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Context 
• Dynamic real-world systems generate data continuously 

•  Underlying distribution naturally changes over time  
•  Concept drift: gradual or abrupt 

• Different performance of learning algorithms for different 
instants of time 

• No-free Lunch Theorem (Wolpert, 1996)  
•  Any learning algorithm cannot always be the best for all possible 

learning tasks 
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Motivation 
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Problem & Approach 

• Periodic algorithm selection for non-stationary 
environments 

• MetaStream: a metalearning approach 
•  Meta-model relates data characteristics to base-level model 

performance 
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Base-level 
• For each new batch of 
n test examples: 
•  Induces regression 

models using most 
recent training data 

• Predicts target value for 
test examples 

• Evaluates predictions 
when true target values 
become available 
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Meta-level: meta-data 
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Meta-level: meta-model induction and 
algorithm prediction 
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Experiments: comparison 
• Meta-level 

• MetaStream 
• Default class 

•  majority class (i.e., 
regression algorithm) in the 
meta training data 

• Base-level 
• MetaStream and Default 

•  i.e., algorithms selected by 
these methods 

• Ensemble: average 
predictions of regressors 
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Experimental setup: base-level 
• Regression algorithms:  

•  Random Forests (RF)  
•  Support Vector Machines (SVM) 
•  Classification and Regression Trees (CART) 
•  Project Pursuit Regression (PPR) 

• Data 
•  Travel time prediction (TTP) problem 

•  Time 
•  Training window: 1000 examples 
•  Sliding step: 1 example 

• Evaluation measure 
•  NMSE 

10 SBRN 2012 Experiments 



Experimental setup: meta-level data 
• Pairwise comparisons of algorithms 

•  blocks of 25 base-level examples 
•  for every pair of algorithms, which one is the best 

•  or tie if difference between base-level NMSE < 0.1 
•  … but no ranking 

• Experiments with and without tie meta-examples 
•  … on the training set 

• Meta-features 
•  possibility of existence of outliers, dispersion gain, skewness, 

kurtosis, average, variance, minimum, maximum, median and 
correlation between attribute and target 

•  … for each independent variable 
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Experimental setup: meta-level 
• Meta-level learning 

•  classification task 
•  RF 

• Meta-model updating strategies:  
•  Dynamic: updated for each new meta-example 
•  Static: never updated 

• Meta-time 
•  Sliding window of 300 meta-examples 
•  Sliding step of 1 meta-example 
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Sometimes the winner is unclear 
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Sometimes MetaStream is worse 
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Sometimes MetaStream is better 
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Meta-data issues 
• Quality of the meta-data is sensitive to the size of the test 

set (δ):  
 
 
 Quality of data characteristics 

 
Reliability of estimation of model performance 
 
Difference between models 

δ 

16 SBRN 2012 MetaStream 



Meta-features issues: base level 
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Meta-features issues: meta level 
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Conclusion and Future Work 
• MetaStream is a promising approach for periodically 

selecting algorithms over time 
• RF/CART and SVM/CART are the best choices of pairs of 

algorithms for the data analyzed 
•  They achieved the smallest NMSE 

•  The proposed approach is not domain and algorithm 
dependent  

• As future work, we plan:  
•  To investigate meta-features specific for time-changing data 
•  To move beyond simple pair of algorithms to multi-class 

classification  
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