
� yA|

PV030 Textual Information Systems

Petr Sojka

Faculty of Informatics
Masaryk University, Brno

Spring 2012

Petr Sojka PV030 Textual Information Systems

� yA|
Basic info

Part I

Information about the course PV030

Petr Sojka PV030 Textual Information Systems

� yA|
Basic info

Prerequisites and classification
Course syllabus
Literature

Introduction

Petr Sojka, sojka@fi.muni.cz

Consulting hours Spring 2012:
Wednesday 13:00–13:45
Friday 10:00–11:50
or write an email with other suggestions to meet.

Room C523/522, fifth floor of block C, Botanická 68a.

Course homepage: http://www.fi.muni.cz/~sojka/PV030/

Seminar (Thu 12:00–12:50, C511→ B311).

Petr Sojka PV030 Textual Information Systems

� yA|

Basic info
Prerequisites and classification
Course syllabus
Literature

Topics and classification of the course

Prerequisites:
It is expected the student having basic knowledge of the theory of
automata and formal languages (IB005), elementary knowledge of
theories of complexity, software programming and systems.
Classification:
There is a system of classification based on written mid-term
(30 points) and final (70 points) exams. In addition, one can get
additional premium points based on the activities during lectures.
Classification scale (changes reserved) z/k/E/D/C/B/A correspond to
obtaining 48/54/60/66/72/78/84 points.
Dates of [final] exams will be announced via IS.muni.cz (probably three
terms).

Petr Sojka PV030 Textual Information Systems

� yA|

Basic info
Prerequisites and classification
Course syllabus
Literature

Topics

My books focus on timeless truth.
D. E. Knuth, Brno, 1996

An emphasis will be given to the explanation of basic principles,
algorithms and (software) design techniques, creation and
implementation of textual information systems (TIS)—storage and
information retrieval.

Petr Sojka PV030 Textual Information Systems

� yA|
Basic info

Prerequisites and classification
Course syllabus
Literature

SyllabusÀ Basic notions. TIS (text information system). Classification of
information systems. From texts to Watson.Á Searching in TIS. Searching and pattern matching classification
and data structures. Algorithms of Knuth-Morris-Pratt,
Aho-Corasick, reg. expr.Â Algorithms of Boyer-Moore, Commentz-Walter, Buczilowski.� Theory of automata for searching. Classification of searching
problems. Searching with errors.Ä Indexes. Indexing methods. Data structures for searching and
indexing.Å Google as an example of search and indexing engine. Pagerank.
Signature methods.Æ Query languages and document models: Boolean, vector,
probabilistic, MMM, Paice.

Petr Sojka PV030 Textual Information Systems

� yA|
Basic info

Prerequisites and classification
Course syllabus
Literature

Syllabus (cont.)

Ç Data compression. Basic notions. Entropy.È Statistical methods.É Compression methods based on dictionary.Ê Syntactic methods. Context modeling. Language modeling.
Corpora linguistics.Ë Spell checking. Filtering information channels. Document
classification. Neural nets for text compression.

Petr Sojka PV030 Textual Information Systems

� yA|

Basic info
Prerequisites and classification
Course syllabus
Literature

Textbooks

[MEL] Melichar, B.: Textové informačnı́ systémy, skripta ČVUT Praha, 2.
vydánı́, 1996.

[POK] Pokorný, J., Snášel, V., Húsek D.: Dokumentografické informačnı́
systémy, Karolinum Praha, 1998.

[KOR] Korfhage, R. R.: Information Storage and Retrieval, Wiley Computer
Publishing, 1997.

[SMY] Smyth, B.: Computing Patterns in Strings, Addison Wesley, 2003.

[KNU] Knuth, D. E.: The Art of Computer Programming, Vol. 3, Sorting
and Searching, Second edition, 1998.

[WMB] Witten I. H., Moffat A., Bell T. C.: Managing Gigabytes:
compressing and indexing documents and images, Second edition,
Morgan Kaufmann Publishers, 1998.

Petr Sojka PV030 Textual Information Systems

� yA|

Basic info
Prerequisites and classification
Course syllabus
Literature

Other study materials

[HEL] Held, G.: Data and Image Compression, Tools and Techniques,
John Wiley & Sons, 4. vydánı́ 1996.

[MEH] Melichar B., Holub J., A 6D Classification of Pattern Matching
Problems, Proceedings of The Prague Stringology Club Workshop ’97,
Prague, July 7, CZ.

[GOO] Brin S., Page, L.: The anatomy of a Large-Scale Hypertextual Web
Search Engine. WWW7/Computer Networks 30(1–7): 107–117 (1998).
http://dbpubs.stanford.edu:8090/pub/1998-8

[MeM] Mehryar Mohri: On Some Applications of Finite-State Automata
Theory to Natural Language Processing, Natural Language Engineering,
2(1):61–80, 1996.
http://www.research.att.com/~mohri/cl1.ps.gz

Petr Sojka PV030 Textual Information Systems

� yA|
Basic info

Prerequisites and classification
Course syllabus
Literature

Other study materials (cont.)

[Sch] Schmidhuber J.: Sequential neural text compression, IEEE
Transactions on Neural Networks 7(1), 142–146, 1996,
http://www.idsia.ch/~juergen/onlinepub.html

[SBA] Salton G., Buckley Ch., Allan J.: Automatic structuring of text
files, Electronic Publishing 5(1), p. 1–17 (March 1992).
http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs.htm

[WWW] web pages of the course ~sojka/PV030/, DIS seminars
http://www.inf.upol.cz/dis, http://nlp.fi.muni.cz/, The
Prague Stringology Club Workshop 1996–2008
http://cs.felk.cvut.cz/psc/

Jones, S. K., Willett: Readings in Information Retrieval, Morgan Kaufman
Publishers, 1997.

Petr Sojka PV030 Textual Information Systems

� yA|
Basic info

Prerequisites and classification
Course syllabus
Literature

Other study materials (cont.)

Bell, T. C., Cleary, J. G., Witten, I. H.: Text Compression, Prentice Hall,
Englewood Cliffs, N. J., 1991.

Storer, J.: Data Compression: Methods and Theory, Computer Science
Press, Rockwille, 1988.

journals ACM Transactions on Information Systems, Theoretical
Computer Science, Neural Network World, ACM Transactions on Computer
Systems, Knowledge Acquisition.

knihovna.muni.cz, umarecka.cz (textbook Pokorný),

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems

Part II

Basic notions of TIS

Petr Sojka PV030 Textual Information Systems

http://dbpubs.stanford.edu:8090/pub/1998-8
http://www.research.att.com/~mohri/cl1.ps.gz
http://www.idsia.ch/~juergen/onlinepub.html
http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs.htm
http://www.inf.upol.cz/dis
http://nlp.fi.muni.cz/
http://cs.felk.cvut.cz/psc/

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Notions of (T)IS, PV030 in the context of teaching at FI MU

TIS—motivation

reality ←→ data
↑ ↑

information need ←→ query+ Abstractions and mappings in information systems.+ Information needs about the reality—queries above data.+ Jeopardy game: Watson.

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Notions of (T)IS, PV030 in the context of teaching at FI MU

Notions of (T)IS

Definition: Information system is a system that allows purposeful
arrangement of collection, storage, processing and delivering of
information.

Definition: Ectosystem consists of IS users, investor of IS, and
entrepreneur (user, funder, server). In the example of is.muni.cz they
are users of IS, MU represented by bursar, and ICS and IS teams.
Ectosystem is not under control of IS designer.

Definition: Endosystem consists of hardware used (media, devices),
and software (algorithms, data structures) and is under control of IS
designer.

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Notions of (T)IS, PV030 in the context of teaching at FI MU

Demands on TIS

+ effectiveness (user)+ economics (funder)+ efficiency (server)

and from different preferences implied compromises. Our view will be
view of TIS architect respecting requests of IS ectosystem. For topics
related to ectosystem of IS see PV045 Management IS.

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Notions of (T)IS, PV030 in the context of teaching at FI MU

From data to wisdom

Data: concrete representation of a message in a form of
sequence of symbols of an alphabet.

Information: reflection of the known or the expected substance of
realities. An information depends on the intended subject.
Viewpoints:

quantitative (information theory);
qualitative (meaning, semantics);
pragmatical (valuation: significance, usefulness, usability,
periodicity, up-to-dateness, credibility;
the others (promptness, particularity, completeness, univocality,
availability, costs of obtaining).

Knowledge (znalost).

Wisdom (moudrost).

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Notions of (T)IS, PV030 in the context of teaching at FI MU

Information process

Definition: Information process is a process of formation of
information, its representation in a form of data, its processing,
providing, and use. Operations with information correspond to this
process.

Data/signals→ Information→ Knowledge→ Wisdom.

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Mini questionnaire

IS classification by the prevailing function

À Information retrieval systems.Á Database management systems (DBMS), relational DB (PB154,
PB155, PV003, PV055, PV136, PB114).Â Management information systems (PV045).� Decision support systems (PV098).Ä Expert systems, question answering systems, knowledge-based
systems (PA031).Å Information service systems (web 2.0).

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Mini questionnaire

IS classification by the prevailing function (cont.)

Å Specific information systems (geographical PV019, PA049,
PA050, medical PV048, environmental PV044, corporate PV043,
state administration PV058, PV059, librarian PV070); and also
PV063. Application of database systems.

Related fields taught in FI:
Software engineering (PA102, PA105).
Similarity searching in multimedia data (PA128).
Efficient use of database systems (PA152).
Introduction to information retrieval (PV211).

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Mini questionnaire

Diversity of TIS perspectives

տ ր
Information retrieval system Expert system

DBMS
Database system Management system

ւ ց

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Mini questionnaire

Mini questionnaireÀ What do you expect from this course? What was your motivation
to enroll? Is the planned syllabus fine? Any changes or surprises?Á What do you not expect (you would rather eliminate)?Â Which related courses have you already passed?� Practising IS usage (as a user)

a) Which (T)IS do you use?
b) Intensity? Frequency? How many searching per month?
c) Are you satisfied with it?Ä IS creation (server)

a) Which (T)IS and its component have you realized? Area,
size?

b) Are you satisfied with it? Bottlenecks?

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Classification and formalization of IRS

Information retrieval systems (IRS)—principles

DB
l

Query −→ Search −→ Set of selected
engine documents

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Classification and formalization of IRS

An empty IRS

DB
l

Definition of
documents →

Output files format
definition → SEARCH Set of

Search method ENGINE → selected
definition → documents

Content of
documents →

↑
Queries

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Classification and formalization of IRS

Searching—formalization of the problem

Concatenation: string of beads. A bead→ an element. Indexing of
elements by natural numbers. Not necessarily numbers, but labels.

0) Every element has unique label.
1) Every labeled element x (except for the leftmost one)

has a clear predecessor referred to as pred(x).
2) Every labeled element x (except for the rightmost one)

has a clear successor referred to as succ(x).
3) If the element x is not the leftmost one,

x = succ(pred(x)).
4) If the element x is not the rightmost one,

x = pred(succ(x)).
5) For every two different elements x and y, there exists a

positive number k that is either x = succk(y) or
x = predk(y).

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Classification and formalization of IRS

Searching—formalization of the problem (cont.)

The concatenation term:
Definition: a string is a set of elements which meets the rules 0)–5).

Definition: a linear string: a string that has a finitely many elements
including the leftmost and rightmost ones.

Definition: a necklace.

Definition: an alphabet A. Letters of the alphabet. A+. An empty
string ε.
Definition: a finite chain A∗ = A+ ∪ {ε}.

Definition: a linear string over A: a member of A+.

Definition: a pattern. A text.

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Classification and formalization of IRS

IRS—classificationÀ Classification according to the passing direction:
left-to-right/right-to-left.Á Classification according to (pre)processing of the text and the
pattern:

ad fontes (searching in the text itself);
text surrogate (searching in the substitution of the text);
substitutions:
an index: an ordered list of significant elements together
with references to the original text;
a signature: a string of indicators that shows the
occurrence of significant elements in the text.

