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The Arithmetic of Complex 
Numbers 
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Graphical Representation of Real and Complex Numbers 

 Real number 
 Can be represented by a point on a one-

dimensional axis, called real axis 
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Graphical Representation of Real and Complex Numbers 

 Complex number 
 Has two parts: a real part and an imaginary part 
 Can be treated as a point on a complex plane 
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Arithmetic Representation of Complex Numbers 
 A complex number C is represented in a 

number of different ways 
 Rectangular form 

 
 Trigonometric form 
 
 Exponential form 
 
 Magnitude and angle form 
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Arithmetic Representation of Complex Numbers 
 Magnitude (modulus) of C 

 
 Phase angle (argument) of C 

 
 In exponential form 

 
 Variable ø need not be constant 

 
 A phasor of magnitude M that rotates in a 

(counter)clockwise direction at a radian frequency 
of (+ω) –ω radians per second 
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Arithmetic Operations of Complex Numbers 
 Addition and subtraction 

 Rectangular form is the easiest to use here 
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Arithmetic Operations of Complex Numbers 
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Arithmetic Operations of Complex Numbers 
 Multiplication 

 Can use rectangular form to multiply 
 

 In exponential form, product takes simpler form 
 

 Product of magnitudes of two complex numbers 
 

 Scaling 
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Arithmetic Operations of Complex Numbers 
 Conjugation 

 Complex conjugate of a complex number is 
obtained by changing sign of its imaginary part 
 

 Conjugate of a product = product of conjugates 
 
 
 

 Sum of conjugates = conjugate of the sum 
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Arithmetic Operations of Complex Numbers 
 Conjugation 

 Product of a complex number and its conjugate is  
complex number’s magnitude squared 
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Arithmetic Operations of Complex Numbers 
 Division 
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Arithmetic Operations of Complex Numbers 
 Inverse of a complex number 
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Arithmetic Operations of Complex Numbers 
 Complex numbers raised to a power 
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Arithmetic Operations of Complex Numbers 
 Roots of a complex number 

 
 

 Next, we assign values 0, 1, 2, 3, . . ., k–1 to n to 
get the k roots of C 
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Arithmetic Operations of Complex Numbers 
 Natural logarithms of a complex number 

 
 
 where 0 ≤ ø < 2π 
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Arithmetic Operations of Complex Numbers 
 Logarithm to base 10 of a complex number 
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Arithmetic Operations of Complex Numbers 
 Log to base 10 of a complex number using 

natural logarithms 
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Some Practical Implications of Using Complex Numbers 

 Representing numbers in a computer 
 Rectangular form has advantage over polar form 
 Example: represent complex numbers using a 

four-bit sign-magnitude binary number format 
 Integral numbers ranging from –7 to +7 
 Range of complex numbers covers a square on 

complex plane (Fig. A-4(a)) using rectangular form 
 If we use four-bit numbers to represent magnitude in 

polar form, those numbers reside on or within a circle 
whose radius is 7 (Fig. A-4(b)) 

 Four shaded corners in Fig. A-4(b) represent locations 
of valid complex values using rectangular form but are 
out of bounds if we use polar form 
 Acceptable result in rectangular could overflow in polar 
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Some Practical Implications of Using Complex Numbers 


