CS340 Machine learning ROC curves

Performance measures for binary classifiers

Confusion matrix, contingency table

Sensitivity = recall = True pos rate = hit rate = TP / P = 1-FNR

False pos rate = false acceptance = = type I error rate = FP / N = 1-spec

False neg rate = false rejection = type II error rate = FN / P = 1-TPR

Specificity = TN / N = 1-FPR

Performance depends on threshold

• Declare x_n to be a positive if $p(y=1|x_n)>\theta$, otherwise declare it to be negative (y=0)

$$\hat{y}_n = 1 \iff p(y = 1|x_n) > \theta$$

Number of TPs and FPs depends on threshold θ.
As we change θ, we get different (TPR, FPR)
points.

Example

i	y_i	$p(y_i = 1 x_i)$	$\hat{y}_i(\theta=0)$	$\hat{y}_i(\theta = 0.5)$	$\hat{y}_i(\theta = $	1)	
1	1	0.9	1	1	0		
2	1	0.8	1	1	0		
3	1	0.7	1	1	0		
4	1	0.6	1	1	0		
_5	1	0.5	1	1	0		
6	0	0.4	1	0	0		
7	0	0.3	1	0	0		
8	0	0.2	1	0	0		
9	0	0.1	TPR=515=1	TPR=5/5	0	PR=0/5=0 =PR=0/4=0	
			FPR=4/4=	FPR=01	4=0 1	= PR = 0/4= C	
i	y_i	$p(y_i = 1 x_i)$	$\hat{y}_i(\theta=0)$	$\hat{y}_i(\theta=0.5)$	$\hat{y}_i(\theta=1)$)	
1	1	0.9	1	1	0	TPR	
2	1	0.8	1	1	0	T	
3	1	0.7	1	1	0	•	P
4	1	0.6	1	1	0	n	
5	1	0.2	1	0	0	8	
6	0	0.6	1	1	0		
7	0	0.3	1	0	0		_
8	0	0.2	1	0	0	1 0.2	FPR
9	0	0.1	1	TCRQ 12/5=	0 8.0		
				TPR=4/5= FPR=1/4=	.0.25		

Performance measures

- EER- Equal error rate/ cross over error rate (false pos rate = false neg rate), smaller is better
- AUC Area under curve, larger is better
- Accuracy = (TP+TN)/(P+N)

Precision-recall curves

- Useful when notion of "negative" (and hence FPR) is not well defined, or too many negatives (rare event detection)
- Recall = of those that exist, how many did you find?
- Precision = of those that you found, how many correct?
- F-score is harmonic mean $F = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$

$$F = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$$

Word of caution

Consider binary classifiers A, B, C

 Clearly A is useless, since it always predicts label 1, regardless of the input. Also, B is slightly better than C (less probability mass wasted on the offdiagonal entries). Yet here are the performance metrics.

Metric	A	В	\mathbf{C}
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286

Mutual information is a better measure

The MI between estimated and true label is

$$I(\hat{Y}, Y) = \sum_{\hat{y}=0}^{1} \sum_{y=0}^{1} p(\hat{y}, y) \log \frac{p(\hat{y}, y)}{p(\hat{y})p(y)}$$

This gives the intuitively correct rankings B>C>A

Metric	A	В	\mathbf{C}
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286
Mutual information	0	0.1865	0.1735