 4 will be a series of fractions, 

we’ll have to combine those fractions over a common 
denominator to get a single ratio of polynomials in form 
of 
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Impulse Invariance IIR Filter Design Method 
 Method 2 

 Step 6: As in Method 1, Step 6, by inspection, we 
express filter’s time-domain equation in general 
form of 
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Finally, we implement 
the improved IIR 
structure shown in Fig. 
6-22 using a(k) and 
b(k) coefficients or a(k) 
and ts·b(k) coefficients 
from these time-domain 
expressions 
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Impulse Invariance IIR Filter Design Method 
 Impulse invariance design Method 1 example 

 Design an IIR filter that approximates a 2nd-order 
Chebyshev prototype analog lowpass filter whose 
passband ripple is 1 dB 

 fs = 100 Hz (ts = 0.01) 
 Filter’s 1 dB cutoff frequency = 20 Hz 
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Impulse Invariance IIR Filter Design Method 
 Method 1 example 

 Given above filter requirements, assume that 
analog prototype filter design effort results in 
 

 
 It’s this transfer function that we intend to approximate 

with our discrete IIR filter 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
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these coefficients are what we use 
in implementing the improved IIR 
structure shown in Fig. 6-22 to 
approximate the original 2nd-order 
Chebyshev analog lowpass filter 
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Impulse Invariance IIR Filter Design Method 
 Impulse invariance design Method 2 example 

 Given original prototype filter’s Hc(s) as 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
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Impulse Invariance IIR Filter Design Method 
 IIR filter’s z-plane pole locations 
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Impulse Invariance IIR Filter Design Method 

b(0) coefficient is zero here equivalent 
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Impulse Invariance IIR Filter Design Method 
 In general, Method 2 is more popular for two 

reasons 
 (1) inverse Laplace and z-transformations can be 

very difficult for higher-order filters 
 (2) unlike Method 1, Method 2 can be coded in a 

software routine or a computer spreadsheet 
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Impulse Invariance IIR Filter Design Method 
 Fig. 6-35(b) 

 Roll-off is not particularly steep 
 Attenuation slope is so gradual that it doesn’t appear to 

be of much use as a lowpass filter 
 Any frequency representation (be it a digital filter 

magnitude response or a signal spectrum) that has 
nonzero values at +fs/2, most probably has aliasing 
problem 

 We also see that passband ripple is greater than 
the desired value of 1 dB in Fig. 6-34 

 It’s not the low order of filter that contributes to its 
poor performance, but the sampling rate used 
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Impulse Invariance IIR Filter Design Method 
Increasing sampling 
rate to 400 Hz results in 
the much improved 
frequency response 

Sampling rate changes do not affect filter 
order or implementation structure; it only 
changes ts in our design equations, resulting 
in a different set of filter coefficients 

the smaller we make ts (larger fs), the 
better the resulting filter because the 
replicated spectral overlap indicated in 
Fig. 6-32(b) is reduced due to the larger fs 

impulse invariance IIR filter 
design techniques are most 
appropriate for narrowband 
filters, that is, lowpass filters 
whose cutoff frequencies are 
much smaller than the 
sampling rate 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform method  

 A popular analytical IIR filter design technique 
 Like impulse invariance method, this design 

technique approximates a prototype analog filter 
defined by continuous Laplace transfer function 
Hc(s) with a discrete filter whose transfer function 
is H(z) 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform method has great utility 

 It allows to substitute a function of z for s in Hc(s) 
to get H(z), eliminating the need for Laplace and 
z-transformations as well as any necessity for 
partial fraction expansion algebra 

 It maps the entire s-plane to z-plane, enabling us 
to completely avoid frequency-domain aliasing 
problems we had with impulse invariance design 
method 

 It induces a nonlinear distortion of H(z)’s 
frequency axis, relative to the original prototype 
analog filter’s frequency axis, that sharpens the 
final roll-off of digital lowpass filters 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform method  

 If transfer function of a prototype analog filter is 
Hc(s), we obtain discrete IIR filter z-domain 
transfer function H(z) by substituting the following 
for s in Hc(s) 
 

  
 where ts is discrete filter’s sampling period (1/fs) 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform’s s- to z-plane mapping 

 Any pole on the left side of s-plane will map to the 
inside of unit circle in z-plane 
 
 
 
 
 
 If σ < 0, |z| will be less than 1 
 If σ > 0, |z| will be greater than 1 
 This confirms that when using bilinear transform, any 

pole located on the left side of s-plane (σ < 0) will map to 
a z-plane location inside unit circle 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform’s s- to z-plane mapping 

 jωa axis of s-plane maps to perimeter of unit 
circle in z-plane 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform’s s- to z-plane mapping 

 Frequency mapping from jωa axis of s-plane to 
perimeter of unit circle in z-plane is not linear 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform’s s- to z-plane mapping 

 
 
 
 
 Range of ωd is ±π, and dimensions of digital 

frequency ωd are radians/sample 
 Range of ωa is ±∞, and dimensions of analog 

frequency ωa are radians/second 
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Bilinear Transform IIR Filter Design Method 
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frequency warping due 
to bilinear transform 

no matter how large s-plane’s analog ωa 
becomes, z-plane’s ωd will never be 
greater than π radians/sample (fs/2 Hz) 
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Bilinear Transform IIR Filter Design Method 
bilinear transform maps s-plane’s 
entire jωa axis onto the unit circle 
in z-plane 
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Bilinear Transform IIR Filter Design Method 
 Frequency warping 

