
PV213 EIS in Practice: 11 - Testing 1

Enterprise information systems in practise

SW TESTING – part 2

Ing. Daniel Mika, Ph.D. (daniel.mika@atos.net)

Two hours in the course

7 years of praxis in IT (ANF Data, SIS, Atos)

Area of interest: test and acceptance criteria, quality

Projects: IMS, WiMAX, ChargingSpot, sLIM

ISTQB certified tester – foundation level

PV213 EIS in Practice: 11 - Testing 2

Content (1)

Purpose of testing

Basic test principles

Test process

Multilevel testing

Static techniques

Blackbox vs. Whitebox testing

Test management (Test Plan)

PV213 EIS in Practice: 11 - Testing 3

Content (2)

Risk-based testing strategy

Test exit criteria

Test-driven development

Combinatorial testing

Test automation and regression testing

Test tools in praxis

Risk-based testing strategy

What is a risk?

Unwanted event that threatens project objectives with negative
consequencies

Three aspects related to risks

Impact (loss, cost)

Likelihood of occuerence

Degree to which its outcome can be influenced

Categories of risks

Project (hard deadlines, external dependencies, skill missing)

Process (planning risks, underestimation, bad progress control)

Business and product (bad/unstable requirements, bad usability,
product complexity, fault proneness, bad
quality/stability/perfomance)

Risk-based testing strategy

Base the testing strategy on business goals and priorities

=> Risk-based testing strategy

No risk = No test

Risk = P x D

P … probability of failure

D … damage (consequnce & cost for business & test &

usage)

Risk-based testing strategy

A testing strategy should answer:

What to test?

Where to test?

Why?

When?

Who tests?

How to test?

How much to test?

Damage (consequence, cost)

p
ro

b
a
b
ili

ty

lo
w

medium high low

m
e
d
iu

m

h
ig

h

10

4

3

13

17

29

14

35

33

Broker Sales
system

User Interface

Policy and Client
Converter

Policy
Printing
system

Policy
Management

system

Intranet Internet

Client system

Campaign
Creation system

Campaign
Manager

Marketing
Campaign

Printing and
Distribution system database

Test exit criteria

Time is over

Budget is used up

The boss says “ship it!”

Testing is never finished, it’s stopped!

Software products are never released, they escape!

Test exit criteria – unit and integration tests

All unit and integration tests and results are documented

There can be no High severity bugs

There must be 100% statement coverage

There must be 100% coverage of all programming

specifications

The results of a code walkthrough and they are

documented and acceptable

Test exit criteria – system tests

All test cases must be documented and run

90% of all test cases must pass

All test cases high risk must pass

All medium and high defects must be fixed

Code coverage must be at least 90% (including unit and

integration tests)

Test exit criteria – acceptance tests

There can be no medium or high severity bugs

There can be no more than 2 bugs in any one feature or 50 bugs

total

At least one test case must pass for every requirement

Test cases 23, 25 and 38-72 must all pass

8 out of 10 experienced bank clerks must be able to process a loan

document in 1 hour or less using only the on-line help system

The system must be able to process 1000 loan applications/hour

The system must be able to provide an average response time of

under 1 second per screen shift with up to 100 users on the system

The users must sign off on the results

Test-Driven Development (TDD)

Efficiency

The fine granularity of test-then-code cycle gives continuous feedback to the developer.

With TDD, faults and/or defects are identified very early and quickly as new code is

added to the system, and the source of the problem is more easily determined. We

contend that the efficiency of fault/defect removal and the corresponding reduction in

the debug time compensates for the additional time spent writing and executing test

cases. In net, TDD does not have a detrimental effect on the productivity of the software

developer.

Write a test Write a code Refactor

I’m TEST-DRIVEN 

Test-Driven Development

Test Assets (benefits)

TDD entices programmers to write code that is automatically testable,

such as having functions/methods returning a value which can be

checked against expected results. Benefits of automated testing, such

as TDD testing, include:

• production of a more reliable system

• improvement of the quality of the testing effort

• reduction of the testing effort

• minimization of the schedule

The automated unit test cases written with TDD are valuable assets to

the project. Subsequently, when the code is enhanced or maintained,

running the automated unit tests may be used for the identification of

newly introduced defects, i.e., for regression testing.

Test-Driven Development

Reducing Defect Injection

Debugging and software maintenance is often viewed as a low-cost

activity in which working code defect is “patched” to alter its

properties, and specifications and designs are neither examined nor

updated.

Unfortunately, such fixes and “small” code changes may be nearly 40

times more error prone than new development, and often new faults are

injected during the debugging and maintenance. The TDD test cases are a high

granularity low-level regression test. By continuously running these automated

test cases, one can find out whether a change breaks the existing system. The

ease of running the automated test cases after changes are made should allow

smooth integration of new functionality into the code base and reduce the

likelihood that fixes and maintenance introduce new permanent defects.

