MASARYKOVA UNIVERZITA

PV213 Enterprise Information Systems
in Practice

02 — Architecture of the EIS in the
standard environment

Oo00oO00O00o0
Oooooano
10000
SOO0o00o0
Oooooao
J00000

42 0O000Oo0a0O
0000000

&
z
N

AS?

o

MASARYKOVA UNIVERZITA

GSVIN.
g&
VENSIS

A
&,

s,

ocomooooD
nooor
ocoooD
OO O
omo&
OocC
oo &
DOE>
ooo
OO0 O
ooon
OoooOooL
ocomoooon

NS1S

* Xk
* *
* *
* *

* gk

EVROPSKA UNIE

SV
Sl

~- ° NERS/
< Z
o S o,
S ' &
OP Vzdélavani & \2\0
U pro konkurenceschopnost 24 NA®

MASARYKOVA UNIVERZITA www.muni.cz

oo
oo
oo
0o o
oo
oo
oo

ooooooo
OoooOooaOo
oOoooooo
DODODOD
oOoooooo
Ooooooao
oOoooooo

Tento projekt je spolufinancovan Evropskym socidlnim fondem a statnim rozpo¢tem Ceské republiky.

a
=g (\QERS[}
*
K o .Qé ﬂd}n
* * ° 5 o
* * %) Z
* ¥ % i , % .
p MINISTERSTVO SKOLSTVI, OP Vzdélavani /70 %0
EVROPSKA UNIE v MLADEZE A TELOVYCHOVY pro konkurenceschopnost 4ANA®

INVESTICE DO ROZVOJE VZDELAVANI

MASARYKOVA UNIVERZITA www.muni.cz

What is SW architecture?

The software architecture of a system is the
set of structures needed to reason about
the system, which comprise software
elements, relations among them, and
properties of both.

“Structure of structures”

MASARYKOVA UNIVERZITA www.muni.cz

Why we need SW architecture?

Why SW architecture is created?
Increase product quality
s Functional requirements

i

Understand product structure
Speedup development time
Minimize maintenance costs

i

i

Ooooopooooooo
ocooooopooooooaO
ocooooopopooooonoo

RGO G E DG MASARYKOVA UNIVERZITA WWww.muni.cz

oOoooDopDooooon
ocooopopooooonoo

Architect in history

The ideal architect should be a person of letters, a
mathematician, familiar with historical studies, a
diligent student of philosophy, acquainted with music,
not ignorant of medicine, learned in the responses of
jurisconsults, familiar with astronomy and astronomical
calculations. |

—Vitruvius, circa 25 BC

Vitruvius was a Roman architect and ‘ &L E L
the author of the De architectura. & .

PR

Pont du Gard, France

MASARYKOVA UNIVERZITA WWww.muni.cz

SW Architect - role in the team

Key responsibilities

Creating and documenting architecture
1 High level
1 Design decisions (especially non functional requirements)
1 Guidelines

Communication between different stakeholders
1 Requirements with customer / analyst / business people
1 Planning with project manager
1 SW architecture / design with developers, testers

Supervising project from technical point of view

We can differentiate: business architect, enterprise architect, solutions
architect, application architect

Onooopopooooooo
ocooooopooooooaO
oOoooooooooo

sosocoosososo IMASARYKOVA UNIVERZITA www.muni.cz

oOoooDopDooooon
oOnoooooooonoo

Non-functional requirements

Product qualities which are often overlooked but they are important
part of the product.

Performance - e.g. transactions per seconds

Scalability - ability to “grow” with increasing load

Reliability - ensures integrity and consistency

Availability - e.g. in percentage (99,9%)

Security - system and its data cannot be compromised
Maintainability - ability to correct flaws without big impacts
Manageability - monitor system health, change of configuration
Extensibility - ability to add new functionality without big changes
Testability - ability to test

Onooopopooooooo
ocooooopooooooaO
oOoooooooooo

sosocoosososo IMASARYKOVA UNIVERZITA www.muni.cz

oOoooDopDooooon
oOnoooooooonoo

Architecture types - Monolithic (1-tier)

First type in history (on mainframes)
Everything in one monolithic application
1 User interface
1 Application (business) logic
1 Persistence logic (database)
Simple
Hard to fulfill some non-functional requirements
1 Non-scalable
1 Hard to extend
1 Hard to maintain

Today valid only in very special cases - embedded SW with small
resources (CPU power, memory, without network connectivity)