 ωd = π radians/sample corresponds to fd = fs/2 Hz 
 ωd = 2π(fd / fs) 
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Bilinear Transform IIR Filter Design Method 

Hz  
)/(tan 1

π
π sas
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fd frequency warping 
(compression) 
becomes more severe 
as fd approaches fs/2 

if a bilinear-transform-
designed digital 
bandpass filter is desired 
to have an upper cutoff 
frequency of fd1 Hz, then 
the original prototype 
analog bandpass filter 
must be designed 
(prewarped) to have an 
upper cutoff frequency of 
fa1 Hz using: 
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no IIR filter response 
aliasing can occur with 
bilinear transform 
design method 
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Bilinear Transform IIR Filter Design Method 
 Steps to perform an IIR filter design using 

bilinear transform method 
 Step 1: Obtain Laplace transfer function Hc(s) for 

the prototype analog filter 
 Step 2: Determine digital filter’s equivalent fs and 

establish ts = 1/fs 

 Step 3: In Laplace Hc(s) transfer function, 
substitute the expression 
 
 

 for the variable s to get IIR filter’s H(z) transfer 
function 












+
−

−

−

1

1

1
12

z
z

ts



110 

Bilinear Transform IIR Filter Design Method 
 Step 4: Multiply numerator and denominator of 

H(z) by appropriate power of (1 + z−1) and collect 
terms of like powers of z in the form 
 
 
 

 Step 5: By inspection, express IIR filter’s time-
domain equation in the general form of 
 
 
 Although this expression only applies to filter structure 

in Fig. 6-18, we can apply a(k) and b(k) coefficients to 
improved IIR structure shown in Fig. 6-22 
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Bilinear Transform IIR Filter Design Method 
 Bilinear transform design example 

 Design an IIR filter that approximates 2nd-order 
Chebyshev prototype analog lowpass filter whose 
passband ripple is 1 dB 
 fs = 100 Hz (ts = 0.01) 
 Filter’s 1 dB cutoff frequency = 20 Hz 
 Original prototype filter’s Laplace transfer function is 

given as 
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=
ss
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Bilinear Transform IIR Filter Design Method 
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Bilinear Transform IIR Filter Design Method 
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Bilinear Transform IIR Filter Design Method 

bilinear-transform-
designed filter’s 
magnitude response 
approaches zero at 
folding frequency of 
fs/2 = 50 Hz 
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Bilinear Transform IIR Filter Design Method 
bilinear transform design method gives a much sharper roll-off for our lowpass filter 
for two reasons: 1) frequency warping of bilinear transform method compresses 
(sharpens) roll-off portion of a lowpass filter; 2) the price we pay in terms of 
additional complexity of implementation of our IIR filter: our new filter requires five 
multiplications per filter output sample where impulse invariance design filter in Fig. 
6-36(a) required only three multiplications 
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Bilinear Transform IIR Filter Design Method 
 Prewarping 

 If cutoff frequency is a large percentage of fs, 
resultant |Hd(fd)| cutoff frequency will be below 
the desired value 
 To avoid this, we prewarp prototype analog filter’s 

cutoff frequency requirement before the analog Hc(s) 
transfer function is derived in Step 1 
 In that way, they compensate for the bilinear transform’s 

frequency warping before it happens 

 To determine prewarped analog filter lowpass cutoff 
frequency that we want mapped to the desired IIR 
lowpass cutoff frequency, use 
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we plug desired IIR cutoff frequency 
ωd in here to calculate ωa cutoff 
frequency used to derive prototype 
analog filter’s Hc(s) transfer function 
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Optimized IIR Filter Design Method 
 Optimization methods 

 Developed for situation when the desired IIR filter 
frequency response is not of standard lowpass, 
bandpass, or highpass form 
 Closed-form expressions for filter’s z-transform do not 

exist  no explicit equations to work with 
 Designer should describe, in some way, the desired 

IIR filter frequency response 
 The algorithm, then, assumes a filter transfer function 

H(z) as a ratio of polynomials in z and starts to 
calculate filter’s frequency response 

 Based on some error criteria, the algorithm iteratively 
adjusts filter’s coefficients to minimize the error 
between desired and actual filter frequency response 
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Optimized IIR Filter Design Method 
 Optimized IIR filter design routines 

 Are used to design the simpler lowpass, 
bandpass, or highpass forms even though 
analytical techniques exist 

 They only require the designer to specify a few 
key amplitude and frequency values, and the 
desired order of IIR filter (the number of feedback 
taps), and the software computes the final 
feedforward and feedback coefficients 
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Optimized IIR Filter Design Method 
In specifying a lowpass IIR 
filter, a software design routine 
might require us to specify the 
values for δp, δs, f1, and f2 
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Comparison of IIR and FIR Filters 
Characteristic IIR FIR (nonrecursive) 

Number of necessary multiplications Least Most 

Sensitivity to filter coefficient quantization Can be high Very low 

Probability of overflow errors Can be high Very low 

Stability Must be designed in Guaranteed 

Linear phase No Guaranteed 

Can simulate prototype analog filters Yes No 

Required coefficient memory Least Most 

Hardware filter control complexity Moderate Simple 

Availability of design software Good Very good 

Ease of design, or complexity of design 
software Moderately complicated Simple 

Difficulty of quantization noise analysis Most complicated Least complicated 

Supports adaptive filtering With difficulty Yes 

So long as FIR 
coefficients are 
symmetrical (or 
antisymmetrical) 