Petr Sojka PV030 Textual Information Systems

� yA|
Notions and classification of IS

(T)IS classification
Information retrieval systems

Classification and formalization of IRS

IRS—classification (cont.)

text preprocessing
no yes

pattern no I III
preprocessing yes II IV

I – elementary algorithms

II – creating a search engine

III – indexing methods

IV – signature methods

Petr Sojka PV030 Textual Information Systems

� yA|

Notions and classification of IS
(T)IS classification

Information retrieval systems
Classification and formalization of IRS

Searching—the formulation of the problem

Classification according to the cardinality of the patterns’ set:À Search for a single pattern V in the text T. The result: yes/no.Á Search for a finite set of patterns P = {v1, v2, . . . , vk}. The
result: information about position of some of the entered
patterns.Â Search for an infinite set of patterns assigned by a regular
expression R. R defines a potentially infinite set L(R). The result:
information about position of some of the patterns from L(R).

Alternatives to the formulation of the searching problem:

a) the first occurrence;

b) the all occurrences without overlapping;

c) the all occurrences including overlapping.

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm

Part III

Exact search

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Rudimentary search algorithm

Naı̈ve search, brute force search, rudimentary search
algorithm

proc Brute-Force-Matcher(PATTERN,TEXT):

T:=length[TEXT]; P:=length[PATTERN];

for i:=0 to T-P do

if PATTERN[1..P]=TEXT[i+1..i+P]

then print "The pattern was found at the position i.";

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Rudimentary search algorithm

Time complexity analysis of naı̈ve search

The complexity is measured by number of comparison, the length
of a pattern P , the length of text T.

The upper estimate S = P · (T − P + 1), thus O(P × T).

The worst case PATTERN = aP−1b, TEXT = aT−1b.

Natural languages: (average) complexity (number of comparison)
substantially smaller, since the equality of prefixes doesn’t occur
very often. For English: S = CE · (T − P + 1), CE empirically
measured 1.07, i. e. practically linear.

CCZ? CCZ vs. CE?

Any speedups? An application of several patterns? An infinite
number?

We will see the version (S, Q, Q′) of the algorithm in the seminar.

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm
Rudimentary search algorithm

Naı̈ve search—algorithms

Express the time complexity of the following search algorithms using
the variables c and s, where c is the number of the tests and these
statements are true:

if the index i is found, then c = i and s = 1;

otherwise, c = T and s = 0.

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm
Rudimentary search algorithm

Naı̈ve search—algorithm S

input: var TEXT : array[1..T] of word;

PATTERN : word;

output (in the variable FOUND): yes/no

1 I:=1;

c while I≤ T do

begin

c if TEXT[I]=PATTERN then break;

c-s inc(I);

end;

2 FOUND:=(I≤T);

On the left side, there is the time complexity of the statements.
And so the overall time complexity is O(T) = 3c − s + 3.
The maximum complexity (which is commonly stated) is O(T) = 3T + 3.

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Rudimentary search algorithm

Algorithm Q or how about using the end stop/skid (zarážka)

input: var TEXT : array[1..T+1] of word; PATTERN : word;

output (in the variable FOUND): yes/no

1 I:=1;

1 TEXT[T+1]:=PATTERN;

c while TEXT[I]<>PATTERN do

c-1 inc(I);

2 FOUND:=(I<>T+1)

In this case, the index is always found; therefore it is stated on the
last but one line of the algorithm that the complexity is c − 1 instead
of c − s (although they are equivalent). Furthermore, it is necessary
to realize that the maximal possible value of c is greater by one than
in the previous algorithm (stating c + 1 instead of c would not be
correct, though). The overall complexity: O(T) = 2c + 3. The maximum
complexity: O(T) = 2T + 5.

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Rudimentary search algorithm

Algorithm Q′ or how about using the cycle expansion

input: var TEXT : array[1..T+1] of word;

PATTERN : word;

output (in the variable FOUND): yes/no

1 I:=1;

1 TEXT[T+1]:=PATTERN;

⌈c/2⌉ while TEXT[I]<>PATTERN do

begin

⌊c/2⌋ if TEXT[I+1]=PATTERN then break;

⌊(c − 1)/2⌋ I:=I+2;

end;

3 FOUND:=(I<T)or(TEXT[T]=PATTERN);

The overall complexity: O(T) = c + ⌊(c − 1)/2⌋ + 5.
The maximum complexity: O(T) = T + ⌊T/2⌋ + 6.
The condition at the end of the algorithm guarantees its functionality
(however, it is not the only way of handling the cycle incrementation by
two).

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm
Rudimentary search algorithm

Outline (week two)

À WatsonÁ Exact search methods I (without pattern preprocessing) –
completion.Â Exact search methods II (with pattern preprocessing, left to
right): KMP (animation), Rabin-Karp, AC.� Search with an automaton.

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm
Rudimentary search algorithm

Evaluation of questionnaire

À Yes: syllabus suits expectations; positively is awaited dissect of
Google; indexing and search; examples.Á No: too much theory, deep digestion of algorithms.Â Examples.� This year: further enrichment of information retrieval part
(Google), textual (mathematical) digital libraries and languages
enhancements of TIS (on the example of Watson).

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Motivation

À Search in text editor (Vim, Emacs), in the source code of a web
page.Á Data search (biological molecules approximated as sequences of
nucleotides or amino acids).Â Literature/abstracts search—recherche, corpus linguistics.

The size of available data doubles every 18 months (Moore’s law)→
higher effectiveness of algorithms needed.

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right direct search methods

During the preprocessing, structure of the query pattern(s) is
examined and, on that basis, the search engine is built (on-the-fly).

Definition: exact (vs. fuzzy (proximitnı́)) search aims at exact
match (localization of searched pattern(s)).

Definition: left-to-right (LR, sousměrné) (vs. right-to-left (RL,
protisměrné)) search compares query pattern to the text from left
to right (vs. right to left).

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm

Left-to-right methodsÀ 1 query pattern (vzorek):

Shift-Or algorithm.
Karp-Rabin algorithm, (KR, 1987).
Knuth-Morris-Pratt algorithm, (KMP, designed (MP) in
1970, published 1977).Á n patterns: Aho-Corasick algorithm, (AC, 1975).Â ∞ patterns: construction of a search engine (finite automaton)

for the search of a potentially infinite set of patterns (given as
regular expression).

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm

Shift-Or algorithm+ Pattern v1v2 . . . vm over an alphabet Σ = a1, . . . , ac.+ Incidence matrix X (m × c), Xij =

{
0 if vi = aj
1 otherwise.+ Let matrix column X corresponding to aj is named Aj.+ At the beginning, we put unitary vector/column into R. In every

algorithm, step R moves down by one line/position, top-most
position is filled by zero and one character aj is read from input.
Resulted R is combined with Aj by binary disjunction:
R := SHIFT(R) ORAj.+ Algorithm stops successfully when 0 appears at the
bottom-most position in R.

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm (cont.) – example

Example: V = vzorek over Σ = {e, k, o, r, v, z}.
Cf. [POK, page 31–32].

Petr Sojka PV030 Textual Information Systems

� yA|
I. SE without preprocessing both patterns and the text

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Karp-Rabin search

Quite different approach: usage of hash function. Instead of
matching of pattern with text on every position, we check the match
only when pattern ‘looks similar’ as searched text substring. For
similarity, a hash function is used. It has to be+ efficiently computable,+ and it should be good at separating different strings (close to

perfect hashing).

KR search is quadratic at the worst case, but on average O(T + V).

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm

Karp-Rabin search (cont.)—implementation

#define REHASH(a, b, h) (((h-a*d)<<1+b)

void KR(char *y, char *x, int n, int m) {
int hy, hx, d, i;

/* preprocessing: computation of d = 2m−1 */

d=1; for (i=1; i<m; i++) d<<=1;

hx=hy=0;

for (i=0; i<m; i++)

{ hx=((hx<<1)+x[i]); hy=((hy<<1)+y[i]); }
/* search */

for (i=m; i<=n; i++) {
if (hy==hx) && strncmp(y+i-m,x,m)==0) OUTPUT(i-m);

hy=REHASH(y[i-m], y[i], hy);

} }

Petr Sojka PV030 Textual Information Systems

� yA|

I. SE without preprocessing both patterns and the text
II – Exact search with query preprocessing

Karp-Rabin search algorithm

Karp-Rabin search (cont.)—example

Example: ([HCS, Ch. 6]) V = ing, T = string matching.
Preprocessing: hash = 105 × 22 + 110 × 2 + 103 = 743.
Search:

T= s t r i n g

hash= 806 797 776 743 678

m a t c h i n g

585 443 746 719 766 709 736 743

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

Part IV

Exact search of one pattern

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

Morris-Pratt algorithm (MP)

Idea: Inefficiency of naı̈ve search are caused by the fact that in the
case of mismatch the pattern is shifted by only one position to the
right and checking starts from the beginning. This does not use the
information that was gained by the inspection of text position that
failed. The idea is to shift as much as possible so that we do not have
to go back in searched text.

Petr Sojka PV030 Textual Information Systems

� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

The main part of the (K)MP algorithm

var text: array[1..T] of char; pattern: array[1..V] of char;
i, j: integer; found: boolean;
i := 1; ⊲ text index
j := 1; ⊲ pattern index
while (i ≤ T) and (j ≤ V) do

while (j > 0) and (text[i] 6= pattern[j]) do
j := h[j];

end while

i := i + 1; j := j + 1
end while
found := j > V ; ⊲ if found, it is on the position i − V

Petr Sojka PV030 Textual Information Systems

� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Analysis of (K)MP

+ O(T) complexity plus complexity of preprocessing (creation of the
array h).+ Animation of tracing of the main part of KMP.

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

Knuth-Morris-Pratt algorithm+ h is used when prefix of pattern v1v2 . . . vj−1 matches with
substring of text ti−j+1ti−j+2 . . . ti−1 and vj 6= ti.+ May I shift by more than 1? By j? How to compute h?+ h(j) the biggest k < j such that v1v2 . . . vk−1 is suffix of
v1v2 . . . vj−1, e.g. v1v2 . . . vk−1 = vj−k+1vj−k+2 . . . vj−1 and vj 6= vk.+ KMP: backward transitions for so long, so that j = 0 (prefix of
pattern is not contained in the searched text) or ti = vj
(v1v2 . . . vj = ti−j+1ti−j+2 . . . ti−1ti).+ Animation Lecroq, also [POK, page 27], also see [MAR] for
detailed description.

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

Construction of h for KMP

i:=1; j:=0; h[1]:=0;

while (i<V) do

begin while (j>0) and (v[i]<>v[j]) do j:=h[j];

i:=i+1; j:=j+1;

if (i<=V) and (v[i]=v[j])

then h[i]:=h[j] else h[i]:=j (*MP*)

end;

Complexity of h computation, e.g. preprocessing, is O(V), thus in total
O(T + V).
Example: h for ababa. KMP vs. MP.

Petr Sojka PV030 Textual Information Systems

� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Universal search algorithm,

that uses transition table g derived from the searched pattern,
(g relates to the transition function δ of FA):

var i,T:integer; found: boolean;

text: array[1..T] of char; state,q0: TSTATE;

g:array[1..maxstate,1..maxsymb] of TSTATE;

F: set of TSTATE;...

begin

found:= FALSE; state:= q0; i:=0;

while (i <= T) and not found do

begin

i:=i+1; state:= g[state,text[i]];

found:= state in F;

end;

end;

How to transform pattern into g?

Petr Sojka PV030 Textual Information Systems

� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Search engine (SE) for left-to-right search+ SE for left-to-right search A = (Q, T, g, h, q0, F)

Q is a finite set of states.
T is a finite input alphabet.
g: Q× T → Q∪{

:::

fail} is a forward state-transition function.
h: (Q − q0)→ Q is a backward state-transition function.
q0 is an initial state.
F is a set of final states.+ A depth of the state q: d(q) ∈ N0 is a length of the shortest

forward sequence of the state transitions from q0 to q.