Onooopopooooooo
ocooooopooooooaO
oOoooooooooo

sosocoosososo IMASARYKOVA UNIVERZITA www.muni.cz

oOoooDopDooooon
oOnoooooooonoo

Architecture types - 2-tier |

Separation

1 First tier - User interface plus application logic

1 Second tier - Persistence (database)
Also called client / server architecture (popular in 1980s)
Allows to easily share data from different clients
Still hard to fulfill some non-functional requirements
Used mostly in desktop applications

1 Hard to change business logic (requires redeployment)
Small modification for exceptional web applications

1 First tier - User interface

1 Second tier - Application logic and persistence
Not recommended for new development

MASARYKOVA UNIVERZITA

www.muni.cz

Architecture types - 2-tier |l

Physical model

Reguest __
for Data

-
-

p——

jromal Uy

Logical model

Client Layer

™~
(|

MASARYKOVA UNIVERZITA WWww.muni.cz

Architecture types - 3-tier (n-tier) |

Separation
s First tier - User interface
s Second tier - Application logic
s Third tier - Persistence
Separation allows to increase quality of the system

7 E.g. change of the business logic doesn’t influence
presentation tier (user interface)

Valid for most of web applications
Standard in designing systems today

MASARYKOVA UNIVERZITA WWww.muni.cz

Architecture types - 3-tier (n-tier) Il

Physical model Logical model

Client Layer
.-:
T Dalabase
i Serdar

Intermel Server

Web Server

&

Thin Client Thin Client Thin Chent Thin Client Thin Client

Database Layer

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
O0oooooao
ooooooo
OoooOooaOo
oOoooooo
DODODOD
oOoooooo
Ooooooao
oOoooooo

MASARYKOVA UNIVERZITA

www.muhni.cz

Architecture types - 3-tier (n-tier) Il

Tiers represents
machine boundaries

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

-
>GET SALES
TOTAL

>GET SALES
TOTAL

Much easier to scale

Logic tier

This layer coordinates the

A

Changes are separated »

application, processes commands, Y
makes logical decisions and GET LIST OF ALL ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and ESSIEVEAS A
processes data between the two
surrounding layers.

SALE | —

QUERY SALE 2
SALE 3

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

<

Database

Storage

MASARYKOVA UNIVERZITA

www.muhni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
DODODOD
ooooooo

Oooooooao
oOoooooo
DODODOD
oOoooooo

Ooooooao
oOoooooo

Architecture types - Comparison of 2,3 and n-tier

2-tier

3-tier

LEWVEL 1
Htp

request,

Fi|es,
] I

Client

LEWVELT

Hitp
request,
files,
S5QL,..

Client

Sending
requests

Sending
replies

Sending
requests

Sending
replies

LEVEL 2

Selver

LEVEL 2

LEVEL S
—

-
Database

sehvel

Application

selwvel

SQLquery

n-tier

LEVEL1 Client
_EVELZ2 Selver
LEVELZ Server
Selvel A
Y
LEVEL 4 Selver

Ooooopooooooo
DooDooDoooooooao
ocooooopopooooonoo

MASARYKOVA UNIVERZITA www.muni.cz

(m]
O
(]
(@)

Architecture types - Possible structuring in n-tier

Logical model Prosentaton Layer I

(5]
[
_l————fl}pﬁnmkﬂwﬁﬁlsmmdmy-————t— ;
o

Workflow Layer

Business Rule Layer(s) I
- l—— — —pHosa Pyl [Haspdary — — — —t—

Data Layer

MASARYKOVA UNIVERZITA WWww.muni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
ooooooao
ooooooo
Oooooooao
Ooooooo
OO O0OOOO0Do
oOoooooo
Oooooooao
oOoooooo

Thick and thin client

Thick client provides rich functionality without server
Requires some installation on the client’s device
Can run independently without servers
Can use all HW device provides (rich and fast GUI, external HW)
Migration to newer version (update) is harder

Thin client delegates functionality to other devices (servers)
s Don’t require installation on the client’s device
Cannot run independently without servers
Access to HW is limited
Migration to newer version (update) is easier
Requires some “specialized OS” (web browser, “player”, etc.)
Servers are the bottleneck

In reality thick and thin clients overlap (browser plugins, zero installations, ...).

