
PV213 EIS in Practice: 05 – Security, Configuration management 1

PV213 Enterprise Information Systems

in Practice

05 – Security, Configuration management

PV213 EIS in Practice: 05 – Security, Configuration management 2

PV213 EIS in Practice: 05 – Security, Configuration management 3

PV213 EIS in Practice: 05 – Security, Configuration management 4

Security overview

Security is a big topic and will become even more important in
the future

We will concentrate just on often security holes in web applications

Just remember that for security you have two approaches

Passive protection

“Classical” protection (firewalls, accounts, rights, …)

Active protection

Proactive finding security holes (tools, security audits, …)

Securing systems requires knowledge

Architects, developers and testers should continuously learn

Applied security protection should correspondent with importance of
the system (e.g. bank application vs. public blog)

Keep in mind that there isn’t 100% secure system

PV213 EIS in Practice: 05 – Security, Configuration management 5

The Open Web Application Security Project (OWASP)

OWASP is non-profit organization focused on improving the security

of application software

Provides documentation and tools regarding security

Protection

Detection

Life cycle

Started to work in 2003

Provides Top 10 security risks in years 2004, 2007, 2010, 2013

Following slides show OWASP Top 10 for 2013 (release candidate)

https://www.owasp.org

https://www.owasp.org/

PV213 EIS in Practice: 05 – Security, Configuration management 6

A1: Injection

Injection is inclusion of malicious data into the input of the
application which causes then some weakness in the application

There are several types of injections: SQL, OS Shell, …

SQL injection example
String query = ”SELECT * FROM customers WHERE customerId

= ” + request.getParameter(”id”)

What will happen when as “id” is passed following?
0 OR 1 = 1

How to avoid

Use appropriate API (e.g. prepared statements instead of string
concatenation for SQL)

Sanitize input (escape all special characters)

Use some white list approach

PV213 EIS in Practice: 05 – Security, Configuration management 7

A2: Broken Authentication and Session Management

Occurs in cases e.g. when session id is part of the URL

Example

https://example.com/buy.html?sessionid=32263D8EFw49w6Jk

What will happen when such a link is send e.g via mail?

If there isn’t another security check (e.g. check of IP address)

any receiver can take over the session (and e.g. pay with your

card)

How to avoid

Don’t store session identification in URL

Use session timeouts

Guarantee that session id is always unique

https://example.com/buy.html?sessionid=32263D8EFw49w6Jk
https://example.com/buy.html?sessionid=32263D8EFw49w6Jk

PV213 EIS in Practice: 05 – Security, Configuration management 8

A3: Cross-Site Scripting (XSS)

XSS is insertion of malicious client-side script into the web page
Such a script can e.g. steal secure data or user’s current session
Example

<input name=”comment” type=”text” value=”[read
from DB]”>

What will happen when “[read from DB]” is following?
Hi!”<script>alert(document.cookie);</script><inpu
t type=”hidden” value=”

On the output will appear
<input name=”comment” type=”text”
value=”Hi!”><script>alert(document.cookie);</scri
pt><input type=”hidden” value=””>

How to avoid
Sanitize output to avoid execution of the script
Use some white list approach

PV213 EIS in Practice: 05 – Security, Configuration management 9

A4: Insecure Direct Object References

Insecure Direct Object References means that attacker can access
data of someone else

This problem occurs when there are missing security checks on the
server side (after authentication application believes input
parameters)

Example

https://example.com/viewAccount?custId=1234

What will happen when attacker simply changes custId?

He can see account of another customer

How to avoid

Eliminate direct reference (e.g.use temporary random mapping)

Validate direct reference (verify user is allowed to do this task)

https://example.com/viewAccount?custId=1234

PV213 EIS in Practice: 05 – Security, Configuration management 10

A5: Security Misconfiguration

There can be several reasons for this attack e.g.

You use some default configuration which is not secure

Installed system services you don’t use

Installed administrative applications you don’t need

Used default passwords

You report more than required to the end user (stack traces in

case of failure, directory listing, etc.)