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

Search engine (cont.)

+ Characteristics g, h:

g(q0, a) 6=
:::

fail for ∀a ∈ T (there is no backward transition in
the initial state).
If h(q) = p, then d(p) < d(q) (the number of the backward
transitions is restricted from the top by a multiple of the
maximum depth of the state c and the sum of the forward
transitions V). So the speed of searching is linear in
relation to V .

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

SE configuration, transition+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.+ An initial configuration of SE (q0, w), w is the entire searched
text.+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.

Petr Sojka PV030 Textual Information Systems

� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Searching with SE

During the forward transition, a single input symbol is read and the
engine switches to the next state p. However, if g(q, a) =

:::

fail, the
backward transition is executed without reading an input symbol.
S = O(T) (we measure the number of SE transitions).

Petr Sojka PV030 Textual Information Systems

� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vVÀ An initial state q0.Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.� g(q, a) =

:::

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.Ä A state that corresponds to the complete pattern is the final
one.Å The backward state-transition function h is defined on the
page 51 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems

� yA|
(K)MP

Search engine (finite automaton)
Construction of the KMP engine

Outline (week two)

À Summary of the previous lecture, searching with SE.Á Left-to-right search of n patterns algorithms. (AC,
NFA→ DFA.)Â Left-to-right search of infinite patterns algorithms.� Regular expressions (RE).Ä Direct construction of (N)FA for given RE.

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Part V

Search of a finite set of patterns

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Search of a set of patterns

SE for left-to-right search of a set of patterns p = {v1, v2, . . . , vP}.

Instead of repeated search of text for every pattern, there is only
“one” pass (FA).

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Common SE algorithm

var text: array[1..T] of char;

i: integer; found: boolean; state: tstate;

g: array[1..maxstate,1..maxsymbol] of tstate;

h: array[1..maxstate] of tstate; F: set of tstate;

found:=false; state:=q0; i:=0;

while (i<=T) and not found do

begin i:=i+1;

while g[state,text[i]]=fail do state:=h[state];

state:=g[state,text[i]]; found:=state in F

end

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Common SE algorithm (cont.)

Construction of the state-transition functions h, g?

How about for P patterns? The main idea?

Aho, Corasick, 1975 (AC search engine).

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}À An initial state q0.Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.� g(q, a) =

:::

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II)

Construction of h for AC SE for a set of patterns p = {v1, v2, . . . , vP}

At first, we define the failure function f inductively relative to the
depth of the states this way:À For ∀q of the depth 1, f(q) = q0.Á Let us assume that f is defined for each state of the depth d

and lesser. The variable qD denotes the state of the depth d and
g(qD, a) = q′. Then we compute f(q′) as follows:

q := f(qD);
while g(q, a) =

:::

fail do q := f(q);
f(q′) := g(q, a).

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II, cont.)

The cycle terminates, since g(q0, a) 6=
:::

fail.

If the states q, r represent prefixes u, v of some of the patterns
from p, then f(q) = r⇔ v is the longest proper suffix u.

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

The failure function h (AC III)

1

2 r 4

5 6 q 8
a a

b
f(qD)

f(f(qD)) f(q′) qD q′

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Construction of h for AC SE for a set of patterns
p = {v1, v2, . . . , vP} (cont.)

We could use f as the backward state-transition function h,
however, redundant backward transitions would be performed.

We define function h inductively relative to the depth of the
states this way:

For ∀ state q of the depth 1, h(q) = q0.
Let us assume that h is defined for each state of the depth d and
lesser. Let the depth q be d + 1. If the set of letters, for which is
in a state f(q) the value of the function g different from

:::

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

:::

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of h for AC SE (cont.)

1

2 3

4 5 6
a

a
f(q)

h(q)

q

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)À K is a finite set of inner states.Á T is a finite input alphabet.Â δ is a projection from K × T to K.� q0 ∈ K is an initial state.Ä F ⊆ K is a set of final states.

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Finite automata for searching

À Completely specified automaton if δ is defined for every pair
(q, a) ∈ K × T, otherwise incompletely specified automaton.Á Configuration M is a pair (q, w), where q ∈ K, w ∈ T∗ is the not
yet searched part of the text.Â An initial configuration M is (q0, w), where w is the entire text
to be searched.� An accepting configuration M is (q, w), where q ∈ F and w ∈ T∗.

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Searching with FA M

During the transition, a single input symbol is read and the engine
switches to the next state p.+ Transition M: is defined by a state and an input symbol; relation

⊢⊆ (K × T∗) × (K × T∗); if δ(q, a) = p, then (q, aw) ⊢ (p, w) for
every ∀w ∈ T∗.+ The kth power, transitive or more precisely transitive
reflexive closure of the relation ⊢: ⊢k, ⊢+, ⊢∗.+ L(M) = {w ∈ T∗ : (q0, w) ⊢∗ (q, w′) for some q ∈ F, w′ ∈ T∗} the
language accepted by FA M.+ time complexity O(T) (we measure the number of transitions of
FA M).

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Nondeterministic FA

Definition: Nondeterministic finite automaton (NFA) is
M = (K, T, δ, q0, F), where K, T, q0, F are the same as those in the
deterministic version of FA, but δ : K × T → 2K δ(q, a) is now a set of
states.

Definition: ⊢∈ (K × T∗) × (K × T∗) transition: if p ∈ δ(q, a), then
(q, aw) ⊢ (p, w) for ∀w ∈ T∗.

Definition: a final state, L(M) analogically as in DFA.

Petr Sojka PV030 Textual Information Systems

� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA

Theorem: for every nondeterministic finite automaton M=(K,T,δ,q0,F),
we can build deterministic finite automaton M′=(K′,T,δ′,q′0 , F′) such
that L(M) = L(M′).

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.À K′={{q0}}, state {q0} in unmarked.Á If there are in K′ all the states marked, continue to the step 4.Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃
{δ(p, a)} for,∀p ∈ q′ and a ∈ T;

K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.� q′0 = {q0}; F

′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems

� yA|
Search of n patterns

Aho-Corasick algorithm
Finite automata for searching

Construction of g for SE

Construction g′ for SE for a set of patterns p = {v1, v2, . . . , vP}À We create NFA M:

An initial state q0.
For ∀a ∈ T, we define g(q0, a) = q0.
For ∀i ∈ {1, . . . , P}, we define g(q, bj+1) = q′, where q′ is
equivalent to the prefix b1b2 . . . bj+1 of the pattern vi.
The state corresponding to the entire pattern is the final
one.Á . . . and its corresponding DFA M′ with g′.

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Part VI

Search for an infinite set of patterns

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Regular expression (RE)

Definition: Regular expression E over the alphabet A:À ε,0 are RE and for ∀a ∈ A is a RE.Á If x, y are RE over A, then:

(x + y) is RE (union);
(x.y) is RE (concatenation);
(x)∗ is RE (iteration).

A convention about priority of regular operations:
union < concatenation < iteration.
Definition: Thereafter, we consider as a (generalized) regular
expression even those terms that do not contain, with regard to this
convention, the unnecessary parentheses.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Value of REÀ h(0) = ∅, h(ε) = {ε}, h(a) = {a}Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .+ The value of RE is a regular language (RL).+ Every RL can be represented as RE.+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.Á Regular expressions, value of RE, characteristics.Â Derivation of regular expressions.� Direct construction of equivalent DFA for given RE by derivation.Ä Derivation of regular expressions by position vector.Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Similarity of regular expressions

Theorem: the axiomatization of RE is complete and consistent.

Definition: regular expressions are termed as similar, when they can
be mutually conversed using axioms A1 to A11.

Theorem: similar regular expressions have the same value.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Length of a regular expression

Definition: the length d(E) of the regular expression E:À If E consists of one symbol, then d(E) = 1.Á d(V1 + V2) = d(V1) + d(V2) + 1.Â d(V1.V2) = d(V1) + d(V2) + 1.� d(V∗) = d(V) + 1.Ä d((V)) = d(V) + 2.

Note: the length corresponds to the syntax of a regular expression.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE

Definition: a generalized NFA allows ε-transitions (transitions
without reading of an input symbol).

Theorem: for every RE E, we can create FA M such that h(E) = L(M).
Proof: by structural induction relative to the RE E:

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Construction of NFA for given RE (a proof)

À E = a
aq0Á E = E∗1 M1 automaton for E1 (h(E1) = L(M1))

ε

ε

ε

ε

M1

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Construction of NFA for given RE (cont. of a proof)

Â E = E1 · E2

M2M1� E = E1 + E2 M1, M2 automata for E1, E2 (h(E1) = L(M1),

h(E2) = L(M2))

ε

ε ε

εM1

M2

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont.)

+ No more than two edges come out of every state.+ No edges come out of the final states.+ The number of the states M ≤ 2 · d(E).+ The simulation of automaton M is performed in O(d(E)T) time
and in O(d(E)) space.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

NFA simulation

For the following methods of NFA simulation, we must remove the
ε-transitions. We can achieve it with the well-known procedure:

1)

q q′ε
a

b
b

b

a
a

q q′

2)
q′q ε q′q

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

NFA simulation (cont.)

We represent a state with a Boolean vector and we pass through all
the paths at the same time. There are two approaches:+ The general algorithm that use a transition table.+ Implementation of the automaton in a form of (generated)

program for the particular automaton.

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Direct construction of (N)FA for given RE

Let E is a RE over the alphabet T. Then we create FA
M = (K, T, δ, q0, F) such that h(E) = L(M) this way:À We assign different natural numbers to all the occurrences of the symbols of T

in the expression E. We get E′.Á A set of starting symbols Z = {xi : a string of h(E′) can start with the
symbol xi, xi 6= ε}.Â A set of neighbours P = {xiyj : symbols xi 6= ε 6= yj can be next to each other in
a string of h(E′)}.� A set of ending symbols F = {xi : a string of h(E′) can end with the symbol
xi 6= ε}.Ä A set of states K = {q0} ∪ Z ∪ {yj : xiyj ∈ P}.Å A transition function δ:

δ(q0, x) contains xi for,∀xi ∈ Z that originate from numbering of x.
δ(xi, y) contains yj for,∀xiyj ∈ P such that yj originates from numbering
of y.Æ F is a set of final states, a state that corresponds to E is q0.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of (N)FA for given RE (cont.)

Example 1: R = ab∗a + ac + b∗ab∗.

Example 2: R = ab∗ + ac + b∗a.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Derivation of a regular expression

Definition: derivation dE
dx of the regular expression E by a

string x ∈ T∗:À dE

dε
= E.Á For a ∈ T, these statements are true:

dε

da
= 0

db

da
=

{
0 if a 6= b
ε if a = b

d(E + F)

da
=

dE

da
+

dF

da

d(E.F)

da
=

dE

da
· F +

dF

da
if ε ∈ h(E)

dE

da
· F otherwise

d(E∗)

da
=

dE

da
· E∗

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of a regular expression (cont.)

Â For x = a1a2 . . . an, ai ∈ T, these statements are true

dE

dx
=

d

dan

(
d

dan−1

(
· · ·

d

da2

(
dE

da1

)
· · ·

))
.

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(
dE
dx

)
= {y : xy ∈ h(E)}.

Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(
dF
dx , a

)
= dF

dx′ , in case that the
expression dF

dx′ is similar to the expression dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{
dF
dx ∈ Q : ε ∈ h

(
dF
dx

)}
.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Example: RE= R = (0 + 1)∗1.
Q = Q0 = {(0 + 1)∗1}, i = 1
Q1 = {dRd0 = R, dR1 } = {(0 + 1)∗1 + ε}

Q2 = { (0+1)∗1+ε
d0 = R, (0+1)∗1+ε

d1 = (0 + 1)∗1 + ε} = ∅

Example: RE= (10)∗(00)∗1.