MASARYKOVA UNIVERZITA WWww.muni.cz

Example - Reservation system (refresh)

Reservation system allows to
Make reservations for pool equipments
Cancel reservations
Show calendar with reservations

Import definition of equipments from external inventory
system

Send usage statistics to management reporting system

MASARYKOVA UNIVERZITA WWww.muni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
ooooooao
ooooooo
Oooooooao
Ooooooo
OO O0OOOO0Do
oOoooooo
Oooooooao
oOoooooo

Example - Reservation system - Architectural thoughts |

You have to consider which architecture solves the best your functional and
non-functional requirements with additional restrictions (constraints) to

Given budget

Expected timeframe

Skills in your team

Expected live time of the product

Non-technical constraints (team motivation, overall atmosphere, ...)

You can try negotiate some (or all) constraints with project (or product)
manager (business people, customer, ...).

Live is not ideal but good communication with other people can simplify it!

MASARYKOVA UNIVERZITA WWww.muni.cz

Example - Reservation system - Architectural thoughts Il

Possible questions we have to ask

How users will use the Reservation system?

Is program installation on user’s device required? Thick / thin
client? What are prerequisites?

1 Which operating systems are required to support?
1 Which types of user’s devices are required (e.g. mobile)?
How data will be shared between users? Is sharing of data possible?

How product will interact with external systems (inventory and
reporting system)?

How system will be maintained?

How system will scale when amount of users grow?

How possible new requirements will influence the system?

Onooopopooooooo
ocooooopooooooaO
oOoooooooooo

sosocoosososo IMASARYKOVA UNIVERZITA www.muni.cz

oOoooDopDooooon
oOnoooooooonoo

Example - Reservation system - 1-tier architecture?

Implies thick client

1 Installation of client required

1 Update of client can be complicated (distributed redeployment)
Sharing of data complicated

1 Each user has its own copy of database

1 Needed to solve synchronization of databases (when number of
users grow more data has to be transferred between clients)

Some functional requirements are hard to implement - e.g. export
to reporting system

s Which client will do it? What if he is ill?
+ Another special application for export? How and who will start it?

Result: Inadequate architecture for our purposes

MASARYKOVA UNIVERZITA WWww.muni.cz

Example - Reservation system - 2-tier architecture I?

~ Desktop application (thick client)
3 User interface and application logic on the client

: Persistence on the database server (data can be easily
shared between clients)

s Installation of the client required

Update of client can be complicated (distributed
redeployment)

Export of data still problematic

1 Result: Inadequate architecture for our purposes

MASARYKOVA UNIVERZITA WWww.muni.cz

Example - Reservation system - 2-tier architecture II?

Web application (thin client)
User interface on the client (web browser)
s No need to do installation
s Change in the application means redeployment only on the server
1 Application logic and persistence on the database server

1 Application logic e.g. in stored procedures - logic is tightly bind to the
database

Implies database which support such configuration (vendor lock-in)
Export of data

s Automatically by scheduled stored procedures (scheduled jobs)
s Special application on the database server
s Manually in the web GUI by special user

Result: Better than 2-tier desktop application but still some flaws

MASARYKOVA UNIVERZITA WWww.muni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
ooooooao
ooooooo
Oooooooao
Ooooooo
OO O0OOOO0Do
oOoooooo
Oooooooao
oOoooooo

Example - Reservation system - 3-tier architecture I?

LEVEL 1 LEVEL 2

Desktop application (thick client)] e] e
2 User interface on the client o >Ej
1 Application logic on the application server ent T Apphation e

Persistence on the database server
Easier to switch to different database or use simpler database
Installation of the client still required

Performance of user interface can be slower than in 2-tier (application
logic executed on the application server - network boundaries)

Better scalable than in 2-tier (application server can also cache common
data shared by multiple clients without need to load them from DB)

Still need to solve update of client (user interface)
Export of data solved on the application server
Used in cases when you need advanced and fast GUI

Result: 3-tier desktop application doesn’t solve deployment issues

MASARYKOVA UNIVERZITA WWww.muni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
Ooooooo
ooooooao
ooooooo
Oooooooao
Ooooooo
OO O0OOOO0Do
oOoooooo
Oooooooao
oOoooooo

Example - Reservation system - 3-tier architecture II?