How to avoid

Use latest patches for all components (OS, framework, …)

Don’t rely on default configuration

Use as few components as possible

PV213 EIS in Practice: 05 – Security, Configuration management 11

A6: Sensitive Data Exposure

Sensitive data are stored on the unsecured (or inefficiently secured)
storage or transported via unsecured channel

Credit card numbers stored in the database in plain text

Passwords stored encrypted but without using salt

Application doesn’t use SSL or use it only for some pages

Application uses weak cryptographic algorithms or keys

How to avoid

Don’t store sensitive data at all

Store sensitive data encrypted and only for minimal time

Use standard strong encryption algorithms

Protect passwords / certificates, keep certificates up-to-date

Use secure transport channels

PV213 EIS in Practice: 05 – Security, Configuration management 12

A7: Missing Function Level Access Control

URLs to resources are not protected on the server size

Similar problem to Insecure Direct Object References

Occurs in cases when access to given resource is not authorized on
the server side (authorization is done only via hiding data)

Example

https://example.com/user/viewAccount

https://example.com/admin/viewAccount

How to avoid

Do the resource authorization on the server side

Restrict access only to required resources (use white list
approach) – e.g. disallow accessing logs, listing directories, etc.

Check your server configuration – disallow all by default

https://example.com/user/viewAccount
https://example.com/admin/viewAccount

PV213 EIS in Practice: 05 – Security, Configuration management 13

A8: Cross-Site Request Forgery (CSRF)

CSRF is all about default behavior of browsers which automatically provide most

credentials with each request (session cookie, basic authentication header, etc.)

Example

User logs into the banking application (victim site)

Attacker at this time instructs user to view attackers site (via mail, etc.)

Attacker’s site contains (in hidden image) link to the victim site e.g. for

transferring money

Such a link represents GET request to the victim site and browser sends also

credentials (cookies etc.)

Victim site cannot distinguish from where request was sent

How to avoid

Use POST requests instead of GET requests for all important actions

Put random authorization token into each form which is send by POST

request (attacker cannot guess this token)

PV213 EIS in Practice: 05 – Security, Configuration management 14

A9: Using Known Vulnerable Components

Nearly all software build today uses for some of its sub-functionality

third-party components

These components can contain security issues

Attackers concentrate on often used components

Sometimes security patches are not available for older versions of

components (you have to install new versions to apply the patch)

How to avoid

Know all your components including their dependencies

Periodically monitor security news for these components

Define policies e.g. that components have to pass security tests

Apply security patches and keep your components up-to-date

PV213 EIS in Practice: 05 – Security, Configuration management 15

A10: Unvalidated Redirects and Forwards

Application allows to redirect or forward to another page via
supplied parameter but there isn’t check what is allowed

Example

https://example.com/redirect?url=https://evil.com

What will happen when user will be redirected?

Attacker can simulate the functionality of the application and
steal sensitive information

How to avoid

Avoid using redirects and forwards at all (not always possible)

Avoid using parameterized redirects and forwards

Check input parameters (e.g. use mapping for parameters
instead of directly specifying target URL)

https://example.com/redirect?url=https://evil.com

PV213 EIS in Practice: 05 – Security, Configuration management 16

OWASP Top 10 for 2010

A1: Injection

A2: Cross-Site Scripting (XSS)

A3: Broken Authentication and Session Management

A4: Insecure Direct Object Reference

A5: Cross Site Request Forgery (CSRF)

A6: Security Misconfiguration

A7: Insecure Cryptographic Storage

A8: Failure to Restrict URL Access

A9: Insufficient Transport Layer Protection

A10: Unvalidated Redirects and Forwards

PV213 EIS in Practice: 05 – Security, Configuration management 17

OWASP Top 10 for 2007

A1: Cross Site Scripting (XSS)

A2: Injection Flaws

A3: Malicious File Execution

A4: Insecure Direct Object Reference

A5: Cross Site Request Forgery (CSRF)

A6: Information Leakage and Improper Error Handling

A7: Broken Authentication and Session Management

A8: Insecure Cryptographic Storage

A9: Insecure Communications

A10: Failure to Restrict URL Access

PV213 EIS in Practice: 05 – Security, Configuration management 18

OWASP Top 10 for 2004

A1: Unvalidated Input

A2: Broken Access Control

A3: Broken Authentication and Session Management

A4: Cross Site Scripting

A5: Buffer Overflow

A6: Injection Flaws

A7: Improper Error Handling

A8: Insecure Storage

A9: Application Denial of Service

A10: Insecure Configuration Management

PV213 EIS in Practice: 05 – Security, Configuration management 19

OWASP Top 10 Mobile Risks, Release Candidate v1.0 (Sep. 2011)