For more, see Watson, B. W.: A taxonomy of finite automata
construction algorithms, Computing Science Note 93/43, Eindhoven
University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Exercise

Example : let us have a set of the patterns P= {tis, ti, iti}:+ Create NFA that searches for P.+ Create DFA that corresponds to this NFA and minimize it. Draw
the transition graphs of both the automata (DFA and the
minimal DFA) and describe the procedure of minimization.+ Compare it to the result of the search engine SE.+ Solve the exercise using the algorithm of direct construction of
DFA (by deriving) and discuss whether the result automata are
isomorphic.

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:
a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector II

2 Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:
a . b∗ . c

∧ ∧ (3b)

Now, by deriving by the operand b of the expression (3b), we get:
a . b∗ . c

∧ (4a)

3 Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.
a . b∗ . c

∧ ∧ (4b)

By deriving the expression (4b) by the operand c, we get:
a . b∗ . c

∧ (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression ε.

Petr Sojka PV030 Textual Information Systems

� yA|
Left-to-right methods

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems

� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector: an example

Example: a.b∗.c, derived by a, b, c.

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search of one pattern

Part VII

Right-to-left search

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool

(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)+ n patterns—Commentz-Walter (CW, 1979)+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search of one pattern

Boyer-Moore-Horspool algorithm

1: var: TEXT: array[1..T] of char;
2: PATTERN: array[1..P] of char; I,J: integer; FOUND: boolean;
3: FOUND := false; I := P ;
4: while (I ≤ T) and not FOUND do
5: J := 0;
6: while (J < P) and (PATTERN[P − J] = TEXT[I − J]) do
7: J := J + 1;
8: end while
9: FOUND := (J = P);

10:
11: if not FOUND then
12: I := I + SHIFT(TEXT[I− J], J)
13: end if
14: end while

SHIFT(A,J) = if A does not occur in the not yet compared part of the pattern

then P − J else the smallest 0 ≤ K < P such that PATTERN[P − (J + K)] = A;

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search of one pattern

When is it faster than KMP? When O(T/P)?
The time complexity O(T + P).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search of one pattern

CW algorithm

The idea: AC + right-to-left search (BM) [1979]

const LMIN=/the length of the shortest pattern/

var TEXT: array [1..T] of char; I, J: integer;

FOUND: boolean; STATE: TSTATE;

g: array [1..MAXSTATE,1..MAXSYMBOL] of TSTATE;

F: set of TSTATE;

begin

FOUND:=FALSE; STATE:=q0; I:=LMIN; J:=0;

while (I<=T) & not (FOUND) do

begin

if g[STATE, TEXT[I-J]]=fail

then begin I:=I+SHIFT[STATE, TEXT[I-J]];

STATE:=q0; J:=0;

end

else begin STATE:=g[STATE, TEXT[I-J]]; J:=J+1 end

FOUND:=STATE in F

end

end

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q′) = w(q)a.

3 g(q, a) =
:::

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search of one pattern

CW—the function shift

Definition: shift[STATE, TEXT[I − J]] = min {A, shift2(STATE)},
where A = max {shift1(STATE), char(TEXT[I − J]) − J − 1}.

The functions are defined this way:
1 char(a) is defined for all the symbols from the alphabet T as the least depth of

a state, to that the CW search engine passes through a symbol a. If the
symbol a is not in any pattern, then char(a) = LMIN + 1, where LMIN is the
length of the shortest pattern. Formally:
char(a) = min

{
LMIN + 1,min{d(q)|w(q) = xa, x ∈ T∗}

}
.

2 Function shift1(q0) = 1; for the other states, the value is
shift1(q) = min {LMIN, A}, where A = min{k| k = d(q′) − d(q), where
w(q) is its own suffix w(q′) and a state q′ has higher depth than q}.

3 Function shift2(q0) = LMIN; for the other states, the value is
shift2(q) = min{A, B}, where A = min{k| k = d(q′) − d(q), where w(q) is a
proper suffix w(q′) and q′ is a final state}, B = shift2(q′)| q′ is a predecessor
of q.

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search of one pattern

CW—the function shift

Example: P = {cacbaa, aba, acb, acbab, ccbab}.

LMIN = 3,
a b c X

char 1 1 2 4

w(q) shift1 shift2
ε 1 3
a 1 2
b 1 3

aa 3 2
ab 1 2
bc 2 3
ba 1 1

aab 3 2
aba 3 2
bca 2 2
bab 3 1

aabc 3 2
babc 3 1

aabca 3 2
babca 3 1
babcc 3 1

aabcac 3 2

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search of one pattern

Outline (week four)

À Right-to-left search of an infinite set of patternsÁ Two-way jump automaton – a generalization of the so far learned
left-to-right and right-to-left algorithms.Â Hierarchy of the exact search engines.

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search for an inf. set of patterns

Generalization of SE
Search engine hierarchy

Part VIII

Search for an infinite set of patterns

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search for an inf. set of patterns

Generalization of SE
Search engine hierarchy

Right-to-left search for an inf. set of patterns

Definition: reversed regular expression is created by reversion of all
concatenation in the expression.

Example: reversed RE for E = bc(a + a∗bc) is ER = (a + cba∗)cb:

��
��
�
��
4 �b

��
��

3

�
��+

c m��
��

� a

2

XXXXXXy

c ��
��

5

� b
��
��

1

QQkc

�����) a
��
��

0

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Right-to-left search for an inf. set of patterns (cont.)

Bucziłowski: we search for E such that we create ER and we use it for
determination of shift[STATE, SYMBOL] for each state and undefined
transition analogically as in the CW algorithm:

a b c X
0 1 3 ·
1 1 1 2 (3!) ·
2 1
3 1 1 1
4 1 1 1 1
5 1 1 1
· · ·

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Two-way jump automaton I

Definition: 2DFAS is M = (Q, Σ, δ, q0, k, ↑, F), where
Q a set of states
Σ an input alphabet
δ a projection. Q × Σ→ Q × {−1,1, . . . , k}
q0 ∈ Q an initial state
k ∈ N max. length of a jump
↑6∈ Q ∪ Σ a jump symbol
F ⊆ Q a set of final states

Definition: a configuration of 2DFAS is a string of Σ∗QΣ∗ ↑ Σ∗.
Definition: we denote a set of configurations 2DFAS M as K(M).

Example: a1a2 . . . ai−1 q ai . . . aj−1 ↑ aj . . . an ∈ K(M) :

q

čtecı́ hlava značka skoku

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search for an inf. set of patterns

Generalization of SE
Search engine hierarchy

Two-way jump automaton II

Definition: a transition of 2DFAS is a relation ⊢ ⊆ K(M)× K(M) such that+ a1 . . . ai−1ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . ai−1 q′ aiai+1 . . . aj−1 ↑
aj . . . an for i > 1, δ(q, ai+1) = (q′,−1) (right-to-left comparison),+ a1 . . . ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . aiai+1 . . . at−1 q′ ↑ at . . . an for
δ(q, ai+1) = (q′, m), m ≥ 1, t = min{j + m, n + 1} (right-to-left
jump),+ a1 . . . aj q aj+1 . . . ai−1 ↑ ai . . . an ⊢ a1 . . . ajaj+1 . . . at−1 q′ ↑ at . . . an for
δ(q, ai) = (q′, m), m ≥ 1, t = min{i + m, n + 1} (left-to-right
jump), .+ a1 . . . aj−1 q aj . . . ai−1 ↑ aiai+1 . . . an ⊢ a1 . . . aj−1 q′ aj . . . ai−1ai ↑
ai+1 . . . an for i > 1, δ(q, ai) = (q′,1) (left-to-right comparison).

(Left-to-right rules are for the left-to-right engines and vice versa.)

Definition: ⊢k, ⊢∗ analogically as in the SE.

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search for an inf. set of patterns

Generalization of SE
Search engine hierarchy

Search engine hierarchy

Definition: the language accepted by the two-way automaton
M = (Q, Σ, δ, q0, k, ↑, F) is a set L(M) = {w ∈ Σ

∗ : q0 ↑ T ⊢
∗ w′fxw ↑,

where f ∈ F, w′ ∈ Σ
∗, x ∈ Σ}.

Theorem: L(M) for 2DKAS M is regular.
Example: formulate a right-to-left search of the pattern BANANA in
the text I-WANT-TO-FLAVOUR-NATURAL-BANANAS using BM as
2DFAS and trace the search as a sequence of configurations of the
2DFAS.

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Exercise

Let us have a regular expression R = 1(0 + 1∗02) over the alphabet
A = {0,1,2}.+ Construct a right-to-left DFA R (Bucziłowski) and compute the

failure function. Draw the transition graph of this automaton
including the failure function visualization.+ Express the resulting automaton as 2DFAS and trace searching
in the text 11201012102.

Petr Sojka PV030 Textual Information Systems

� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Summary of the exact search

2DFAS
ւ ց

DFA BUC ∞
↓ ↓

AC CW k
↓ ↓

KMP BM 1
→ ← direction — # of patterns.

Petr Sojka PV030 Textual Information Systems

� yA|
Right-to-left search for an inf. set of patterns

Generalization of SE
Search engine hierarchy

Outline (Week five)

À Fuzzy (proximity) search. Metrics for measurement of distance
of strings.Á Classification of search: 6D space of search problems.Â Examples of creation of search engines.� Completion of the chapter about searching without text
preprocessing.Ä Indexing basics.

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems

Part IX

Proximity search

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

Metrics (for proximity search)

How to measure (metrics) the similarity of strings?

Definition: we call d : S × S → R metrics if the following is true:

1 d(x, y) ≥ 0

2 d(x, x) = 0

3 d(x, y) = d(y, x) (symmetry)

4 d(x, y) = 0⇒ x = y (identity of indiscernibles)

5 d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

We call the values of the function d (distance).

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

Metrics for proximity search

Definition: let us have strings X and Y over the alphabet Σ. The
minimal number of editing operation for transformation X to Y is+ Hamming distance, R-distance, when we allow just the

operation Replace,+ Levenshtein distance, DIR-distance, when we allow the
operations Delete, Insert and Replace,+ Generalized Levenshtein distance, DIRT-distance, when we
allow the operations Delete, Insert, Replace and Transpose.
Transposition is possible at the neighbouring characters only.

They are metrics, Hamming must be performed over strings of the
same length, Levenshtein can be done over the different lengths.

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems

Proximity search—examples

Example: Find such an example of strings X and Y , that
simultaneously holds R(X, Y) = 5, DIR(X, Y) = 5, and DIRT(X, Y) = 5,
or prove the non-existence of such strings.

Example: find such an example of strings X and Y , that holds
simultaneously R(X, Y) = 5, DIR(X, Y) = 4, and DIRT(X, Y) = 3, or
prove the non-existence of such strings.

Example: find such an example of strings X and Y of the length 2n,
n ∈ N, that R(X, Y) = 2n and a) DIR(X, Y) = 2; b) DIRT(X, Y) = ⌈ n2⌉

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems
SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

6D classification of search problems [MEH] ([MAR])

2 3

6 5

1 4
seQuence

Subpattern

One

Sequence of
Don ’t care

Care

Full pattern
One

Finite

Infinite

Exact DIR-matching

DIR T-matchingR-matching

String

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

6D classification of search problems (cont.)

Dimension 1 2 3 4 5 6

S F O E C O
Q S F R D S

I D
G

In total 2 × 2 × 3 × 4 × 2 × 2 = 192 search problems classified in a
six-dimensional space.
For example, SFO??? denotes all the SE for search of one (entire)
string.
For all these problems, we are going to learn how to create NFA for
searching.

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems
SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Examples of SE creation

Example: let P = p1p2p3 . . . pm, m = 4, A is any character of Σ.
NFA for SFOECO:

0 1
p1

A

2
p2 3

p3 4
p4

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems
SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Search for a sequence of characters

Example: NFA for QFOECO (seQuence):

0 1
p1

A

2
p2 3

p3 4
p4

p2 p3 p4

p is any character of Σ except for p. Automaton has m + 1 states for
a pattern of the length m.