Web application (thin client)
User interface on the client (web browser)
» No need to do installation

» Change in the application means redeployment only on the application (web)
server

Application logic on the application (web) server
Persistence on the database server
Export of data
» Special application (or just component) on the application (web) server
» Manually in the web GUI by special user
Scales quite well
7 If weakest point is application server add additional server
» If weakest point is database use clustered database (there are some limits)
Standard how applications are build today (a lot of “support” on the internet)

Result: 3-tier web application is the best for our needs

(¢]
(m]
(0]
]
(¢]
]
(0]

ooooooao
ooooooo
Ooooooao
oOoooooo
DODODOD
ooooooo
Oooooooao
oOoooooo
DODODOD
oOoooooo

Ooooooao
oOoooooo

MASARYKOVA UNIVERZITA

www.muhni.cz

Example - Reservation system - Deployment diagram |

Possible deployment for intranet

i

User’s need just standard
web browser (no need for
installations)

For communication between
clients and server just HTTP
is used (we are in “secure”
area)

Web and Application server
contains main part of the
solution

New version of the
application means just
redeployment on Web and
Application (+SQL) server
Communication with external
systems is via HTTP (HTTPs)

For storing data standard SQL
database is used

Web Browser 1

Web Browser 2

Web Browser N

HTTP HTTP

HTTP

External Systems

HTTP

Web and Application
Server

Reporting System

—_HTTP |

SQL*Net

Inventory System

SQL Database

,,,,,,,,,,

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
DODODOD
ooooooo
OoooOooaOo
oOoooooo
DODODOD
oOoooooo
Ooooooao
oOoooooo

MASARYKOVA UNIVERZITA

www.muhni.cz

Example - Reservation system - Deployment diagram I

Possible deployment for
big amount of clients

Load balancer
distributes requests to
different nodes

There are multiple
web and application
server nodes

SQL database is
configured to be
clustered database on
several nodes

Web Browser 1

Web Browser 2

Web Browser N

HTTP

HTTP

Load Balancer

\

HTTP

External Systems

Inventory System

Reporting System

TP

Web and Application Servers

Web and Application
Server (Node 1)

Web and Application
Server (Node 2)

Web and Application
Server (Node N)

SQL*Net

Clustered SQL Databases

Clustered SQL
Database (Node 1)

Clustered SQL
Database (Node 2)

Clustered SQL
Database (Node N)

MASARYKOVA UNIVERZITA WWww.muni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
DODODOD
ooooooo
OoooOooaOo
oOoooooo
DODODOD
oOoooooo
Ooooooao
oOoooooo

Example - Reservation system - Deployment diagram for internet

POSSibl.e deployment for internet Web Browser 1 Web Browser 2 Web Browser 3
environment |
Web browsers use HTTPS instead HTTPS HTTPS HTTPS
of HTTP > ' :
Internet fi.rewall restricts |
protocols just to HTTPS HTTPS” HTTPS
To increase performance static e oMz |

content (pictures, videos, static

HTML pages, .") are handled On Web Server Application Server
special web server node e P —
Intranet firewall restricts

protocols to HTTP and SQL*Net Intranet Firewall

and requests only from
application server

Communication in the intranet is

j USt HTTP SQL Database Inventory System Reporting System

I
SQL*Net HTTP HTTP

Intranet

oOoooooo
ooooooao
ooooooo
Ooooooao
oOoooooo
DODODOD
ooooooo
Oooooooao

oOoooooo
DODODOD
oOoooooo
Ooooooao
oOoooooo

Possible deployment

with redundancy

Each critical node is
backed up by the
same node

In case of failure
(e.g. HW) second
(standby) node will
handle request

Standby nodes add
additional costs but
do nothing in normal
behavior

Weak points are
external systems
which we cannot
influence

MASARYKOVA UNIVERZITA

www.muhni.cz

Example - Reservation system - Deployment with redundancy

Web Browser 1

Web Browser 2

Web Browser 3

Web and Application
' Server

Web and Application
Server (hot standby)

SQL Database (hot
standby)

__

External Systems

Inventory System

(¢]
(m]
(0]
]
(¢]
]
(0]

ooooooao
ooooooo
Ooooooao
oOoooooo
DODODOD
ooooooo
Oooooooao
oOoooooo
DODODOD
oOoooooo

Ooooooao
oOoooooo

MASARYKOVA UNIVERZITA

www.muhni.cz

Example - Reservation system - Deployment with load balancing
redundancy

Possible deployment with load

ik

balancing redundancy

Load balancer distributes
requests either to Web and
Application server 1 or 2

Load balancer is backed up

Web and Application Server
must be stateless or load
balancer must take into
account user’s session