M1: Insecure Data Storage

M2: Weak Server Side Controls

M3: Insufficient Transport Layer Protection

M4: Client Side Injection

M5: Poor Authorization and Authentication

M6: Improper Session Handling

M7: Security Decisions Via Untrusted Inputs

M8: Side Channel Data Leakage

M9: Broken Cryptography

M10: Sensitive Information Disclosure

PV213 EIS in Practice: 05 – Security, Configuration management 20

Configuration management overview I

What is Configuration management
Tracking and controlling changes in the software
Way how you control evolution of the SW project
Tools and processes for controlling the SW project

What everything it contains

Management of tools for
Requirements management
Project planning
Version control (for source code and documents)
Development
Building
Testing
Bug tracking
…

PV213 EIS in Practice: 05 – Security, Configuration management 21

Configuration management overview II

What everything it contains (continue)

Processes for

Building, continuous integration

Branching of source code, merging of source code

Management of versioning

Releasing the SW (deployment), migration

Backup of source code, documentation, released versions etc.

…

Configuration manager is role in the team and he is responsible for

creation and maintaining configuration management plan where should

be described all supporting tools and processes.

PV213 EIS in Practice: 05 – Security, Configuration management 22

Version control systems - Motivation

Q: How do you store the source code?

A: Just locally

Q: How do you cooperate with other people?

A: On the shared drive

Q: How do you keep history of changes?

Q: How do you know who made appropriate change?

Q: How do you do merges of changes from different developers?

Q: How do you manage to do maintenance of the already
released version and development for new version in parallel?

Version control systems are not only for source code (e.g. also for
documentation) but mainly when people speak about version control
system they mean versioning of the source code.

PV213 EIS in Practice: 05 – Security, Configuration management 23

Version control systems – Checkout / Checkin

PV213 EIS in Practice: 05 – Security, Configuration management 24

Version control systems – Branching and merging

PV213 EIS in Practice: 05 – Security, Configuration management 25

Version control systems – Solving conflicts, tagging

PV213 EIS in Practice: 05 – Security, Configuration management 26

Version control systems – Centralized vs. distributed

PV213 EIS in Practice: 05 – Security, Configuration management 27

Version control systems – Distributed approach

PV213 EIS in Practice: 05 – Security, Configuration management 28

Version control systems – Available tools I

CVS (Concurrent Version System)

Old system which is still used (first version in late 1980s)

Has some bad functionality by design

No support for atomic commits

No support for versioning of directories

Rather complicate branching

Subversion (SVN)

Different approach for versioning – applies to the entire tries

(not to individual files)

Supports atomic transactions

No support for merge of renamed files

PV213 EIS in Practice: 05 – Security, Configuration management 29

Version control systems – Available tools II

Git, Mercurial, Bazaar

Distributed version control systems

Every user has it’s own copy of the repository

You can commit your changes offline (repositories are
synchronized when you are online again)

ClearCase

Commercial from IBM (formerly Rational)

Distributed version control system (several replicas)

Every file or directory is owned by specific replica

Dynamic and snapshot views

Team Foundation Server

Commercial from Microsoft

Successor of Visual SourceSafe

PV213 EIS in Practice: 05 – Security, Configuration management 30

Version control systems – ClearCase Configuration Specification

Show all elements that are checked out to this view, regardless any other rules.

element * CHECKEDOUT

If an element has a version on the 'module2_dev_branch', then the latest

version of this branch shall be the visible version in this view.

element * .../module2_dev_branch/LATEST

For all files named 'somefile', regardless of location, always show the latest version

on the main branch.

element .../somefile /main/LATEST

Use a specific version of a specific file. Note: This rule must appear before

the next rule to have any effect!

element /vobs/project1/module1/a_header.h /main/proj_dev_branch/my_dev_branch1/14

For other files in the 'project1/module1' directory, show versions

labeled 'PROJ1_MOD2_LABEL_1'. Furthermore, don't allow any checkouts in this path.

element /vobs/project1/module1/... PROJ1_MOD2_LABEL_1 -nocheckout

Show the 'ANOTHER_LABEL' version of all elements under the 'project1/module2' path.