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Search for a substring: NFA for SSOECO

Definition: This automaton is called initial ε-treelis and
has (m + 1) + m + (m − 1) + · · · + 2 = m(m+3)

2 states.

p1

A

p2 p3 p4

p2 p3 p4

p3 p4

p4

ε

ε

ε

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Search for a subsequence

Example: NFA for QSOECO is similar, we just add some cycles for
non-matching characters and ε transitions to all the existing forward
transitions (or we concatenate the automaton m-times).

Definition: Automaton for QSOECO is called ε-treelis.

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems
SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Proximity search of SFORCO

Example: SFORCO for Hamming (R) distance, k ≤ 3: the
number of the levels corresponds to the distance.

p1

A

p2 p3 p4

p2 p3 p4

p3 p4

p4

p2p1

p2

p3

p3

p3

p4

p4

p4

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems
SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Proximity search of SFORCO

Definition: This automaton is called R-treelis, and has
(m+ 1) +m+ (m−1) + · · ·+ (m− k+ 1) = (k+ 1)(m+ 1− k

2) states.

The number of the level of the final state corresponds to the length of
the found string from the pattern.

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Proximity search of SFODCO for DIR-distance

Example: SFOD3CO for Levenshtein (DIR) distance,
k ≤ 3: additional “D-edges” and “I-edges”.

p1

A

p2 p3 p4

p2 p3 p4

p3 p4

p4

p2

p1

p2

p3

p3

p3

p4

p4

p4

p2 p3

p3

p4

p4

p4

ε

ε

ε

ε

ε

ε

ε

ε

ε

Petr Sojka PV030 Textual Information Systems

� yA|

Fuzzy search: metrics
Classification of search problems

SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

SFOGCO

For the DIRT-distance, we add more new states to the SFODCO
automaton that correspond to the operation of transposition and
also the corresponding pair of edges for every transposition.

Animation program by Mr. Pojer for the discussed search automata is
available for download from the course web page and is also installed
in B311.

Simulation of NFA or determinisation? A hybrid approach.

The Prague Stringology Club and its conference series: see
http://www.stringology.org/.

Petr Sojka PV030 Textual Information Systems

� yA|
Fuzzy search: metrics

Classification of search problems
SFOECO, QFOECO, SSOECO
QSOECO, SFORCO, SFODCO

Outline (Week five)

À Searching with text preprocessing; indexing methods.Á Methods of indexing.Â Automatic indexing, thesaurus construction.� Ways of index implementation.

Petr Sojka PV030 Textual Information Systems

� yA|
Part X

Indexing Methods

Petr Sojka PV030 Textual Information Systems

� yA|

Searching with text preprocessing

Large amount of texts? The text preprocessing!+ Index, indexing methods, indexing file, indexsequential file.+ Hierarchical structuring of text, tagging of text, hypertext.+ Questions of word list storing (lexicon) and occurrence (hit) list
storing, their updating.

Petr Sojka PV030 Textual Information Systems

http://www.stringology.org/

� yA|

Searching with text preprocessing+ granularity of the index items: document – paragraph – sentence
– word

word1 word2 word3 word4
doc1 1 1 0 1
doc2 0 1 1 1
doc3 1 0 1 1+ inverted file, transposition

doc1 doc2 doc3
word1 1 0 1
word2 1 1 0
word3 0 1 1
word4 1 1 1

Petr Sojka PV030 Textual Information Systems

� yA|
Index searching+ Word order (primary key) in index→ binary search

Time complexity of one word searching in index: n index length, V
pattern length
O(V × log2(n))+ searching for k words, pattern p = v1, . . . , vk
k≪ n⇒ repeated binary search
s average pattern length, complexity?
O(s × k × log2 n)+ As long as k and i are comparable: double dictionary method.+ Hashing.

However the speed O(n) even O(log n) isn’t usually sufficient, O(1) is
needed.

Petr Sojka PV030 Textual Information Systems

� yA|
Implementation of indexing systems I

An appropriate choice of data structures and algorithms is for the
index implementation crucial.+ Use of inverted file:

word1 1 0 1
word2 1 1 0
word3 0 1 1
word4 1 1 1+ Use of document list:

word1 1, 3
word2 1, 2
word3 2, 3
word4 1, 2, 3+ Coordinate system with pointers has 2 parts: a dictionary with

pointers to the document list and a linked list of pointers to
documents.

Petr Sojka PV030 Textual Information Systems

� yA|

Indexing methods+ manual vs. automatic, pros/cons+ stop-list (words with grammatical meaning – conjunctions,
prepositions, . . .)

1 not-driven
2 driven (a special dictionary of words: indexing language

assessment) – pass-list, thesaurus.+ synonyms and related words.+ inflective languages: creating of registry with language support –
lemmatization.

Petr Sojka PV030 Textual Information Systems

� yA|

Text analysis – choice of words for index

Frequency of word occurrences is for document identification significant.
English frequency dictionary:

1 the 69971 0.070
2 of 36411 0.073
3 and 28852 0.086
4 to 26149 0.104
5 a 23237 0.116

6 in 21341 0.128
7 that 10595 0.074
8 is 10099 0.088
9 was 9816 0.088

10 he 9543 0.095+ Zipf’s law (principle of least resistance)
order × frequency ∼= constant+ Cumulative proportion of used words CPW =

∑N
order=1 frequencyorder
text words count+ The rule 20–80: 20 % of the most frequent words make 80 % of text

[MEL, fig. 4.19].

Petr Sojka PV030 Textual Information Systems

� yA|
Automatic indexing method

Automatic indexing method is based on word significance derivation from
word frequencies (cf. Collins-Cobuild dictionary); words with low and high
frequency are cut out:
INPUT: n documents
OUTPUT: a list of words suitable for an index creation

1 We calculate a frequency FREQik for every document i ∈ 〈1, n〉 and
every word k ∈ 〈1, K〉 [K is a count of different words in all documents].

2 We calculate TOTFREQk =
∑n

i=1 FREQik.

3 We create a frequency dictionary for the words k ∈ 〈1, K〉.

4 We set down a threshold for an exclusion of very frequent words.

5 We set down a threshold for an exclusion of words with a low frequency.

6 We insert the remaining words to the index.

Questions of threshold determination [MEL, fig. 4.20].

Petr Sojka PV030 Textual Information Systems

� yA|
Outline (Week seven)

+ Excursus to the computational linguistics.+ Corpus linguistics as an TIS example.+ Search methods with preprocessing of text and pattern (query).

Petr Sojka PV030 Textual Information Systems

� yA|

Lemmatization for index creation

Morphology utilization for creating of dictionary+ stem/ root of words (učit, uč);+ program ajka (abin),
http://nlp.fi.muni.cz/projekty/ajka/ examples;+ a techniques of patterns for stem determination;

Petr Sojka PV030 Textual Information Systems

http://nlp.fi.muni.cz/projekty/ajka/

� yA|

Registry creating – thesaurus+ Thesaurus – a dictionary, containing hierarchical and associative
relations and relations of equivalence between particular terms.+ Relations between terms/lemmas:

synonyms – relation to a standard term; e.g. ,,see“;
relation to a related term (RT); e.g. ,,see also“;
relation to a broader term (BT);
relation to a narrower term (NT);
hypernyms (car:means of transport); hyponyms (bird:jay);
meronym (door:lock); holonyms (hand:body); antonyms
(good:bad).+ Dog/Fı́k, Havel/president

Petr Sojka PV030 Textual Information Systems

� yA|
Thesaurus construction

manually/ half-automatically+ heuristics of thesaurus construction:

hierarchical structure/s of thesaurus
field thesauri, the semantics is context-dependent (e.g.
field, tree in informatics)
compounding of terms with a similar frequency
exclusion of terms with a high frequency+ breadth of application of thesaurus and lemmatizer: besides of

spelling indexing, base of grammar checker, fulltext search.+ projekts WORDNET, EUROWORDNET+ module add wordnet; wn

wn faculty -over -simsn -coorn

Petr Sojka PV030 Textual Information Systems

� yA|
Hierarchical thesaurus

+ Knowledge base creation for exact evaluation of document
relevance.+ topic – processing of semantic maps of terms Visual Thesaurus
http://www.visualthesaurus.com.+ Tovek Tools, Verity.

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Part XI

Excursus to the Computational Linguistics

Petr Sojka PV030 Textual Information Systems

http://www.visualthesaurus.com

� yA|

Index System Implementation

Computational linguistics

+ string searching – words are strings of letters.+ word-forming – morphological analysis.+ grammar (CFG, DFG) – syntactic analysis.+ meaning of sentences (TIL) – semantic analysis.+ context – pragmatic analysis.+ full understanding and communication ability – information.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Corpus Query Processor

basic queries

,,Havel“;

45: Český prezident Václav <Havel> se včera na
89: jak řekl Václav <Havel> , každý občan
248: vı́ce než rokem <Havel> řekl Pravda vı́tězı́

regular expressions

,,Pravda|pravda“;

,,(P|p)ravda“;

,,(P|p)ravd[a,u,o,y]“;

,,pravd.*“; ,,pravd.+“; ,,post?el“;

word sequence

,,prezident(a|u)“ ,,Havl(a|ovi)“;

,,a tak“;

,,prezident“; []* ,,Havel“;

,,prezident“ (,,republiky“ ,,Vaclav“)? ,,Havel“;

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Corpus Query Processor

queries for positional attributes

[word = ,,Havel“];

[lemma = ,,prezident“] []* [lemma = ,,Havel“];

. . . ženu prezidenta Havla . . .
[lemma = ,,hnát“] [] [lemma = ,,Havel“];

[word = ,,žen(u|eme)“ & lemma !=,,žena“]; I . . . or
! . . . not

some other possibilities

[lemma = ,,prezident“] []* [lemma = ,,Havel“] within s; . . . 10, 3 s

[lemma = ,,Havel“] within 20 </s>,,Pravda“

<s>a:[word= ,,Žena|Muž|Člověk“] []* [lemma = a.lemma]

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Face and back of relevant searching

Large computational power of today’s computers enables:

efficient storing of large amount of text data (compression, indexing);

efficient search for text strings.

A man sitting behind a computer uses all this, to obtain from so processed
documents information, that he is interested. Really?

Example: In text database there is stored a few last years of daily newspaper. I’d like
to obtain information about president Václav Havel.
a/>HAVEL
b/>more precise queries
c/. . .
. . .

Computer
(computational power)

+
human

(inteligence)
=

valuable
information

+ time
+ money

The goal of

everybody→ is to transfer the largest possible part of intelligence (time, money, . . .)

to computer.

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Face and back of relevant searching

information ideal of ideals no Searching
pragmatic
analysis

context no information Correct

semantic
analysis

sentence
meaning TIL

starting-up Spell translation

syntactic
analysis

grammar
CFG, DCG

partially check

morphological
analysis

word-forming
lemma

yes Check Simple translation

words are strings
of letters

string
searching

yes

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Face and back of data acquisition from natural language

Do we really know, what is information contained in the text in natural language?

• František Novák weighs 100 kg. −→ RDB

object property value attribut1, attribut2, . . .

• František Novák likes beer. ? key value

František Novák likes ր
Jana Novotná

• F. N. is an old honest man. −→ ?
Spring erupted in full force.

Words of the natural language denote objects, their properties and relations between
them. It’s possible to see the words and sentences also as ,,functions“ of its kind,
defined by their meaning.

A man, who climbed a highest Czech eight-thousander, is my grandson.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Corpus linguistics

+ Corpus: electronic collection of texts, often indexed by linguistic
tags.+ Corpus as a text information system: corpus linguistics.+ BNC, Penn Treebank, DESAM, PNK, . . . ; ranges from millions to
billion positions (words), special methods necessary.+ Corpus managers CQP, GCQP, Manatee/Bonito,
http://www.fi.muni.cz/~pary/

see [MAR].