TDD – calculator example

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 public int add() { return 0; }

 public int subtract() { return 0; }

 public int multiply() { return 0; }

 public int divide() { return 0; }

}

x y add() subtract() multiply() divide()

0 0 0 0 0 error

1 1 2 0 1 1

4 2 6 2 8 2

9 3 12 6 27 3

35 5 40 30 175 7

TDD – calculator example

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 public int add() { return 0; }

 public int subtract() { return 0; }

 public int multiply() { return 0; }

 public int divide() { return 0; }

}

x y add() subtract() multiply() divide()

0 0 0 0 0 expected: error

1 1 expected: 2

actual: 0

0 expected: 1

actual: 0

expected: 1

actual: 0

4 2 expected: 6

actual: 0

expected: 2

actual: 0

expected: 8

actual: 0

expected: 2

actual: 0

9 3 expected: 12

actual: 0

expected: 6

actual: 0

expected: 27

actual: 0

expected: 3

actual: 0

35 5 expected: 40

actual: 0

expected: 30

actual: 0

expected: 175 actual:

0

expected: 7

actual: 0

TDD – calculator example

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 public int add() { return x+y; }

 public int subtract() { return x-y; }

 public int multiply() { return 0; }

 public int divide() { return 0; }

}

x y add() subtract() multiply() divide()

0 0 0 0 0 expected: error

1 1 2 0 expected: 1

actual: 0

expected: 1

actual: 0

4 2 6 2

expected: 8

actual: 0

expected: 2

actual: 0

9 3 12 6 expected: 27

actual: 0

expected: 3

actual: 0

35 5 40

30 expected: 175 actual:

0

expected: 7

actual: 0

Result of the refactoring

public class Calculator {

public int plus(x, y) { return x + y; }

public int minus(x, y) { return x - y; }

public int times(x, y) { return x * y; }

public int divide(x, y) { return x / y; }

}

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 private Calculator calc;

 public CalculatorFixture() { calc = new Calculator(); }

 public int add() { return calc.plus(x,y); }

 public int subtract() { return calc.minus(x,y); }

 public int multiply() { return calc.times(x,y); }

 public int divide() { return calc.divide(x,y); }

}

Combinatorial testing

Electronic bookstore (5 parameters with different number of values)

1200 = 4 * 3 *5 * 5 * 4 possible parameter combinations exist

Which parameter combinations shall be selected?

Type of credit card Credit card number Expiration date Product type

purchased

Quantity purchased

Amex Correct 50 Book 1

Discover Incorrect Length Invalid year Video 0

Visa Invalid digits Today Software -1

Master Card Yesterday Book,Software, Video 10

Invalid Character Book,Sofware

Combinatorial testing

System under test with 4 components, each of which has 3 possible
elements

Overall number of possible configurations: 81 = 3 * 3 * 3 * 3

Which configurations shall be selected?

Calling phone Call type Access Called phone

Regular Local ISDN Regular

Mobile Long distance PBX Mobile

VOIP Toll free Loop pager

Combinatorial testing

n independent parameters P1, P2, … , Pn

with mi different values each with i = 1,2,…,n

number of possible combinations: m1 * m2 * … * mn

Testing all possible combinations results in an astronomical number

of test cases which is infeasible and inefficient

Wanted: an adequate test case design method to reduce the number

of test cases while enhancing coverage and quality of tests

Combinatorial testing

Best guess

Intuition and hope and luck

Random choice

Expert know-how

All combinations

Every combination used in test cases

Suitable for trivial cases

Each choice

Each value of each parameter to be included in at least one test

case

 All Combinations for Three Variables of Three Levels Each

A B C

1 Red Red Red

2 Red Red Green

3 Red Red Blue

4 Red Green Red

5 Red Green Green

6 Red Green Blue

7 Red Blue Red

8 Red Blue Green

9 Red Blue Blue

10 Blue Red Red

11 Blue Red Green

12 Blue Red Blue

13 Blue Green Red

14 Blue Green Green

15 Blue Green Blue

16 Blue Blue Red

17 Blue Blue Green

18 Blue Blue Blue

19 Green Red Red

20 Green Red Green

21 Green Red Blue

22 Green Green Red

23 Green Green Green

24 Green Green Blue

25 Green Blue Red

26 Green Blue Green

27 Green Blue Blue

All-Pairs Array, Three Variables of Three Levels Each

A B C

2 Red Red Green

4 Red Green Red

9 Red Blue Blue

12 Blue Red Blue

14 Blue Green Green

16 Blue Blue Red

19 Green Red Red

24 Green Green Blue

26 Green Blue Green

Test Automation

Introducing test automation is sometimes like a

romance: stormy, emotional, resulting in either a

spectacular flop or a spectacular success.

Bogdan Bereza-Jarocinski, 2000

Test Automation - Why

Automated testing is a foundation for any kind of iterative or agile

development

Daily builds and small releases are useless if they cannot be

validated

Find more regression bugs

Run the most important, useful, valuable tests more often

(continuously, overnight, on weekends)

Reduce testing stuff

Reduce elapsed time for all tool-supported testing activities (setup,

execute, analyze, …)

Control cost of automation effort vs. effort saved by automation

Testing and Automation -> different objects !

Test Automation – Limitations (Minefield metaphor)

Regression Testing

The fundamental problem with software maintenance is that fixing a

defect has a substantial (20-50 %) chance of introducing another.

Frederick P. Brooks, Jr., 1995

When you fix one bug, you introduce several newer bugs.

ISTQB Glossary (2007)

Testing of a previously tested program following modification to

ensure that defects have not been introduced or uncovered in

unchanged areas of the software, as a result of the changes

made. It is performed when the software or its environment is

changed.

Regression Testing – test selection strategy

Retest all

Retest by risk – priority, severity, criticality

Retest by profile (frequency of usage)

Retest changed parts

Retest parts that are influenced by changes

A real life problem – AT&T Phone System Crash, 1990

What happened

Mal-function in central server led to
chain reaction

Service outage of half of the system
for 9 hours

Loss of 75 million dollars damage for
AT&T

Reasons

Wrong usage of break command

Software update directly in largest
part of the system

switch expression {

 …

 case (value):

 if (logical) {

 statement;

 break;

 } else {

 statement;

 }

 statement;

 …

}