In two node deployment for

Web and Application server one
node must be able to handle all

requests (in some decreased
performance)

Standard database cannot be
easily load balanced. Often
they are weak points in
scalability

Web Browser 1

Web Browser 2

Web Browser 3

H'I'I'P\ H/'I'I'P HTTP
Load Balancer Load Balancer (hot
standby)
H'I'[I'P
Web and Application Web and Application
Server 1 Server 2
______________________________________ [
SQL*Net
SQL Database SQL Database (hot

standby)

External Systems

Inventory System

Reporting System

MASARYKOVA UNIVERZITA WWww.muni.cz

Recommendations and what you have to think about |

For majority of new EIS applications use 3-tier (n-tier) web based
architecture

Backup critical systems (calculate losses in case of not functional system)
Know expected number of user’s

In the beginning it can be hard to guess especially for applications which
will become popular

Be prepared for increasing number of users
Cloud computing can help you
Do load testing before system goes to productive
Only a few projects do this
Be prepared to use your system from internet
1 You have to take care more about the security on the internet
Be prepared for different user devices (standard PC, tablet, mobile)
1 There is increasing importance of mobile devices

MASARYKOVA UNIVERZITA WWww.muni.cz

oo
oo
oo
oo
(O)n]
oo
oo

ooooooo
Ooooooao
oOoooooo
ooooooao
ooooooo
Oooooooao
Ooooooo
OO O0OOOO0Do
oOoooooo
Oooooooao
oOoooooo

Recommendations and what you have to think about li

Prepare the architecture before any development starts
1 When real development starts it is too late to create the architecture
Keep in mind all important non-functional requirements

Create documentation and guidelines for developers and share the
knowledge

Better is to make an architecture meeting than just telling to
developers “here are documents and read them”

Do it continuously

Segup tools which help you finding abnormalities in the architecture from
code

Do the code reviews to find “code smells”
Adapt architecture through the lifetime to fit into new requirements

Role of architect is not valid only in the beginning but through the whole
lifetime of the project

1 A lot of projects starts with good architecture but degrade through the
lifetime as requirements change

Onooopopooooooo
ocooooopooooooaO
oOoooooooooo

sosocoosososo IMASARYKOVA UNIVERZITA www.muni.cz

oOoooDopDooooon
oOnoooooooonoo

Different architectures examples |

Which architecture type (number of tiers, type of the client) do you
recommend for following usages?

Simple game on mobile device without connectivity to the network
1-tier, thick client

Game on mobile device with possibility to use multiplayer
functionality and sharing game scores

: 3-tier, thick client

Application for managing business trips which must run on mobile
devices and standard PCs

1 3-tier, thin client (web application)

Mobile application for collecting data from house construction in the
field and reporting them to the headquarter (must work offline)

s 3-tier, thick client

Onooopopooooooo
ocooooopooooooaO
oOoooooooooo

sosocoosososo IMASARYKOVA UNIVERZITA www.muni.cz

oOoooDopDooooon
oOnoooooooonoo

Different architectures examples Il

Management reporting application with advanced graphical
interactive reports which must run on “any” device

: 3-tier, thin client (web application with some technology which
allows displaying interactive reports e.g. Flash or HTML5)

Industry application for reporting weather conditions
1 3-tier, thick client (embedded SW)

News application aggregating data from different sources
1 3-tier, thin client (web application)

Project management application
1 3-tier, thin client (web application)

Computational intensive application (simulation of chemical
processes)

3-tier, thick client (special desktop application), distributed
computing

MASARYKOVA UNIVERZITA

(m] [m]
O (@)
(m] [m]
(@) O
a [m]
O O
[m] [m]

OOO0ODODOoOD
Oooooooao
ODOODODOOoOD
Oooooooao
oOoooooo

www.muhni.cz

Déekuji za pozornost.

Tento projekt je spolufinancovédn Evropskym socidlnim fondem a statnim rozpo¢tem Ceské republiky.

N °
°
i
MINISTERSTVO SKOLSTVI, OP Vzdélavani
v MLADEZE A TELOVYCHOVY pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDELAVANI

* X x
* *
* *
* *

* x Kk

EVROPSKA UNIE

N
'Qé

SV
§X<f n

ERS7)p
e

Vensis

D
/rl,qNA?ﬁ*