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

What’s a corpus?

Definition: Corpus is a large, internaly structured compact file of
texts in natural language electronically stored and processable.

Indian languages have no script – for a finding of a grammar it’s
necessary to write up the spoken word.

1967 – 1. corpus in U. S. A. (Kučera, Francis) 1 000 000 words.

Noam Chomsky – refuses corpora.

Today – massive expansion.

Petr Sojka PV030 Textual Information Systems

http://www.fi.muni.cz/~pary/

� yA|

Index System Implementation

Corpora on FI

WWW page of Pavel Rychlý (∼pary) links to basic information.
Bonito, Manatee.

IMS CORPUS WORKBENCH – a toolkit for efficient
representation and querying over large text files.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Logical view of corpus

Sequence of words at numbered positions (first word, nth word), to which
tags are added (addition of tags called corpus tagging). Tags are
morphological, grammatical and any other information about a given word.
It leads to more general concept of position attributes, those are the
most important tagging type. Attributes of this class have a value (string)
at every corpus position. To every of them one word is linked as a basic and
positional attribute word. In addition to this attribute, further position
attributes may be bundled with each position of any text, representing the
morphological and other tags.
Structural attributes – sentences, paragraphs, title, article, SGML.

LEMMA

WORD

POS1

POS2

Českého

český

prezidenta

prezident

Václava

vaclav

Havla

havel

dnes

dnes
∼ 107

0 1 2 43

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Internal architecture of corpus

Two key terms of internal representation of position attributes are:

Uniform representation: items for all attributes are encoded
as integer numbers, where the same values have the same digital
code. A sequence of items is then represented as a sequence of
integers. Internal representation of attribute word (as well as of
any other pos. attribute) is array(0..p-1) of Integer,
where p is position count of corpus.

Inverted file: for a sequence of numbers representing a sequence
of values of a given attribute, the inverted file is created. This file
contains a set of occurrences in position attribute for every
value (better value code). Inverted file is needed for searching,
because it directly shows a set of occurrences of a given item,
the occurrences then can be counted in one step.

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Internal architecture of corpus (cont.)

File with encoded attribute values and inverted file as well have
auxiliary files.

The first data structure is a list of items or ,,lexicon“: it
contains a set of different values. Internally it’s a set of strings
occurring in the sequence of items, where a symbol Null (octal
000) is inserted behind every word. The list of items already
defines a code for every item, because we suppose the first item
in the list to have a code 0, following 1 etc.

Petr Sojka PV030 Textual Information Systems

http://www.fi.muni.cz/~pary/

� yA|

Index System Implementation

Internal architecture of corpus (cont.)

There are three data structures for the inverted file:

The first is an independent inverted file, that contains a set of
corpus positions.

The second is an index of this file. This index returns for every
code of item an input point belonging to an occurrence in inverted
file.

The third is a table of frequency of item code, which for each item
code gives a number of code occurrence in corpus (that is of
course the same as the size of occurrence set).

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Search methods IV.

Preprocessing of text and pattern (query): overwhelming majority of
today’s TIS. Types of preprocessing:+ n-gram statistics (fragment indexes).+ special algorithms for indexes processing (coding, compression)

and relevance evaluation (PageRank Google)+ usage of natural language processing methods (morphology,
syntactic analysis, semantic databases) an aggregation of
information from multiple sources (systems AnswerBus, START).+ signature methods.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Sensitivity

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Relevance

Definition: Relevance (of answers to a query) is a rate range, by which
a selected document coincides with requirements imposed on it.
Ideal answer ≡ real answer
Definition: Coefficient of completeness (recall) R = m

n , where m is a
count of selected relevant records and n is a count of all relevant
records in TIS.
Definition: Coefficient of precision P = m

o , where o is count of all
selected records by a query.
We want to achieve maximum R and P , tradeoff.

Standard values: 80 % for P , 20 % for R.
Combination of completeness and precision:

coefficient Fb =
(b2+1)PR
b2P+R

. (F0 = P , F∞ = R, where F1 = F P and R
weighted equally).

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Fragment index

+ The fragment ybd is in English only in the word molybdenum.+ Advantages: fixed dictionary, no problems with updates.+ Disadvantages: language dependency and thematic area,
decreased precision of search.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Outline (Week ten)

+ Google as an example of web-scale information system.+ Jeff Dean’s video – historical notes of Google search
developments.+ Google – system architecture.+ Google – PageRank.+ Google File System.+ Implementation of index systems

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Goooooooooooooogle – a bit of history

An example of anatomy of global (hyper)text information system
(www.google.com).+ 1997: google.stanford.edu, students Page and Brin+ 1998: one of few quality search engines, whose basic

fundamentals and architecture (or at least their principles) are
known – therefore a more detailed analysis according to the
article [GOO]
http://www7.conf.au/programme/fullpapers/1921com1921.htm .+ 2012: clear leader in global web search

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Goooooooooooooogle – anatomy

+ Several innovative concepts: PageRank, storing of local
compressed archive, calculation of relevance from texts of
hypertext links, PDF indexing and other formats, Google File
System, Google Link. . .+ The system anatomy. see [MAR]

Petr Sojka PV030 Textual Information Systems

http://www7.conf.au/programme/fullpapers/1921com1921.htm

� yA|

Index System Implementation

Google: Relevance

The crucial thing is documents’ relevance (credit) computation.+ Usage of tags of text and web typography for the relevance
calculation of document terms.+ Usage of text of hyperlink is referring to the document.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Google: PageRank+ PageRank: objective measure of page importance based on
citation analysis (suitable for ordering of answers for queries,
namely page relevance computation).+ Let pages T1,. . . ,Tn (citations) point to a page A, total sum of
pages is m. PageRank

PR(A) =
(1 − d)

m
+ d

(
PR(T1)

C(T1)
+ . . .

PR(Tn)

C(Tn)

)+ PageRank can be calculated by a simple iterative algorithm (for
tens of millions of pages in hours on a normal PC).+ PageRank is a probability distribution over web pages.+ PageRank is not the only applied factor, but coefficient of more
factors. A motivation with a random surfer, dumping factor d,
usually around 0.85.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Data structures of Google

+ Storing of file signatures+ Storing of lexicon+ Storing of hit list.+ Google File System

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Index system implementation

+ Inverted file – indexing file with a bit vector.+ Usage of document list to every key word.+ Coordinate system with pointers [MEL, fig. 4.18, page 46].+ Indexing of corpus texts: Finlib
http://www.fi.muni.cz/~pary/dis.pdf see [MAR].+ Use of Elias coding for a compression of hit list.

Petr Sojka PV030 Textual Information Systems

http://www.fi.muni.cz/~pary/dis.pdf

� yA|

Index System Implementation

Index system implementation (cont.)

+ Efficient storing of index/dictionary [lemmas]: packed trie,
Patricia tree, and other tree structures.+ Syntactic neural network (S. M. Lucas: Rapid best-first retrieval
from massive dictionaries, Pattern Recognition Letters 17,
p. 1507–1512, 1996).+ Commercial implementations: Verity engine, most of web search
engines – with few exceptions – hide their key to success.

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Dictionary representation by FA I

Article M. Mohri: On Some Applications of Finite-State Automata
Theory to Natural Language Processing see [MAR]+ Dictionary representation by finite automaton.+ Ambiguities, unification of minimized deterministic automata.+ Example: done,do.V3:PP

done,done.A0+ Morphological dictionary as a list of pairs [word form, lemma].+ Compaction of storing of data structure of automata (Liang,
1983).+ Compression ratio up to 1:20 in the linear approach (given the
length of word).

Petr Sojka PV030 Textual Information Systems

� yA|
Index System Implementation

Dictionary representation by FA II+ Transducer for dictionary representation.+ Deterministic transducer with 1 output (subsequential
transducer) for dictionary representation including one string on
output (information about morphology, hyphenation,. . .).+ Deterministic transducer with p outputs (p−subsequential
transducer) for dictionary representation including more strings
on output (ambiguities).+ Determinization of the transducer generally unrealizable (the
class of deterministic transducers with an output is a proper
subclass of nondeterministic transducers); for purposes of
natural language processing, though, usually doesn’t occur
(there aren’t cycles).

Petr Sojka PV030 Textual Information Systems

� yA|

Index System Implementation

Dictionary representation by FA III+ An addition of a state to a transducer corresponding (w1,w2)
without breaking the deterministic property: first a state for
(w1,ε), then with resulting state final state with output w2.+ Efficient method, quick, however not minimal; there are minimizing
algorithms, that lead to spatially economical solutions.+ Procedure: splitting of dictionary, creation of det. transducers
with p outputs, their minimization, then a deterministic
unification of transducers and minimizing the resulting.+ Another use also for the efficient indexing, speech recognition,
etc.

Petr Sojka PV030 Textual Information Systems

� yA|

Part XII

Coding

Petr Sojka PV030 Textual Information Systems

� yA|
Outline (Week eleven)

+ Coding.+ Entropy, redundancy.+ Universal coding of the integers.+ Huffman coding.+ Adaptive Huffman coding.

Petr Sojka PV030 Textual Information Systems

� yA|
Coding – basic concepts

Definition: Alphabet A is a finite nonempty set of symbols.
Definition: Word (string, message) over A is a sequence of symbols
from A.
Definition: Empty string ε is an empty sequence of symbols. A set of
nonempty words over A is labeled A+.
Definition: Code K is a triad (S, C, f), where S is finite set of source
units, C is finite set of code units, f : S→ C+ is an injective mapping.
f can be expanded to S+ → C+: F(S1S2 . . . Sk) = f(S1)f(S2) . . . f(Sk).
C+ is sometimes called code.

Petr Sojka PV030 Textual Information Systems

� yA|

Basic properties of the code

Definition: x ∈ C+ is uniquely decodable regarding f, if there is
maximum one sequence y ∈ S+ so, that f(y) = x.
Definition: Code K = (S, C, f) is uniquely decodable if all strings in C+

are uniquely decodable.
Definition: A code is called a prefix one, if no code word is a prefix of
another.
Definition: A code is called a suffix one, if no code word is a suffix of
another.
Definition: A code is called a affix one, if it is prefix and suffix code.
Definition: A code is called a full one, if after adding of any additional
code word a code arises, that isn’t uniquely decodable.

Petr Sojka PV030 Textual Information Systems

� yA|

Basic properties of code

Definition: Block code of length n is such a code, in which all code
words have length n.
Example: block ? prefix
block⇒ prefix, but not vice versa.
Definition: A code K = (S, C, f) is called binary, if |C| = 2.

Petr Sojka PV030 Textual Information Systems

� yA|
Compression and decompression

Definition: Compression (coding), decompression (decoding):

−→ Compression
(encoding)

−→
original
data

compressed
data

←− Decompression
(decoding)

←−
Definition: Compression ratio is a ratio of length of compressed
data and length of original data.
Example: Suggest a binary prefix code for decimal digits, if there are
often numbers 3 a 4, and rarely 5 and 6.

Petr Sojka PV030 Textual Information Systems

� yA|
Entropy and redundancy I

Let Y be a random variable with a probability distribution
p(y) = P (Y = y). Then the mathematical expectation (mean rate)

E(Y) =
∑

y∈Y

yp(y).

Let S = {x1, x2, . . . , xn} be a set of source units and let the
occurrence probability of unit xi in information source S is pi for
i = 1, . . . , n, n ∈ N.
Definition: Entropy of information content of unit xi (measure of
amount of information or uncertainty) is H(xi) = Hi = − log2 pi bits.
A source unit with more probability bears less information.

Petr Sojka PV030 Textual Information Systems

� yA|

Entropy and redundancy II

Definition: Entropy of information sourceS is H(S) = −
n∑

i=1

pi log2 pi

bits.

True, that H(S) =
∑

y∈Y

p(y) log
1

p(y)
= E

(
log

1

p(Y)

)
.