If an element is checked out, then branch that element from the currently

visible version, and add it to the 'module2_dev_branch' branch.

element /vobs/project1/module2/... ANOTHER_LABEL -mkbranch module2_dev_branch

PV213 EIS in Practice: 05 – Security, Configuration management 31

Version control systems – Branching approach

New development in main branch (head, trunk)

All new features are committed to the main branch

Next version of the application is developed in the main branch

Released version in branch

Branch is created during release process for the version

In the branch is done only bug fixing for the current version

Experimental (new) features in feature branches

New features (especially for which it is not clear whether there will be
contained in the next version or it is too risky to directly include them
e.g. because of unclear time plan) special feature branches are used

In reality sometimes there is new functionality also in bug fix branches for
already released version (especially for VCSes with poor branch support)

PV213 EIS in Practice: 05 – Security, Configuration management 32

Version control systems – Advanced features

For most version control systems you can define actions which are executed

when given trigger is fired (mostly pre-commit / post-commit actions)

These actions can be used e.g. for:

Forcing developers to provide comment or some ticket number which

correspond with requirement

Doing some changes in committed source (e.g. applying auto-formatting)

Checking that there aren’t known issues in the code

Checking naming conventions, absence of comments for public methods

Checking basic architectural rules

Checking that with changed sources all tests still pass

Checking that there exists unit tests for committed sources and there is at

least 80% of code coverage

PV213 EIS in Practice: 05 – Security, Configuration management 33

Integrated Development Environment - IDE

IDE simplifies development tasks and increases productivity and quality

The same IDE used by all developers decreases maintenance costs

Examples of IDEs

Microsoft Visual Studio

Commercial but basic variant is available for free

Targeted for Microsoft platform (desktop, mobile, cloud)

Eclipse

Open source (originally developed in IBM)

Goal is to be a platform for building applications (not only IDEs)

Originally targeted mainly for Java but plugins for lot of different
languages exists these days

NetBeans

Open source supported by Oracle (formerly Sun)

Mainly IDE for Java

PV213 EIS in Practice: 05 – Security, Configuration management 34

Build process

Goal of the build process is to have build easily reproducible on any computer
with minimal dependencies (without development environment).

Tools uses some type of the specialized scripting language which tells what and
how sources are build and how build results are created.

Possible tools:

Java

Ant

Maven

.NET

MSBuild

C/C++

make

<!– Ant example -->

<project name="Client" basedir="." default="compile-core">

 <target name="compile-core" depends="prepare">

 <echo>Compiling project sources...</echo>

 <javac srcdir="${src.dir}"

 destdir="${build.classes.dir}"

 target="1.6"

 source="1.6"

 classpathref="classpath"

 includeAntRuntime="false"

 debug="true">

 <include name="**" />

 <exclude name="**/gui/**" />

 </javac>

 </target>

</project>

PV213 EIS in Practice: 05 – Security, Configuration management 35

Continuous integration I

Continuous integration is approach how to integrate source code from
different developers as soon as possible to early identify possible
problems.

Continuous integration is standard technique in agile development
methods but you can apply it to any project (even when there is only
one developer working on the project)

Continuous integration helps with minimizing time needed for
integration of different component from different developers

Detects whether the whole project is still compilable (e.g. some
forgotten commits)

Detects if all tests still pass

Reduces time needed for building and eliminates mistakes made
by people during building

PV213 EIS in Practice: 05 – Security, Configuration management 36

Continuous integration II

How it works

Developers put their code into VCS

Continuous integration server periodically

checks if there are any changes in the CVS

When change is detected it starts the build

When build fails appropriate persons

(developers / managers) are informed

When build is successful results are stored

Build results can be automatically deployed in

the test environment

After the successful build can be executed

automatic tests

PV213 EIS in Practice: 05 – Security, Configuration management 37

Tools for bug tracking, project management, etc.

Bugzilla

Bug tracking system, open source

Atlassian JIRA

Bug and issue tracking and project management system

Commercial but free for open source projects

Microsoft Team Foundation Server

Bug and task tracking, quality control, project management and

reporting system (among other features)

Commercial but limited (maximal 5 users) free version announced in

Team Foundation Server 2012 (TFS 11)

TRAC

Bug and task tracking, wiki, project management system

Open source, a lot of additional plugins exists

PV213 EIS in Practice: 05 – Security, Configuration management 38

TRAC tool - Wiki

PV213 EIS in Practice: 05 – Security, Configuration management 39

TRAC tool - Timeline

PV213 EIS in Practice: 05 – Security, Configuration management 40

TRAC tool - Roadmap

PV213 EIS in Practice: 05 – Security, Configuration management 41

TRAC tool – View tickets

PV213 EIS in Practice: 05 – Security, Configuration management 42

TRAC tool – Create new ticket

PV213 EIS in Practice: 05 – Security, Configuration management 43

Děkuji za pozornost.