Definition: Entropy of source message X = xi1xi2 . . . xik ∈ S+ of

information sourceS is H(X,S) = H(X) =
k∑

j=1

Hi = −
k∑

j=1

log2 pij bits.

Definition: Length l(X) of encoded message X

l(X) =
k∑

j=1

|f(xij)| =
k∑

j=1

dij bits.

Theorem: l(X) ≥ H(X,S).

Petr Sojka PV030 Textual Information Systems

� yA|

Entropy a redundancy III

Axiomatic introduction of entropy see [MAR], details of derivation see
ftp://www.math.muni.cz/pub/math/people/Paseka/lectures/kodovani.ps

Definition: R(X) = l(X) − H(X) =
k∑

j=1

(dij + log2 pij) is redundancy of

code K for message X.

Definition: Average length of code word K is AL(K) =
n∑

i=1

pidi bits.

Definition: Average length of source S is

AE(S) =
n∑

i=1

piHi = −
n∑

i=1

pi log2 pi bits.

Definition: Average redundancy of code K is

AR(K) = AL(K) − AE(S) =
n∑

i=1

pi(di + log2 pi) bits.

Petr Sojka PV030 Textual Information Systems

� yA|
Entropy and redundacy IV

Definition: A code is an optimal one, if it has minimal redundancy.
Definition: A code is an asymptotically optimal, if for a given
distribution of probabilities the ratio AL(K)/AE(S) is close to 1, while
the entropy is close to ∞.
Definition: A code K is a universal one, if there are c1, c2 ∈ R so, that
average length of code word AL(K) ≤ c1 × AE + c2.
Theorem: Universal code is asymptotically optimal, if c1 = 1.

Petr Sojka PV030 Textual Information Systems

� yA|
Universal coding of integers

Definition: Fibonacci sequence of order m
Fn = Fn−m + Fn−m+1 + . . . + Fn−1 for n ≥ 1.
Example: F of order 2: F−1 = 0,, F0 = 1, F1 = 1, F2 = 2, F3 = 3,
F4 = 5, F5 = 8,. . .
Example: F of order 3: F−2 = 0, F−1 = 0, F0 = 1, F1 = 1, F2 = 2,
F3 = 4, F4 = 7, F5 = 13,. . .
Example: F of order 4: F−3 = 0, F−2 = 0, F−1 = 0, F0 = 1, F1 = 1,
F2 = 2, F3 = 4, F4 = 8, F5 = 15,. . .
Definition: Fibonacci representation R(N) =

∑k
i=1 diFi, where

di ∈ {0,1}, dk = 1
Theorem: Fibonacci representation is ambiguous, however there is
such a one, that has at most m− 1 consecutive ones in a sequence di.

Petr Sojka PV030 Textual Information Systems

� yA|

Fibonacci codes

Definition: Fibonacci code of order m FKm(N) = d1d2 . . . dk 1 . . . 1
︸ ︷︷ ︸
m−1 krát

,

where di are coefficients from previous sentence (ones end a word).
Example: R(32) = 0 ∗1 + 0 ∗2 + 1 ∗3 + 0 ∗5 + 1 ∗8 + 0 ∗13 + 1 ∗21,
thus F(32) = 00101011.
Theorem: FK(2) is a prefix, universal code with c1 = 2, c2 = 3, thus it
isn’t asymptotically optimal.

Petr Sojka PV030 Textual Information Systems

ftp://www.math.muni.cz/pub/math/people/Paseka/lectures/kodovani.ps

� yA|

The universal coding of the integers II+ unary code α(N) = 00 . . .0
︸ ︷︷ ︸

N−1

1.+ binary code β(1) = 1, β(2N + j) = β(N)j, j = 0,1.+ β is not uniquely decodable (it isn’t prefix code).+ ternary τ(N) = β(N)#.+ β′(1) = ǫ, β′(2N) = β′(N)0, β′(2N + 1) = β′(N)1, τ′(N) = β′(N)#.+ γ: every bit β′(N) is inserted between a pair from α(|β(N)|).+ example: γ(6) = 01001+ Cγ = {γ(N) : N > 0} = (0{0,1})∗1 is regular and therefore it’s
decodable by finite automaton.

Petr Sojka PV030 Textual Information Systems

� yA|
The universal coding of the integers III+ γ′(N) = α(|β(N)|)β′(N) the same length (bit permutation γ(N)),

but more readable+ Cγ′ = {γ′(N) : N > 0} = {0k1{0,1}k : k ≥ 0} is not regular and
the decoder needs a counter+ δ(N) = γ(|β(N)|)β′(N)+ example: δ(4) = γ(3)00 = 01100+ decoder δ: δ(?) = 0011?+ ω:

K := 0;
while ⌊log2(N)⌋ > 0 do

begin K := β(N)K;
N := ⌊log2(N)⌋

end.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Data compression – introduction+ Information encoding for communication purposes.+ Despite tumultuous evolution of capacities for data storage,
there is still a lack of space, or access to compressed data
saves time. Redundancy −→ a construction of a minimal
redundant code.+ Data model:

structure – a set of units to compression + context of
occurrences;
parameters – occurrence probability of particular units.
data model creation;
the actual encoding.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Data compression – evolution+ 1838 Morse, code e by frequency.+ 1949 Shannon, Fano, Weaver.+ 1952 Huffman; 5 bits per character.+ 1979 Ziv-Lempel; compress (Roden, Welsh, Bell, Knuth, Miller,
Wegman, Fiala, Green, . . .); 4 bits per character.+ eighties and nineties PPM, DMC, gzip (zlib), SAKDC;
2–3 bits/character+ at the turn of millenium bzip2; 2 bits per character.+ . . . ?

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Evolution of compression algorithms

s

s s
s

ss
s

s

1980 1990 20001950 1960 1970

6

5

4

3

2

1

C
om

pr
es

si
on

(o
f

bi
ts

pe
r

ch
ar

ac
te

r)

YEAR

Huffman

LZ78

LZ77
compress

GZip

SAKDCPPM

DMC

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Prediction and modeling

+ redundancy (non-uniform probability of source unit occurrences)+ encoder, decoder, model+ statistical modeling (the model doesn’t depend on concrete
data)+ semiadaptive modeling (the model depends on data, 2 passes,
necessity of model transfer)+ adaptive modeling (only one pass, the model is created
dynamically by both encoder and decoder)

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Prediction and modeling+ models of order 0 – probabilities of isolated source units (e.g.
Morse, character e)+ models with a finite context – Markov models, models of order n
(e.g. Bach), P (a|x1x2 . . . xn)+ models based on finite automata

synchronization string, nonsynchronization string
automaton with a finite context
suitable for regular languages, unsuitable for context-free
languages, P (a|qi)

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Outline (Week twelwe)

+ Huffman coding.+ Adaptive Huffman coding.+ Aritmetic coding.+ Dictionary methods.+ Signature methods.+ Similarity of documents.+ Compression using neural networks.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Statistical compression methods I

Character techniques+ null suppression – replacement of repetition ≥ 2 of character
null, 255, special character Sc+ run-length encoding (RLE) – ScXCc generalization to any
repetitious character $ ∗ ∗ ∗ ∗ ∗ ∗55→ $Sc ∗ 655+ MNP Class 5 RLE – CXXX DDDDDBBAAAA → 5DDDBB4AAA+ half-byte packing, (EBCDIC, ASCII) SI, SO+ diatomic encoding; replacement of character pairs with one
character.+ Byte Pair Encoding, BPE (Gage, 1994)+ pattern substitution+ Gilbert Held: Data & Image Compression

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Statistical compression methods II

+ Shannon-Fano, 1949, model of order 0,+ code words of length ⌊− log2 pi⌋ or ⌊− log2 pi + 1⌋+ AE ≤ AL ≤ AE + 1.+ code tree (2,2,2,2,4,4,8).+ generally it is not optimal, two passes of encoder through text,
static→x

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Shannon-Fano coding

Input: a sequence of n source units S[i], 1 ≤ i ≤ n, in order of nondecreasing
probabilities.
Output: n binary code words.

begin assign to all code words an empty string;
SF-SPLIT(S)

end

procedure SF-SPLIT(S);
begin if |S| ≥ 2 then

begin divide S to sequences S1 and S2 so, that both
sequences have roughly the same total probability;

add to all code words from S1 0;
add to all code words from S2 1;
SF-SPLIT(S1); SF-SPLIT(S2);

end

end

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Huffman coding

+ Huffman coding, 1952.+ static and dynamic variants.+ AEPL =
∑n

i=1 d[i]p[i].+ optimal code (not the only possible).+ O(n) assuming ordination of source units.+ stable distribution→ preparation in advance.

Example: (2,2,2,2,4,4,8)

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Huffman coding – sibling property

Definition: Binary tree have a sibling property if and only if

1 each node except the root has a sibling,

2 nodes can be arranged in order of nondecreasing sequence so,
that each node (except the root) adjacent in the list with
another node, is his sibling (the left sons are on the odd
positions in the list and the right ones on even).

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Huffman coding – properties of Huffman trees

Theorem: A binary prefix code is a Huffman one⇔ it has the sibling
property.+ 2n − 1 nodes, max. 2n − 1 possibilities,+ optimal binary prefix code, that is not the Huffman one.+ AR(X) ≤ pn + 0,086, pn maximum probability of source unit.+ Huffman is a full code, (poor error detection).+ possible to extend to an affix code, KWIC, left and right context,

searching for ∗X∗.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Adaptive Huffman coding

+ FGK (Faller, Gallager, Knuth)+ suppression of the past by coefficient of forgetting, rounding, 1,
r, r2, rn.+ linear time of coding and decoding regarding the word length.+ ALHD ≤ 2ALHS.+ Vitter ALHD ≤ ALHS + 1.+ implementation details, tree representation code tables.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Principle of arithmetic coding

+ generalization of Huffman coding (probabilities of source units
needn’t be negative powers of two).+ order of source units; Cumulative probability cpi =

∑i−1
j=1 pj

source units xi with probability pi.+ Advantages:

any proximity to entropy.
adaptability is possible.
speed.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Dictionary methods of data compression

Definition: Dictionary is a pair D = (M, C), where M is a finite set of
words of source language, C mapping M to the set of code words.
Definition: L(m) denotes the length of code word C(m) in bits, for
m ∈ M.
Selection of source units:

static (agreement on the dictionary in advance)

semiadaptive (necessary two passes trough text)

adaptive

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Statical dictionary methods

Source unit of the length n – n-grams
Most often bigrams (n = 2)

n fixed

n variable (by frequency of occurrence)

adaptive

(50 % of an English text consits of about 150 most frequent words)
Disadvantages:

they are unable to react to the probability distribution of
compressed data

pre-prepared dictionary

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Semiadaptive dictionary methods

Dictionary Compressed data

Compressed dictionary Compressed data

Advantages: extensive date (the dictionary is a small part of data –
corpora; CQP).

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Semiadaptive dictionary methods – dictionary creation
procedure

1 The frequency of N-grams is determined for N = 1,2,

2 The dictionary is initialized by unigram insertion.

3 N-grams with the highest frequency are gradually added to the
dictionary. During K-gram insertion frequencies decrease for it’s
components of (K − 1)-grams, (K − 2)-grams If, by reducing
of frequencies, a frequency of a component is greatly reduced,
then it’s excluded from the dictionary.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Outline (Week thirteen)

+ Adaptive dictionary methods with dictionary restructuring.+ Syntactic methods.+ Checking of text correctness.+ Querying and TIS models.+ Vector model of documents+ Automatic text structuring.+ Document similarity.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Adaptive dictionary methods

LZ77 – siliding window methods
LZ78 – methods of increasing dictionary

a b c b a b b a a b a c b

encoded part not enc. part
(window, N ≤ 8192) (|B| ∼10–20 b)

In the encoded part the longest prefix P of a string in not encoded part is

searched. If such a string is found, then P is encoded using (I, J, A), where I is

a distance of first character S from the border, J is a length of the string S

and A is a first character behind the prefix P . The window is shifted by J + 1

characters right. If the substring S wasn’t found, then a triple (0,0, A) is

created, where A is a first character of not encoded part.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

LZR (Rodeh)

|M| = (N − B) × B × t, t size of alphabet
L(m) = ⌈log2(N − B)⌉ + ⌈log2 B⌉ + ⌈log2 t⌉
Advantage: the search of the longest prefix [KMP]

LZR uses a tree containing all the prefixes in the yet encoded
part.

The whole encoded yet encoded part is used as a dictionary.

Because the i in (i, j, a) can be large, the Elias code for coding of
the integers is used.

Disadvantage: a growth of the tree size without any limitation⇒
after exceeding of defined memory it’s deleted and the construction
starts from the beginning.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZSS (Bell, Storer, Szymanski)

The code is a sequence of pointers and characters. The pointer (i, j)
needs a memory as p characters⇒ a pointer only, when it pays off,
but there is a bit needed to distinguish a character from a pointer.
The count of dictionary items is |M| = t + (N − B) × (B − p)
(considering only substrings longer than p). The bit count to encode is

L(m) = 1 + ⌈log2 t⌉ for m ∈ T

L(m) = 1 + ⌈log2 N⌉ + ⌈log2(B − p)⌉ otherways.

(The length d of substring can be represented as B − p).

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZB (Bell), LZH (Brent)

A pointer (i, j) (analogy to LZSS)
If

the window is not full (at the beginning) and

the compressed text is shorter than N,

the usage of log2 N bytes for encoding of i is a waste. LZB uses
phasing for binary coding. – prefix code with increasing count of bits
for increasing values of numbers. Elias code γ.
LZSS, where for pointer encoding the Huffman coding is used (i.e. by
distribution of their probabilities⇒ 2 throughpasses)

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Methods with increasing dictionary

The main idea: the dictionary contains phrases. A new phrase so, that
an already existing phrase is extended by a symbol. A phrase is
encoded by an index of the prefix and by the added symbol.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

LZ78 – example

Input a b ab c ba
Index 1 2 3 4 5
Output (0,a) (0,b) (1,b) (0,c) (2,a)

. . .

. . .
Input bab aa aaa aaaa
Index 6 7 8 9
Output (5,b) (1,a) (7,a) (8,a)

0

1 2

3

4

5

6

7

8

9

a

a

a

a

a

b

b

b

c

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZFG (Fiala, Green)

A dictionary is stored in a tree structure, edges are labeled with
strings of characters. These strings are in the window and each node
of the tree contains a pointer to the window and identifying symbols
on the path from the root to the node.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZW (Welch), LZC

The output indexes are only, or

the dictionary is initiated by items for all input symbols

the last symbol of each phrase is the first symbol of the following phrase.

Input a b a b c b a b a b a a a a a
Index 4 5 6 7 8 9 10
Output 1 2 4 3 5 8 1 10 11

Overflow⇒ next phrase is not transmitted and coding continues statically.
it’s a LZW +

Pointers are encoded with prolonging length.

Once the compression ratio will decrease, dictionary will be deleted and it
starts from the beginning.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

LZT, LZMW, LZJ

As LZC, but when a dictionary overflows, phrases, that were least used in the recent
past, are excluded from the dictionary. It uses phrasing for binary coding of phrase
indexes.
As LZT, but a new phrase isn’t created by one character addition to the previous
phrase, but the new phrase is constructed by concatenation of two last encoded
ones.
Another principle of dictionary construction.

At the beginning only the single symbols are inserted.

Dictionary is stored in a tree and contains all the substrings processed by
string of the length up to h.

Full dictionary⇒

statical procedure,
omitting of nodes with low usage frequency.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Dictionary methods with dictionary restructuring

+ Ongoing organization of source units→ shorter strings of the
code.+ Variants of heuristics (count of occurrences, moving to the
beginning (BSTW), change the previous, transfer of X forward).+ BSTW (advantage: high locality of occurrences of a small number
of source units.+ Example: I’m not going to the forest, . . . , 1n2nkn.+ Generalization: recency coefficient, Interval coding.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Interval coding

Representation of the word by total sum of words from the last
occurrence.
The dictionary contains words a1, a2, . . . , an, input sequence contains
x1, x2, . . . , xm. The value LAST(ai) containing the interval form last
occurrence is initialized to zero.

for t := 1 to m do

begin {xt = ai}
if LAST(xt = 0) then y(t) = t + i − 1

else y(t) = t − LAST(xt);
LAST(xt):=t

end .

Sequence y1, y2, . . . , ym is an output of encoder and can be encoded
by one code of variable length.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Syntactical methods

+ the grammar of the message language is known.+ left partition of derivational tree of string.+ global numbering of rules.+ local numbering of rules.+ Decision-making states of LR analyzer are encoded.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Context modeling+ fixed context – model of order N.+ combined approach – contexts of various length.+ p(x) =
∑m

n=0 wnpn(x).+ wn fixed, variable.+ time and memory consuming.+ assignment of probability to the new source unit: e = 1
Cn+1 .+ automata with a finite context.+ dynamic Markov modeling.

Petr Sojka PV030 Textual Information Systems

� yA|
Huffman coding

Adaptive dictionary methods

Checking the correctness of the text

+ Checking of text using frequency dictionary.+ Checking of text using a double frequency dictionary.+ Interactive control of text (ispell).+ Checking of text based on regularity of words, weirdness
coefficient.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Weirdness coefficient

Weirdness coefficient of trigram xyz

KPT = [log(f(xy) − 1) + log(f(yz) − 1)]/2 − log(f(xyz) − 1), where
f(xy) resp. f(xyz) are relative frequencies of bigram resp. trigram,
log(0) is defined as −10.

Weirdness coefficient of word KPS =

√
n∑

i=1

(KPT i − SKPT2), where

KPT i is a weirdness coefficient of i-th trigram SKPT is a mean rate of
weirdness coefficients of all trigrams contained in the word.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Outline (Week fourteen)+ Querying and TIS models.+ Boolean model of documents.+ Vector model of documents.+ TIS Architecture.+ Signature methods.+ Similarity of documents.+ Vector model of documents (completion).+ Extended boolean model.+ Probability model.+ Model of document clusters.+ TIS Architecture.+ Automatic text structuring.+ Documents similarity.+ Lexicon storage.+ Signature methods.+ Compression using neural networks.
Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Querying and TIS models

Different methods of hierarchization and document storage→
different possibilities and efficiency of querying.+ Boolean model, SQL.+ Vector model.+ Extended boolean types.+ Probability model.+ Model of document clusters.

Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Blair’s query tuning

The search lies in reducing of uncertainty of a question.

1 We find a document with high relevance.

2 We start to query with it’s key words.

3 We remove descriptors, or replace them with disjunctions.

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Infomap – attempt to semantic querying

System http://infomap.stanford.edu – for working with
searched meaning/concept (as opposed to mere strings of
characters).
Right query formulation is the half of the answer. The search lies in
determination of semantically closest terms.

Petr Sojka PV030 Textual Information Systems

http://infomap.stanford.edu

� yA|

Boolean model

Boolean model+ Fifties: representation of documents using sets of terms and
querying based on evaluation of boolean expressions.+ Query expression: inductively from primitives:

term
attribute name = attribute value (comparison)
function name(term) (application of function)

and also using parentheses and logical conjunctions X and Y, X or
Y, X xor Y, not Y.+ disjunctive normal form, conjunctive normal form+ proximity operators+ regular expressions+ thesaurus usage

Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Languages for searching – SQL+ boolean operators and, or, xor, not.+ positional operators adj, (n) words, with, same, syn.+ SQL extension: operations/queries with use of thesaurus
BT(A) Broader term
NT(A) Narrower term
PT(A) Preferred term
SYN(A) Synonyms of the term A
RT(A) Related term
TT(A) Top term

Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Querying – SQL examples

ORACLE SQL*TEXTRETRIEVAL

SELECT specification_of_items

FROM specification_of_tables

WHERE item

CONTAINS textov_expression

Example:

SELECT TITLE

FROM BOOK

WHERE ABSTRACT

CONTAINS ’TEXT’ AND RT(RETRIEVAL)

’string’ ’string’* *’string’ ’st?ing’

’str%ing’ ’stringa’ (m,n) ’stringb’

’multiword phrases’ BT(’string’,n)

BT(’string’,*) NT(’string’,n)

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Querying – SQL examples

Example:

SELECT NAME

FROM EMPLOYEE

WHERE EDUCATION

CONTAINS RT(UNIVERSITA)

AND LANGUAGES

CONTAINS ’ENGLISH’ AND ’GERMAN’

AND PUBLICATIONS

CONTAINS ’BOOK’ OR NT(’BOOK’,*)

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Stiles technique/ association factor

asoc(QA, QB) = log10
(fN − AB − N/2)2N

AB(N − A)(N − B)

A – number of documents ,,hit“ by the query QA

B – number of documents ,,hit“ by the query QB (its relevance we
count)
f – number of documents ,,hit“ by both the queries
N – total sum of documents in TIS
cutoff (relevant/ irrelevant)
clustering/nesting 1. generation, 2. generation, . . .

Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Vector model

Vector model of documents: Let a1, . . . , an be terms, D1, . . . , Dm
documents, and relevance matrix W = (wij) of type m, n,

wij ∈ 〈0,1〉

{
0 is irrelevant
1 is relevant

Query Q = (q1, . . . , qn)

S(Q, Di) =
∑

i qiwij similarity coefficient

head(sort(S(Q, Di))) answer

Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Vector model: pros & cons

CONS: doesn’t take into account ?”and”? ?”or”?
PROS: possible improvement:

normalization of weights

Term frequency TF
Inverted document frequency IDF ≡ log2

m
k

Distinction of terms

normalization of weights for document: TD√∑
j TD

3
j

normalization of weights for query:
(

1
2 ×

1
2 TF

max TFi

)
× log2

m
k

[POK, pages 85–113].

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Automatic structuring of texts

+ Interrelations between documents in TIS.+ Encyclopedia (OSN, Funk and Wagnalls New Encyclopedia).+ [SBA]
http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs+ Google/CiteSeer: ,,automatic structuring of text files“

Petr Sojka PV030 Textual Information Systems

http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs

� yA|

Boolean model

Similarity of documents

+ Most often cosine measure – advantages.+ Detailed overview of similarity functions see chapter 5.7
from [KOR] (similarity).

Petr Sojka PV030 Textual Information Systems

� yA|
Boolean model

Lexicon storage

[MeM] Mehryar Mohri: On Some Applications of Finite-State
Automata Theory to Natural Language Processing, Natural
Language Engineering, 2(1):61–80, 1996.
http://www.research.att.com/~mohri/cl1.ps.gz

Petr Sojka PV030 Textual Information Systems

	Basic info
	Prerequisites and classification
	Course syllabus
	Literature

	Basic notions and classification of information systems
	Notions of (T)IS, PV030 in the context of teaching at FI MU

	(T)IS classification
	Mini questionnaire

	Information retrieval systems---classification
	Classification and formalization of IRS

	I. SE without preprocessing both patterns and the text
	Rudimentary search algorithm

	II -- Exact search with query preprocessing
	Karp-Rabin search algorithm
	(K)MP
	Search engine (finite automaton)
	Construction of the KMP engine
	Search of n patterns
	Aho-Corasick algorithm
	Finite automata for searching
	Left-to-right methods
	Derivation of a regular expression
	Characteristics of regular expressions
	Right-to-left search of one pattern
	Right-to-left search for an inf. set of patterns
	Generalization of SE
	Search engine hierarchy
	Fuzzy search: metrics
	Classification of search problems
	SFOECO, QFOECO, SSOECO
	QSOECO, SFORCO, SFODCO

	Index System Implementation
	Huffman coding
	Adaptive dictionary methods
	Boolean model

